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Light-cone quantization: Study of a soluble model with q-number anticommutatore
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A massless Dirac field interacting with a massive vector meson in two-dimensional space-time is considered in
an attempt to gain further understanding of interacting systems quantized in light-cone coordinates. It is
shown that the solution is equivalent not to the same system quantized on a spacelike surface, but rather to a
single-component fermion model already known in the literature. The commutation relations among the field
variables are found to be interaction dependent, with the fermion anticommutator having a q-number term in

addition to the usual 8 function. This latter feature may be traced to the fact that the number of degrees of
freedom of the light-cone quantized system is fewer than that of the single-component fermion model to
which it is equivalent, with this discrepancy in the number of independent dynamical variables being exactly
compensated by the interaction-dependent terms in the commutation relations. Some possible applications to
four-dimensional space-time are briefly discussed.

I. INTRODUCTION

Between the publication of steinberg's paper on
dynamics at infinite momentum' and the present
time there have been numerous discussions of
light-cone quantization. However, it is far from
clear what really happens in the interacting sys-
tem of quantum fields upon quantiza, tion in such
coordinates, particularly since diagrammatic
calculations frequently serve only to obscure the
problem. Further complications arise as a con-
sequence of the fact that the number of degrees
of freedom in light-cone coordinates is only half
that of the conventionally quantized theory. De-
spite this circumstance there remains a fairly
widespread belief in the equivalence of such sys-
tems.

In an attempt to gain some insight into this prob-
lem we study here a soluble model field theory.
It consists of a massless fermion field interacting
with a massive vector field in a two-dimensional
world. As in the case of the other soluble mod-
els" it is necessary to adopt a specific prescrip-
tion for the construction of the singular current
operator j"(x). However, in contrast with the
spacelike-quantization case, the simple prescrip-
tion

j"(x) =-,' limp(x)o. "qg(x') (1.1)

leads to consistent results in light-cone coordi-
nates. In the case of spacelike quantization the
limiting definition (1.1) is not satisfactory since
it implies the free-field result. ' The reason why
Eq (1.1) avo. ids such a pitfall in light-cone co-
ordinates is that the fermion field g(x) is not in-
depent of the vector field, and thus the current
(1.1) already contains within it elements of the
interaction. This stands in marked contrast to
spacelike quantization, where one must explicitly

introduce the interaction effect as an exponential
factor according to the prescription

t

j"(x) = —,
' lim g(x)n."q exp ieq dy„f"(B) g(x')x'~x x'

for the interacting system. ' The fact that the
Dirac field is not independent of the vector field
means that the equal-time (x+) (anti-) commuta-
tors are dependent on the interaction. It is be-
cause of this interaction dependence of the com-
mutators that inconsistency problems customarily
encountered when the charge and current densities
commute' are not so severe as in the spacelike-
quantization case.

In the following section the action principle and

the Lagrange multiplier method are used to de-
termine the (anti-) commutation relations. A

phase transformation considered previously by
Yan in the context of this model is shown not to be
sufficient to maintain canonical commutation re-
lations for the interacting system. The solution
of the model is computed in Secs. III and IV, with
various aspects of the solution being examined to
confirm the internal consistency of the theory.
The Thirring-model limit is discussed in Sec. V,
and the operator properties of the model together
with a proof of covariance are given in Sec. VI.
The two-point functions for the free field are dis-
cussed in Appendix A. In Appendix B it is shown
explicitly that the fermion Green's functions satis-
fy the equations of motion and that the prescrip-
tion (1.1) is consistent with the solution. The
Thirring model in light-cone coordinates is shown
to be free in Appendix C.

Before going on to discuss quantization, a brief
summary of the notation is in order. The coordi-
nates x' are defined as
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1x' =x, =—(x'+x'),
j "(x)= -', y(x) o."qg(x), (2.2)

which implies for the metric tensor gu' the form

(0 I i

i, l 0)
The sca1.ar product is

pu v ~ ugv gvgp

8„Fu' = eju+ p —p. ,'Bu,

(2.3 }

(2 4)

and Ju and A. u are external classical sources. By
the action principle one infers the field equations

xup =xu&'&u -x p +x p --x p+x'p, 1
&+u (2.5)

with the x' coordinate taken to be the analog of
the time coordinate. The Dirac matrices are

(I 0) fo 0'} (0-i'}
~0 0) (0 I~ (z 0)

this displays the fact that the Dirac matrices n'
serve as projection operators, i.e.,

and the infinitesimal generator

G = — dx (]'},5g, —
2 t dx (F' 5B' —5E' B'),

J

(2 8)

which gives the (anti-) commutation relations by
means of the relation

-'i5X =[X,G]. (2.7)

%e consequently use the notation

g,(x) =P„q(x)

and define the usual charge matrix
/t0 -i
(i 0)

which acts in the internal charge space cf the
Hermitian field g(x). Integration and summation
signs are frequently suppressed so that repeated
arguments (indices) mean integration (summation)
in the usual fashion.

II. ACTION PRINCIPLE AND COMMUTATION RELATIONS

%e consider the model field theory described
by the Lagrangian

'F""(5
q B„—5 „—Bq) + 'E""Eq„- , p,

'B—"Bq—
+ 2ige" 8~/+ ej "B~+B"4—„+j"A~, (2.1)

where the current operator is formally defined

Although in Eq. (2.6) the fields g, , B+, and E'
appear to be dynamically independent field vari-
ables, the actual number of dynamical variables
is reduced by the constraint equation

8 F+ = g+- 'B+ (2.8)

(Here we neglect the external sources Z" and A]',

as they do not affect the commutation relations. )
It is immediately apparent that the (anti-) com-

mutation relations among the fields are dependent
on the quantum interaction as a consequence of
the constraint equation (2.8). In this model, since
the g field and the B]' field are not completely
independent, one finds that there is no need for
the introduction of an explicit line integral factor
in the current operator. One thus takes (1.1) as
the definition of the current j "(x) where the limit
is to be taken in the "spatial" (x ) direction
(thereby preserving time locality).

To determine the (anti-) commutation relations
one writes Eq. (2.7) employing the Lagrange
multiplier method as

x(x), — dx '
d( x)ll d( x} —-', f dx '(x 'x(x'}I!a'(x')xx 'd'(x')!IF(x')]

dx ' ~i6 x —x ' 5X x' + 2iA x, x' 6I' x' + po'6B' x' —e6j+ x', 2.9

where E=B E' and 5j"=@2g, q5$, . All varia-
tions are now to be considered as being indepen-
dent, with A(x, x') to be determined such that Eq.
(2.8) is satisfied.

For }I=$, , x'=x"
[q,(x), F(x )]= i],'S Z~(x, x ),

[y,(x},B'(x'}]= - ia' A'(x, x'),

(2.10)

Q),(x), i(),(x')}=~25(x —x ') +—[A~ (x, x'), qr/), (x') ],
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stituting Eq. (2.16) into Eq. (2.13) one has

O' A~ (x, x') =2,[g,(x), j'(x'}].
2po

For X = 8', x'= x"
(2.11} A (x, x') =—. . .&(x —x ') (2.16)1 —e 4'lT p, o

and

[B+(x},g,(x')] =eA (x, x')qg (x'),

[B'(x),Z(x')] =- ze'5(x —x ') -ip, ,'6'A'(x, x'),

[B'(x), B+(x'})=-i&' A (x, x'),

(2.12)

[B'(x), g, (x')]=-,qq, ( «) S5(x —x ')
2Po

[B'(x),B'(x')]=-,S 6(x- -x-'),
2p. p

(2.19)

(2.20)

2ip. ,'O' A (x, x')+[B'(x), ej '(x')]= —i &'5(x —x ').

(2.13}

For y =I', x'=x+' where

(2.21)

[B'(x},F(x')] =—(I —e'/2m', ,')s 6(x —x '),

[Z(x), q, ( x)] = eA'(x, x')qq, (x'),

[Z(x), Z(x')] = —i p.,'6' A'(x, x'), (2.14)

1
1 —e /4wpo

'

Similarly one finds

[Z(x), B'(x')]=-is' A'(x, x') —ie'5(x -x-'),
[Z(«), j'(x')] = —6' A (x, x') (2.22)

2i s' A"(x, x'}+~[Z(x), j'(x')] = —i 6' 5(x- —x-').
P,o

(2.15)
A~(x, x') =--,'a6(x —x '},

so that from Eq. (2.14}there follow

(2.23)

[B'(y), ej'(x)]

lim [B'(y), g,(x)qy, (x')]

=—lim ([B', it, (x)]qP,(x')+y, ( )x[qB', g, (x')]}

g2

=~2 lim g,(x)g,(x')[A (y, x') —Ae(y, x)].

Interpreting the product of the operators at the
same point as a vacuum expectation value, one
has

2

[B'(y), ej '(x)]= , s" A'(y, «)-, — (2.16)

where use has been made of the fact that for the
free field the two-point function is

CR 1
4m x —x '+ice(x'-x")'

(2.17)

a result which is derived in Appendix A. Sub-

It is convenient first to solve Eq. (2.13). To
this end one notes that the singular behavior of
the operator g(x)g(x') for x'-x is the same as that
for the free field in the standard way. Using this
one can compute A (x, x'),

[F(«), g,(x')] = ——,
'

eaqg, (x}6(» —x '), (2.24)

[E(x),E(x')]= ——,'ip, 'as 6(x —x '). (2.25)

Solving for A~(x, x') is considerably more compli-
cated inasmuch as A~(x, x'} is an operator rather
than a c-number function. However, one can use
the results (2.19) and (2.24) to get

[j '(x), q, (x')] = - aqua, (x)6(x —x '), (2.26)

which upon substitution into Eq. (2.11) yields for
the anticommutator

(y, (x), q, (x )}=~6(x--x-)1

0
, e(x -x ')[qg, (x), qg, (x')].

8P,o

(2.27)

Thus one has found the rather strange result
that the commutators are dependent on the inter-
action and, furthermore, that the fermion ar.ti-
commutator is a q-number function. As will be
seen, however, this is an entirely consistent re-
sult and serves to indicate that considerable cau-
tion is necessary in inferring commutation rela-
tions in light-cone coordinates.

It is convenient at this point to derive a result
which will be used later for consistency checks
on the model. To this end one notes that the field
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equation (2.5) can be written as

—, a, —eqB, —qA, , x =0, (2.28)
ST~+ S ~+P P

SPo. SP = —a,
(

1
—. 8 -eqB -qA x =0 (2.29)

since as already noted the Dirac matrices n'
serve as projection operators. Because Eq. (2.29)
is a homogeneous constraint equation for g (x),
one immediately infers that ]}) (x) vanishes and
consequently that

with SP being a real matrix in order to maintain
the Hermiticity of g'. Since o.' and a are pro-
jection operators one writes the last relation as

SPP SP =- P
=SPI' P SP

=(~ s,)'(s s,);
j-(x) =0. (2.30) this shows that the element (S~)» of S~ satisfies

Despite the strange form of the result (2.30) it
will subsequently be shown to be consistent by
explicit reference to the solution of the model.
From Eq. (2.28} one can evaluate'

a,j'(x) = lim ~a,[g,(x+ —,'e) qp, (x —-',c)]

Ilm
~2 [$+(x+ 2f ) jf( (x —26 )

+ $~(x + 26) jfa+(+(x — E}2]'

[(s,)„]'= - 1,

thereby contradicting the requirement that SP be
real.

The second point alluded to above is that Eq.
(2.30) implies commutativity of the charge and
current densities and therefore might lead to a
well-known inconsistency. In the case of space-
like quantization, ' for example, such commutativ-
ity, i.e.

=—a 8 (x)+—a A (x),
e 1

2' 2m
(2.31) implies

which together with the field equations (2.3) and
(2.4) implies the result

= —fa, j'(x), j'(x')]

8 B ——E+ = 8 J&+,8 A .
2 2pp 4Fpo

(2.32)

It is of interest to note that because of Eq. (2.30)
one can write

a j "(x)=a j'(x)

where H is the Hamiltonian operator. The latter
equation, upon taking its vacuum expectation val-
ue, leads to the unsatisfactory result

so that Eq. (2.31) is expressible in the source-
free limit in the covariant form Because of the anomaly (2.33}, however, one has

a,j"(x)= ——e""E„,(x). (2.33)
0]j']x),a,j'(x')]=i(4—' a{a -x ') (2.34)

Before proceeding further it might be well to
note two rather remarkable properties of Eq.
(2.33). First, one notes that the equation appears
to be parity violating since j"and E„„are (pre-
sumably) ordinary vector and tensor, respectively.
It can be shown, however, that the parity operator
does not exist in light-cone coordinates by the
following argument. In order that the Lagrangian
and the Dirac equation

o."a„'g'(x') =0, (x",x ') = (x', —x )

g(x) = exp[i eqa 'B'(x)] jj)(x)

and to identify

(2.35)

for the light-cone quantized model and no consis-
tency problem arises.

Before concluding this section it is worthwhile
to comment on a recent attempt by Yan' to derive
the commutation relations of the theory considered
here in light-cone coordinates. His approach to
the constraint equation (2.8) was to introduce an
operator phase transformation

transform covariantly under space inversion,
there must exist a matrix SP such that

j "(x) = —,'y(x)o. "qg(x)

.'y(x) n~ qy(x—) (2.38)
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= 2y(x)n'qy(x)+2—B'(x). (2.37)

Thus j "(x) contains elements of the interaction
and the theory cannot be made to have simple ca-
nonical commutation relations in a two-dimen-
sional world. Although the four-dimensional world
is considerably more complicated, the results
obtained for the two-dimensional model suggest
that a straightforward quantization of the vector-
gluon model in four-dimensional space-time is
not: possible in light-cone coordinates.

This, he argued, eliminates all the interaction-
dependent terms in the infinitesimal generator
(2.6), thereby implying canonical commutation
relations in terms of the field (j))(x) and the vector
field. However, the identification (2.36) cannot
be correct for the interacting system since from
Eq. (1.1) one easily finds

j'(x) = 2 Ij.m (I)(x)o.+qg(x'}

G)(u( )
0 fjxe)(((+0 Pd'

(»P ij.,' P'+p, '-ie'

Integrating the functional differential equation

&ol 0&~ = i(OIB "(x)lo&
jj x

yields the result

(0(0) = exp
0 f dxdx de(x)'Oe (x —"x') d( x') }

(3.6}

To determine (0 lo&„one requires a definition of
the current operator j"(x) in the presence of an
external source. A rather general form is

je(x) = —, li|x P(x)eee exp(ld Jl dp„f"(A)}P(x')

III. BOSON MATRIX ELEMENTS

The calculation of the Green's functions of the
model is greatly facilitated by the use of the de-
vice of the external source."Thus the action
principle implies

—(0(0)xx, =i(0 f dx j'(x)0„(x) 0)„x,

( }6g)(( )
& I &AJO'

Elementary integration immediately yields

(0(0)xx.--exp(-ie dx OA( ) ( )) (0)0)„
(3.1)

where

&olo& = &o lo&, .=.
= &o Io& ~&0 Io& g.

It is straightforward to evaluate (0 lo& z using the
relation

where the time-ordered product is given by

. &OIT(q(x)y(x ))IO&„ 6q (x)
&010&„6Pq(x')„'

(3.8)

The second term on the right-hand side of Eq.
(3.9) comes from the fact that g (x) is not an in-
dependent component' and is easily shown to be
required if the Green's function G(x, x'} is to
satisfy the equation of motion

with f"(A) linear in A'. The usual form for f"(A)
used in other soluble models" is not applicable
here since y, is not meaningful for the massless
Dirac field in light-cone coordinates. It turns out
that the only definition of the current operator
which leads to a covariant result is such that
f"(A) does not contribute to the current when the
limit is taken in the "spatial"(x ) direction. Thus
the current expectation value can be written as

i&o IT(4 (x)(C (x')) IO&&

6,&0 Io&,= i&GIN)'(x)B„(x)lo&

and the field equation for e =0

ev& 8»"+u &"-J
Thus one obtains

(3.2)

(y" —. 8„-qA„|"x, x' =5 x-x'. (3.10)

G(x, x') =G (x, x')e" f~ ' (3.11)

In order to solve the differential equation (3.10)
one sets, as usual,

(Olde(O), -(O)lo), Jdxd, "(x x )d„(x ), (0 0) where the free-field Green's function satisfies

where

G,""(x—x') = i &T(B"(x)B"(x'))&+, (3.4)
6B"x)
5Z, (x')

is found from (3.2) to have the form

n" —, S,G,(x, x') =5(x —x')~1

thereby implying for E(x) the equation

c(" SF( )x= cj"d4„(x).

(3.12)

(3.13)
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Using the solution of Eq. (3.12) as given in Ap-
pendix A, the current expectation value (3.8) may
be reduced to

+
Iim TroD &e(a(~(*)-z(xe))

or, in covariant form,

{j'(x))„=——([)"+ e""8„)([)"+ c"'e, )D(x -x')A„(x') .1

(3.17)

which shows

(j (x}&A=o

(3.14} One can now easily solve the functional differen-
tial equation

(0 i 0)„=i(0
i
j"(x)

i 0)„,
Since Eq. (3.13) can be written as

s'E(x) = 2P, a A-+ 2P s, A',

it follows that

TrP E(x)= -4 dx'D(x -x')8 A (x'), (3.15)

where

obtaining the result

(0 [0)„=exp — dx dx A„(x)D'" (x -x')"A„(x')),

(3.18)

where

-[)2D(x) = 5(x) (3.16)
D;"= = ([)"+ &"[) )([)"+ ~"'a,)D(x) .1

(3.19)
subject to the usual causal boundary conditions.
Substituting Eq. (3.15) into (3.14) one immediately
finds

(j'(x))„=-- [)'[)'D(x -x')A (x')

The complete result for the vacuum-to-vacuum
transition amplitude is computed by substitution of
Eqs. (3.6) and (3.18) into (3.1). After somewhat
tedious calculations one obtains the result

(0[0)„x,=Dexp — dxdx'[J„(x)G""(x—x')d„(x')+A„(x)D""(x—x')A„(x')+2A„{x)M "(x—x')d(x'))), (3.20)

where

e"8" e'~ e'8"
D""(x)=e(d'" — A(x)- e(x)e, (3'+ 3"'3.)(e"+e"'3,) .[A(x) -D(x)],

DD"(x) = = (BD+ s" 8 )([)"+ e'~B()) D(x) +4, &(x)
0

M'"(x) =—,(8'+ e"[).)(e"+ ~"' [))[ D( x) —&(x)]—,([)"+ ~"[)„)[)"&(x),
0 0

(u'- [) )&(x)= 6(x),

g'= p, 'a = p,,'/(1 —e'/4n g, '),
(3.21)

(3.22)

and C is a constant independent of AD and JD. From Eq. (3.22) we see that the vector-meson is renormal-
ized by a nonpolynomial form in the coupling constant just as in the case of the single-component fermion
model. '" In fact the vacuum transition amplitude (3.20) is equivalent to that of the single-component fer-
mion model.

Vfiththis result it is trivial to generate matrix elements of an arbitrary number of boson operators by
repeated functional differentiation of (3.20). Thus the current correlation function for vanishing external
fields is

1 1 5j"(x)
(0i 0}

—.
( ) (,)

(0
i 0) = i(T( j'(x)j"(x')))+ (,)

=D""(x-x'),

(3.23)

from which one infers the equal-x' commutation
relation

[j'(x),j '(x')] = —[) 5(x- -x-')
27r

as well as

5j (x)
5A„(x') (3.24)
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Equation (3.24) is, of course, an eminently rea-
sonable result in view of the fact that there is no
line integral factor in the definition of the current
and thus no explicit dependence on A.~.

One similarly finds from the solution

ing time derivatives, i.e.,
E'"=9 I3 - B,B'

and

-B,E' =J —Po B

(3.32)

(3.33)

and

[q'(x), B'(x')] =-f, e 6(x- -x-')
4'f P,o

(3.25)

+ a(1--.'a)e m-+, e 6(x -x')Z-(x')
2~0

[B'(x),B'(x')] = -z, e 6(x- -x-'),
0

results which are in agreement with those found in
Sec. II by the Lagrange-multiplier technique.

Before we conclude this section it is of some in-
terest to show explicitly that the solution (3.20) is
consistent with the constraint (2.32). From (3.20)
one thus computes

2

(e B-(x))= ——e.~'+, e,e(x -x')a'(x')
0

Equation (3.32) serves a,s an equation of motion
while Eq. (3.33) leads to a secondary contraint
equation (2.32) which is responsible for the time-
derivative term in Eq. (3.31). It is worth noting
that the results displayed in Eqs. (3.30) and (3.31)
are useful for the evaluation of the time-ordered
product of the vector-meson field. To this end
one writes the usual covariant Green's function as
the time-ordered product plus contact terms, i.e.,

G""(x—x') =z(T(B"(x)B"(x')))+S "(x —x') .(3.34)

Reference to Eqs. (3.30) and (3.31) leads to the
identification

g++ 0

S' =S '=, 6(x-x'),
2$,0

2

e 4A +4, e 6(x -x')A (x')
47( 4g P.o

(3.26)

and

S-= e -
e 6(x-x'}+-.'a'e -'6(x-x'},

&0

(F" (x))= ——e ~A- -ae.m'
2r

+a(1 —e'/2wp, '}e M

thereby obtaining

(3.27)

(3.28)

which is precisely the vacuum expectation value of
Eq. (2.32). Furthermore, Eq. (3.26) implies by
functional differentiation that the explicit depen-
dence of the B (x) field on the external source is

which allows one to infer directly the form of the
(noncovariant) time-ordered product.

IV. FERMION MATRIX ELEMENTS

The fermion Green's functions are obtained by
repeated functional differentiation of the vacuum
transition amplitude (0~ 0) with respect to the spin-
or source q(x) introduced in the Lagrangian (A6) of
Appendix A. Since, however, the field P (x) is not
an independent dynamical variable, the Green's
functions are expressed as time-ordered products
of the field P(x) plus contact terms which are local
in time [e.g. , Eq. (3.9)]. The general form for the
Green's function is, therefore,

(
6B (x) ea
6A (x') 4v p,,'
6B (x) a
6Z-(x') =2p,,'(

(3.29)

(3.30)

' &01 7'(4( ,)" 0( .))10}
AJ'e 1 x2n& (010)„,

+ contact terms. (4.1)

and

, e -'e.e(x -x')+-, a'e -'6(x -x') .

In order to evaluate (4.1) one extracts the effect of
the quantum interaction into an exponential factor,
thereby obtaining

(3.31)

The unusual form of Eq. (3.31) in which the depen-
dence of B on J ' is seen to involve a time deriva-
tive originates in the fact that, although B'(x) is
the only independent dynamical component of the
vector field, there are two field equations contain-

(010)A~, 6A 6Jg

x,010)A~GA~(x, ~ ~ x2„). (4.2)

Generalizing the result obtained earlier for the
two-point function, one writes GA~(x, x,„) in the
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G„„(x, x „)=exp ig GP(x )G,.,(x, x „),

where the free-field Green's function G,(x, xz„) satisfies

(aZ' —. 8G),GG(x, 'x,„)=Q (-1)'5(x, -x;)G,(x, ~ x; „x;„x,„) ~
1

(4.3)

(4.4)

This implies that E(x;) satisfies Eq. (3.13), the solution of which is

E(x,) = -2[P.8 D(x, -x)A (x)+P 8,D(x, -x)A'(x)] .
It is now relatively straightforward to obtain the result

Gxx(x, "x,„)=expI{ge; dx[d„(x)ii (x —x,.)+J„(x)M"(x-x, )] G „(x, x,„),

where

2
~"(» x,)=P.(8"+ e'"8„)D(x -x,.)+,~(x -x, )

4m @02

2

+P (8& e'"8—„)D(x -x,.)+,(8"+ c'"8„)[D(x-x,.) ——.'a(1 —e'/2zz p.,')&(x -x,.)]~,
0

(4.5)

(4.6)

(4.7)

MG(x —xz) = P, (&8"D(x -x,.)+(8G+ c""8„)[D(x-x, ) -&(x -x, )]]
0

2+,P ee'x{x-x)x (e" —e'"e)[G{x-x}-x(x-x)]xp,(e" +x'"e„)[G(x-x )-e(x-x )]I,
0 0

ance

. e'a
GG~(x, "x,„)=exp z, q, qyh(xz -»g) GG(x, xzG).

— 2&0

It is to be noted here that the factors proportional to P in the solution are associated with the contact
terms (5{])(x, )/5Pzi(x&)) and therefore do not play any physical role. Since P (x) and j (x) vanish (as shown
in the previous sections), it is convenient to let

ej "(x)BG(x)-ej'(x)B (x)

in the Lagrangian (2.1). Thus a solution physically equivalent to (4.7) is obtained by the replacement

5AG(x) 5J (x) x 5A (x) 5J'(x)

in Eq. (4.2). As a result of this operation, one obtains in place of (4.7)

e a
NG(» —x,.)=P,(8" +eG"8„) D(x»,.)+-,&(x—x,.) +P (8G —EG'8„)D(x x,), -

0

M (x x ) = —P (a8 b, (x x )+ (8" yK "8„)[D(x-x ) —A(x —x,.)]],
Vo (4.8)

I

G„,(x, ~ ~ x,„)=exp i,Q q;qg, &(x,.—x,.) G, (x, ~ ~ x,„).
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It is particularly interesting to note that the two-
point function G,(x, x') in the absence of any ex-
ternal sources is

8 CE

G,(x, x')=G, (x —x') exp -i,P.[a(x-x') —&(0)]).,
0

(4.9)

which shows that there is no infrared divergence,
just as in the case of the single-component fer-
mion model. '

Upon considering the discontinuity of the Green's
function

As shown in the preceding section, the 8 (x) field
is dependent on the external sources. To find the
explicit dependence of 8 (x) on the spinor source
q(x) we consider the Lagrangian (A6) with A" = 0

Following the same line of reasoning as in
Eqs. (2.31) and (2.32), one finds

(4.13)

Taking two functional derivatives with respect to
q(x), one obtains

i"&2'(P(y)t(x»' ' ' t(x..»&l„': „"l",
«X g~6 , V'q, 6(x- x,)G,(x„x,), (4.14)2 ~

q,-N' —x,. G„,x, g,„, 4.10
3

and noting that

where the T* product is the covariant Green's
function (i.e. , it is defined in terms of functional
derivatives) Egu. ation (4.14) shows that

=s &(x) ~,

one immediately infers the commutation relation

[j'(x),g.(x')]„+„., =- aqP, &(x)6(x -x '). (4.11)

'"&T'(s 8 ( )0(,)' 0( ..))&
= "&T(sB ( )0(,)" 0(,„))&

, Q q(6(x- x,.)G~~,(x,' ' ~ x,„) (4.15)
2/0

Similarly from the Green's function &T(8'g g))
one obtains the commutator

68-(x) iea
6Pn(+) 4} .',qg. (x')6(x'- x")e(x- —x-'). (4.16)

[8'(x),g, (x')]„+ „-=- 2,qg, (x)6(x —x ')
X ~Ã

p

in agreement with the result of Sec. II.
(4.12)

Using the above result one can show that the con-
straint equation (2.32) is also satisfied by the fer-
mion Green's function. From the solution (4.6) and
(4.8) one obtains

i"&T(F' (x)y(x, ) ~ ~ ~ q(x, „)))= ea Q q,a(x- x,)G„~,(x, ~ ~ x,„)+ &F'-(x))G„~,(x, ~ x,„)

i"&T*(S8 (x)P(x,) ~ P(x,„)))=, gqP'h(x- x,)+ &6 8 (x)) G~~Rn 2p 2

$

Q q &(x- x )+ &S 8 (x)) G,(x, x „)

q]5 x- x] G~q, x, x2„.
2/0

It follows from these and Eq. (4.15) that

TI sB- 2F'--, sw--, s„e ~4(x,) ~ ~ ~ 4(x,„)~~ =0~ ~ ~

4xp 02 2y 02
(4.17)

in agreement with the constraint equation (2.32).
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It is shown in Appendix B that the fermion Green's functions satisfy the equation

g Jg +y +2~ ~Q]+
1

1

+q,c('4 (x,)G„~,(x; ~ ~ x,„)+P. Q (-1) 5(x, —x,.)G„~,(x, ~ ~ x, „x,.„~~ x,„).

(4.18)

Of particular interest is the equation of motion for
the two-point function:

P,e" —.e —eq(B„)—qA +(eq „))Ge (x, p)

= P,5 (x y), -(4.19)

which is the Schwinger-Dyson equation; In the ab-
sence of external sources it can be written as

tion implies the correct anticommutation relation,
there is some difficulty if one tries to obtain Eq.
(4.21) directly from the two-point function (4.9).
This arises from the fact that &(x) has a discon-
tinuity at x' = 0 and is largely a mathematical prob-
lem rather than a physical one. In particular this
difficulty disappears if one introduces a cutoff
function

e dxj "(x)B„(x)- dxdx'e(x- x')jG(x)BG(x')

P.S.G.(x) = P.~~(x),P,S.~G, (x) .
0

(4.20)
(4.22)

Integrating Eq. (4.20) over x' and taking the limit,
one finds

limP, G,(x) ~", ', = P,5( x)

2

+8,&(x )P,
8p 0

&& lim[G, (x,e) + G,(x, -e)],

(4.21)

f (q.(x)q, (x'}}, x &x"

-i((l), (x')(I).(x)}, x'&x" .
(4.22)

Although such considerations show that the solu-

which implies the correct anticommutation relation
(2.27) and is consistent with the definition of the
Green's function

in the Lagrangian (2.1), and takes the local limit

e(x)-e~„,5(x)

after the calculation. The process of finding ma-
trix elements remains unchanged except for the
fact that now the coupling e is interpreted as an
integral operator such that

dy e(x- y)f(y).

Thus the two-point function is

G,(x)=G,(x) expI-, P.[r (x) —e(P)]I,
0

where the coupling e is an integral operator as
above and serves as a smearing function. Because
of this smearing function the problem referred to
earlier disappears and the discontinuity of G,(x)
can be written as

+ ' 2

P*G (*)I:=.,=
q

P e(* )+ * q„„-x(x) l, =, exp — P*(e(x) —x(P)I*.=.
I

~

0 0
(4.24)

It is easily shown that Eq. (4.24) implies the cor-
rect anticommutator (2.27) upon taking the local
limit.

Having thus demonstrated in some detail the con-
sistency of the solution, one can compare the re-
sults obtained with those of other soluble models
known in the literature. One finds that the model
is equivalent to the single-component fermion mod-
el,' 'G but not to the same model [i.e. , that de-
scribed by the Lagrangian (2.1)] quantized on a
spacelike surface. ' We note here that the single-

component fermion model has only one independent
component for the Dirac field, as in the ease of the
model (2.1) quantized in light-cone coordinates.
Whether the fermion fields have the same number
of independent components seems to be directly
related to the question of equivalence between two
quantization schemes. This is also true in the
case of the Thirring model, where there is a dif-
ference between the number of independent com-
ponents of the Dirac field in the two quantization
schemes, which leads to inequivalent theories.
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V. THE THIRRING-MODEL LIMIT

e'/p, ,'- X,

the Lagrangian becomes that of the Thirring mod-
el. As shown in Appendix C, the Thirring model
in light-cone coordinates is free, a result which
will now be shown to follow also from the solution
of the model considered in this paper.

One first notes that in the limit (5.1) the boson
propagator becomes

&(x) = 1
p. —8 (5.2)

One thus finds

G~"(x) —0,

D'"(x)- (8'+~"—S.)(S"i&"'e,)D(x) =D;"(x),
1

(5.3)

M~"(x)-0,

so that the vacuum transition amplitude becomes

(0~0)„~=exp 2i
)

dxdx' A (x)DQ~"(x, x')A, (x')

(5.4)

One sees from the Lagrangian (2.1) that in the
limits

g2~ oQ

P, ~00
(5.1)

&& G, (x, x,„). (5.6)

Again this is the Green's function for the system
with only external sources. Equations (5.4) and
(5.6) thus show that the solutions in the previous
sections indeed approach the expected Thirring-
model limit.

On the other hand if one takes the limit (5.1) in
the commutation relations found in the previous
sections, they do not agree with those derived
from Eqs. (5.4) and (5.6) (i.e., the free-field re-
sult). This indicates that here the operation of
taking the discontinuity and the operation of taking
the limit (5.1) do not commute (unlike the case of
spacelike quantization"'). The reason for this is
that when one determines the commutation rela-
tions (as for example in Sec. II) more information
about the internal properties of the model was re-
quired than in the case of spacelike quantization.
This also means that the commutation relations
depend on the internal structure of the system (as
is apparent from the fact that the commutation re-
lations involve details of the quantized interaction).

Although the model has the Thirring-model lim-
it as shown above, the p, ,'-0 limit clearly does
not exist (just as it does not exist in the case of
the single-component fermion model' ). This shows
that a gauge field theory in two-dimensional light-
cone coordinates is not consistent, a striking con-
firmation of results obtained in Ref. 7 to the ef-
fect that there exists an inconsistency in the U(1)
version pf 't Hppft's quark-binding mpdel. "

so that

G„,(x, ~ ~ x,„)= exp(i Q q,. ) dxi)„(x))i,"(x—x,.))

i.e. , the free-field result.
In the limit (5.1) the fermion Green's function

(4.8) becomes

¹ (x —x,.)-P, (&" + ~"S,)D(x x,.)—
+P (&' —e""&„)D(x x,.) =¹,(x-- x,),

(5.5)

M'(x x,)-0,
Gap (x) x2 ) Gp (x) x2 )

VI. OPERATOR FORMALISM

Thus far we have completed the calculation of
the Green's functions and considered the consis-
tency of the solution of the model. In this section
the operator structure of the theory is examined,
which provides the final set of consistency checks
on the model. First, one verifies that the pre-
scription (1.1) together with the anticommutator
(2.27) allows one to derive the result (4.11) for the
commutator of j'(x) with the fermion field. Thus,
one writes

[j'( ),0,(y)] = 1; [4,( )qQ. ( '), l, (y)}-9,( ), )j,(y6qt. ( ')]

8 Q
=-q)1),(x)6(x —y ) —f, lim[g. (x)g.(x')qg. (y)+qg, (y))t). (x)g, (x')][&(x ' —y )- c(x —y )].

0

(6.1)
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T' (x) = —~E' (x)E' (x),

T"(x)= —q, (x)e q, (x) —8 F'-(x)B'(x) .

(6.2)

(e.s)

It is easy to show that the tensor operators (6.2)
and (6.3) satisfy

Interpreting g, (x)P, (x') as its vacuum expectation
value one obtains the result given in Eq. (4.11).
In Eg. (6.1) it is seen that the interaction-depen-
dent part of Eg. (4.11) comes from the q-number
part of the anticommutator {g,(x), g, (y)). Thus we
have a situation in which the noncanonical factor
a = 1/(1 —e'/kg, ') in the commutator (4.11)results
from the q-number part of the anticommutator,
in contrast with the single- component fermion
model, ' where the same factor arises from the ex-
ponential factor in the definition of the current op-
erator (1.2).

We now investigate the covariance of the model
by considering the Dirac-Schwinger condition. "
By the action principle one obtains the energy-mo-
mentum tensor operators

[FB',E' (x')] = —'ia(1 —e'/2v p, ')8 F' (x)5(x —x ')

+ —,'i p, ,'aB'(x) 5 (x —x '),

one obtains the result

[T"(x), T' (x')l = —i[-'S F' (x)F' (x')

+ —.'F'-(x')8 F -(x)]5(x x-')

=i[& T' (x)]5(x —x '). (6.V)

[T"(x),P-] = ie.T -(x), (6.8)

which is the assertion of local energy conservation

(6.8)

Noting

Following Schwinger" one can now show that Eq.
(6.V) is one of the sufficiency conditions for covari-
ance. Integrating Eg. (6.V) over x"' one finds

[P",P,] =i& g, (x) (6.4)
Z - = dx-(x.T - x T")-

I.P', B"(x)] = ie "B"(x),
where

(6.5) =x'P — dx x T", (6.10)

(6.6)

[T"(x),T'(x')) = [T"( ), ——,'E -(x')E (x )].

P~ = dx T'"(x).
J

In order to display covariance one computes the
energy- momentum density commutator

Eg. (6.8) is seen to imply

[x'P —J',P ]=i dx x & T',

or (6.11)

Noting

B.sA. ,F' (x')) =- -'«4', 5 [el, (x)e(x —x ')]

+qg. (x)& g, (x')e(x —x '))

= —~«j'(x)5(x —x ')

[Z'-, P-) =iS -,
which is one of the commutation relations associ-
ated with the infinitesimal generators of the in-
homogeneous Lorentz group.

After straightforward calculation one similarly
obtains

[T"(x),T"(x')]=-i —~2-$, (x)& p, (x') —
2 p, (x')s p, (x) 8.5(x —x') —i[ B'(x)F(x') —-F(x)B'(x'))& 5(x —x '),

which can be written as

[T"(x), T"(x')] = -i[T"(x) + T"(x')]6 5(x —x ') .
(6.12)

or

[x'P —J',P'] = iP'

[Z'-, P ]= i

(6.14)

If one integrates (6.12) over x ',

[T"(x),P'] = ie T". - (6.1s)

Integrating this over x with the factor x one finds

as expected.
Thus we have shown that the model satisfies Di-

rac-Schwinger-type conditions (6.V) and (6.12),
and that the latter are sufficient for the covariance
of the model.
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VII. CONCLUDING REMARKS

p —Z6
=

p'
P

APPENDIX A: FERMION TWO-POINT FUNCTIONS FOR
THE FREE FIELD

The fermion Green's function for the free field
satisfies the equation

1n" S„G,(x-.-x') = 6(x -x'), (Al)

the solution of which would ordinarily be found by
Fourier-transform methods to be

In the preceding sections it has been shown that
the model field theory (2.1) quantized in light-cone
coordinates is consistent and possesses unusual
features which are at variance with some cur-
rently accepted views of light-cone quantization.
In particular, since canonical quantization has been
found not to be possible for the model, it is required
that explicit reference be made to interaction
terms in the derivation of the commutation rela-
tions. In fact, a reasonable view of the results
of this paper with regard to the question of com-
mutators is that one has found that the decrease
in the number of independent dynamical variables
associated with light-cone coordinates has been
compensated for by the appearance of interaction-
dependent terms in the commutation relations. For
more realistic (i.e., four-dimensional) theories
such results suggest that one has to examine most
carefully these aspects, taking into account both
the difference in the number of degrees of freedom
as well as the need for a fully consistent definition
of the singular operator j '(x).

p =1 1 1
+p' —it 4 p +it p

thereby implying the result

&-~+ 4(x)P'9(x),

which has the advantage of allowing one to define
the fermion Green's functions as repeated varia-
tional derivatives with respect to r/(x) In orde. r to
evaluate the second term of Eq. (As), one con-
siders the field equation

& g (x) = -' i n Pq(x)

in the absence of A~(x). Solving the differential
equation (A7) one finds

(
5S (x) =i —,'n 5(x' —x")e(x —x '),
5Prl x'

which implies

(AB)

G, (x) = —— —;,+i —5(x')c(x ) . (A4)
Q . Q

4x x +i&&(x') 4

In terms of the time ordered product the two
point function can be written as

. (0 T{g(x)((x'))~0) 0 5g(x)
0 I (0i0) 6P ( I)

(As)

where the second term on the right-hand side
comes from the fact that g (x) is not a dynamically
independent field. ' The spinor source q(x) has
been introduced by the replacement

() dP dP g, , „n P +n p
0 (2v)2 p2

It is to be noted, however, that the G, (x)
=P G,(x)P component satisfies the time-in-
dependent equation

n- —. 6 G;-(x) =P 6(x),
1

(A2)

(A3)

G, (x, x') = i ( T( P(x)P(x') ))

+i-,'n 6(x'-x")2(x —x ') (A9)

for the two-point functions of the free field. Com-
paring Eqs. (A4) and (A9) one obtains for the time-
ordered product

so that the ie precription in Eq. (A2) must be
taken to be a shorthand notation for (A10)

APPENDIX 8: EQUATION OF MOTION FOR THE GREEN'S FUNCTIONS

In this appendix it is shown that the fermion Green's function (4.6) satisfies the correct equation of motion
and that the prescription (1.1) is consistent with the solution. Taking the time derivative of Eq. (4.6) one
flDds

e', G„„(x, ~ ~ x,„)=
~

6'. exp i+ q,.(A„X'+Z.m") G„,(x, ~ x,„)
J

I

+exp iP q, (A„N" +Z,M") &'.G«, (x, x,„);
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first term of (Bl)=iq, [A„(x)8',&n(x —x,)+&n(x)8', M (x —x,)]G~~e

e2a
=iq, aA (x,) — h(x, —x)A (x)+,J (x,) —gaea(a-2)&(x, —x)J (x)4 1 2~2

n 8 '8,J'(x,) —n ean8 ~8, 6(x, -x)J'(x) G„ge .
2Po

From Eg. (3.26) this can be written as

first term of (Bl) =iq~[e(B (xz)) +A (xq)]Gage(xq' ' '
xnan) ~

. e2a
second term of (Bl) =i ——,,

-8', q;q;P. &(xg —x;) G~z (xi' ' '
xn )

(B2)

2

+exp ig q;(A N" +J„Mn) exp i, P,g q, qj&(x,. —x,.) 8', G,(x, ' ' ' xn„) .
2p

It follows from Eq. (4.4) that

~ 2 ~ 271

second term of (Bl)=, q,P, g q; 8', &(x, -x~)G~g, + p (-1) 6(x~ —x )G~J (xn' ' ' x~-~ x.~' ' ' "n.)

= ""sq,&T*(B-( ,)4( ,) 4(x..))&+ g (- »*6(x -x )G
2

. ea P 8 Lk(x) Gage(x] xnan)
P() x-"0

(B3)

The term proportional to 8, Q(O) in EQ. (B3) does not contribute if we symmetrize the operator product,

B"(x)g(x) —,
' [B"(x) p(x) + ((x)B'(x)],

in the Lagrangian. Therefore one can &&rite

second term of (Bl)=i"' eq, (T*(B (x,)P(x,) ~ g(x,„)))+ g(-1)'6(x, —x;)G„~,(x x, „x,„x,„) .
2 g

(B4)

Combining Eqs. (B2) and (B4) one obtains the desired result

2

8'. G„~,(x, x,„)=iq, e&B (x,))+A (x,)+,Qq, 8', &(x, -x,) G„~,

+ . (-1) 6(x, —x,)G„~e(x, x, „x, x, ),2
(B6)

or

++ ~ u GA,Je 1 2n Ql+ ~ + +1 +1 +2n +Ql+ + +1 AJe +1
1

+P.g (-1)~6(x,-x,)G„„(x, ~ x,. „x,., x,„),
c

vrhere use has been made of the fact that

(B6)

» ~"&OI T(t(xi) 4(x.n)))AJ'e n(T.(B-( )q, ~ ~ q)) (B-( ) )Gi M+ "J' i 6J (0 IO)„, AJe

in the presence of the external fields.
In order to show that the prescription (1.1) is consistent with the solution one computes

(j+(x))= lim TrqP, G~ze(x, x') .
n ~x
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From the fermion Green's function (4.6) it follows that

1(j'(x)) = - —s„'[AT'(x y)-A„(y)+M"(x-y)J, (y)] . (B8)

From Eq. (4.8) this can be rewritten as

&j (x)&=-- s' s' D(x-~) .~(x-y) A (~)+ .8'[D(x-y)-~(x-y)]~ (~)
1 ~

e'a e
m 471Pp &o

ea+, e„a(x y)J"(y) (.
2 p,o

(Bs)

It is now easy to see that Eq. (B9) is identical to

1
f 6A-(x)

computed from the vacuum transition amplitude (3.20); thus, it displays the consistency of the prescrip-
tion (1.1) with the solution.

APPENDIX C: THIRRING MODEL IN LIGHT%ONE
COORDINATES

The Thirring model is described by the La-
grangian

2= 2 inc. "8„$+—j j „+j"A„, (C1)

where A."(x) is an external source. By the action
principle, one finds the field equation

r

where (0~0&„=(0~0&&~, is given by Eg. (3.18) of
Sec. III. It is easy to show that

&0 iO&„„=&0io&„, (C6)

i.e., the Thirring model quantized in light-cone
coordinates is free. One can understand this from
the fact that the g (x) field and j (x) vanish for the
massless Dirac field in two-dimensional light-
cone coordinates and thus

a" —8„-Aqj„—qA„}g(x)= 0

and the infinitesimal generator

G= dx g. 5P,
2

(C2)

(C3)

x~'~, -0 .
Following the same procedure as Sec. IV, one

finds the fermion Green's function

G„,(x, |:,„)=exp ~ lq, f ch'A„(x)B,"(x—x,)

Since the infinitesimal generator (C3) is expressed
in terms of the independent dynamical field com-
ponent g. alone, the anticommutator has the ca-
nonical form

where

x G, (x, x,„),

X;(x—x,)=S.(8"+ ~""a„)a(» x,)

(C7)

(4.(»), 4. (x')) = 1
5(x -x ') . (C4)

+S (8~ &'"8„)D(x-»,) . (C8)

In order to obtain the solution of the model one
writes the vacuum transition amplitude, extracting
the effect of the interaction into an exponential
form

&0~0&~ =exp —i
2

dx A„( ) A ( )
&0~0&~,

(C5)

The commutation relation implied by the solution
(C7) is

[j'(x),4.(x')] =-et. (x)6(» -» '),
which is identical to that of a free field. Thus the
Thirring model quantized in light-cone coordinates
is free, and is not eouivalent to the same model
quantized on a spacelike surface. '



2804 C. R. HAGEN AND JAE HYUNG YEE

*Work supported in part by the U. S. Energy Research
and DeveI.opment Administration.

~S. Weinberg, Phys. Bev. 150, 1313 (1966).
2C. R. Hagen, Nuovo Cimento 518, 169 (1967); 51A,

1033 (1967). See also C. Sommerfield, Ann. Phys.
(N.Y.) 26, 1 (1964), for explicit calculations.

~C. R. Hagen, Ann. Phys. (¹Y.) 81, 67 (1973).
4D. Boulware and S. Deser, Phys. Rev. 151, 1278

(1966), and the references therein.
~J. Schwinger, Phys. Rev. Lett. 3, 296 (1956); K. John-

son, Nuovo Cimento 20, 773 (1961).
J. Schwinger, Phys. Rev. 91, 713 (1953).

TC. R. Hagen, Nucl. Phys. 895, 477 (1975).
T.-M. Yan, Phys. Rev. D 7, 1760 (1972).

SJ. Schwinger, Proc. NatI. . Acad. Sci. 37, 452 (1951).
~ There is a minor misprint in Ref. 3. The fifth line

from the bottom on p. 73 of Ref. 3 should read

1-e'/47t p, ,'
e2 5'8" 1

4', & p& 1-e2/4', o

+ ~ ~ ~

G. 't Hooft, Nucl. Phys. 875, 461 (1974).
~2J. Schwinger, Phys. Rev. 127, 324 (1962); P. A. M.

Dirac, Rev. Mod. Phys. 34, 592 (1962).


