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Existence of a second-order phase transition in a two-dimensional $ field theory*
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We study the stability of the vacuum in a two-dimensional $' field theory with a fixed (mass)' term and a
variable $' coupling term. We make the theory finite by normal-ordering the Hamiltonian with respect to a
fixed mass. As the $ coupling strength increases, we can show that the system will undergo a second-order
phase transition from a normal vacuum to an abnormal vacuum. There is no contradiction between the
existence of a second-order transition in the absence of an external field and the Simon-GriAiths theorems
which forbid any possible phase transition in the presence of an external field.

I. INTRODUCTION

In a. previous paper, ' we studied the stability
of the vacuum in a two-dimensional iIis field theory
under the Hartree approximation. One of the main
conclusions based on the Hartree approximation
is that for a gs theory with a fixed mass param-
eter, a change of Q' coupling strength can induce
a first-order phase transition (see Fig. 1 for an
illustration of the Hartree result). On the other
hand, Simon and Griffiths' have established sev-
eral rigorous results in the two-dimensional p4

field theory by considering the ps field theory as
a proper limit of a generalized Ising model. ' Ac-
cording to one of their theorems, there can be no
phase transition in the two-dimensional p' theory
in the presence of an external field B4 0.

The yurpose of the present payer is to under-
stand whether there is a phase transition in the
two-dimensional p' theory at B=0. To control
the ultraviolet divergence, we normal-order our
Hamiltonian according to a fixed mass. In this
paper, we fix the (mass)' term and concentrate
on the effect due to the ps coupling alone.

Using some identities relating different normal
orderings introduced by Coleman, ~ we are able to
establish that there is indeed a phase transition
in the two-dimensional ~ti theory as we vary the
~Ii' coupling strength.

Next, we show that there is no contradiction be-
tween the Simon-Griffiths theorems and the exis-
tence of a second-order phase transition in the
two-dimensional p~ field theory at B =0. We dem-
onstrate explicitly how Simon-Griffiths theorems
can be satisfied near a second-order transition in
the Landau-Ginzburg model as well as in models
obeying a scaling law. However, according to the
Simon-Griffiths theorems, a first-order phase
transition such as predicted by the Hartree cal-
culation is definitely not acceptable. '

The conclusion reached here is not very sur-
yrising, because Simon-Griffiths theorems are

derived from results established in the Ising sys-
tems which also exhibit second-order phase tran-
sitions in the absence of an external field.

The paper is organized as follows: In Sec. II,
we established the existence of a phase transition
in the two-dimensional p' field theory. We then
show in Sec. III that this phase transition must be
second-order in nature. In Sec. IV, we discuss
various implications of Ising results for the p»
field theory. A simple derivation of the Hartree
effective potential in the presence of an external
field is given as an appendix.

II. tI54 HAMILTONIANS AND THE PHASE TRANSITION

A. Normal orderings of f154 Hamiltonians

We consider the p field theory in one space
dimension and one time dimension described by
the Hamiltonian density

i. s 1 s '
~ s (2.1)

withg)0, and an arbitrary m . For negative m,
it is convenient to rewrite 3Q as

i ~ 1

2
= —, Q +

2
—sgc Q +sgp +const.1 s s4 1 2 2 1 4

(2.2)

= 2gc (2.3)

In the following, we shall use the Hamiltonian
density (2.1) to describe a, positive (mass)' sys-
tem, and use (2.2) to describe a negative (mass)s
system. As classical systems, the ground state
associated with the Hamiltonian density (2.1) is
at p = 0, and the ground state associated with (2.2)
is at P = +c. From the frequency of the small
oscillation around P = + c, we deduce that the mass
of the system (2.2) at its ground state is
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FIG. 1. The Hartree effective potential Vp) as a function of the vacuum expectation value (Q) =Q (=—f&) at gp(=p/~ )
=0, 5, 10, and 16. The calculations are based on the HamiltonianX given in (2.7) with the mass parameter m. These
graphs demonstrate clearly the existence of a first-order transition near go =10. (The exact Hartree transition point
is at go=10.211.) This picture is taken from Fig. 4 of Ref. 1. See Ref. 1 for detailed discussions concerning the
Hartree calculation.

Because this is a quantum-mechanical system,
we may encounter ultraviolet divergences. For
two-dimensional )t)4 field theory, the only irreduc-
ible divergent graph is the self-energy diagram
shown in Fig. 2. It can be removed readily by
normal-ordering the Hamiltonian. The method
of normal-ordering the scalar fields appropriate
to our application was developed by Coleman.
We refer the readers to this excellently written
paper for details. In the following, we shall make
use of a number of results derived in this paper.

To normal-order an interaction Hamiltonian,
we have to specify the particle mass of the free
Hamiltonian through which the free particle cre-
ation and annihilation operators are defined. Choos-
ing a different normal-ordering mass has the
same effect as choosing a different renormali-
zation point. Coleman has proved the following
identities relating two different choices of normal-
ordering masses:

+ (p, '-m'), (2.4)

(2. 5)

FEG. 2. The only irreducible divergent subgraph in
the two-dimensional P4 field theory.

In Eqs. (2.4) and (2.5), N„(N ) denotes normal
ordering with respect to mass m (p, ). By expand-
ing (2.5) and equating coefficients of P", we have
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the Wick-expansion results: selves to the neighborhood of p =c. Introducing

m2
iv. (y') =x„(y') +—

N (y*) N((*)+8(4 (n, )Ã(y),

m2
N (( ) N„(t) )+6( 4

(n N„(P )

(2.6a}

(2.6b)

(2.6c)

X/2
(=c+N, c=+(t

we can express (2.8) in terms of p' as
2

+u( 'g)-"0"+ .g0-"

(2 8)

(2.10)

etc.

Now, we go back to our Hamiltonians (2.1) and
(2.2). We make the natural choice of normal-
ordering them according to the masses associated
with their classical ground states; i.e., we nor-
mal-order X in (2.1) with respect to m and X' in
(2.2) with respect to g [defined as in (2.3)]:

2

J

I

8 2
——,'p, 'P'+-,'g(t)' + const.

Bx

(2.8)
The advantage of this choice of normal ordering
is that the systems reduce to their respective
classical free particle states in the weak-coupling
limit. Note that g has the dimension of (mass)'.
By weak-coupling limit, we mean g/m' or
g/p'- 0. From (2.7), we see quite clearly that
X goes to the free Hamiltonian as g/m'- 0. Hence,
the ground state associated with X in (2.7) in the
weak-coupling region g/m'«1 is the normal vacu-
um state characterized by ((II)) = 0. To examine
the weak-coupling limit of X' in (2.8), we need to
specify which of the ground states p = +c we are
dealing with. For definiteness, we restrict our-

It is now transparent that, in the weak-coupling
limit g/p, '- 0, X' reduces to a free Hamiltonian
with mass p. . In particular, it would imply that
the ground state in the weak-coupling region g/i), '
= 1/2c2«1 is characterized by

((I)') =0, (p) =c» 1 (2.11)

and corresponds to an abnormal vacuum state.
Note also that the separation in ((I)) between these
two vacuum states (i.e., (Q) =c vs (Q) = —c) in-
creases indefinitely as g/p, '- 0. We expect these
two vacuums to be completely decoupled in the
weak-coupling limit. In short, we have shown in
the weak-coupling limit that the ground state of
X in (2.7) is a normal vacuum ((P) = 0) and that of
X' in (2.8) is an abnormal vacuum (((I))e 0). This
appears to be a trivial point, but is crucial in our
later analysis.

8. Equivalence relation between K and K' and the existence

of a phase transition

Even though the classical systems (2.1) and (2.2)
are different and are associated with different
kinds of ground states; their quantum-mechanical
analogs (2.7) and (2.8) may actually be identical.
The additional contributions given in (2.4}-(2.6)
when we transform from one normal-ordering to
another can alter the appearance of the Hamil-
tonian and thus make their equivalence possible.
Indeed, if we substitute (2.4)-(2.6) into (2.7) we
have

X=M& —,'P + — + —,'m P'+-,'g P + In 2 (II)' + (p'-m )+—,'m ln, +N~g ln

=" — "-'(:.)' —: ('. ' ".:;)'
1 ' ' I ''

~ 3+ (p, '-mN) + ln 2 + —,'g ln, ——,'g ln, +
8w 8m p.

2 4m p.
2 ~ 4m p,

2 g (2.12)

The A„ term in (2.12) is identical to X' in (2.8)
provided that

tween the invariant (dimensionless) coupling
strengths g/m' of X and g/p. ' of X'.

3 m2 m'
ln- 2 +

4m p. g

2
(-=-c )-2g

(2.13)
m 3 m 3 p, p.+—ln = ln
g 4m g 4m g 2g

' (2.14)

Equation (2.13) can be rewritten as a relation be- This relation was obtained earlier in a different



EXISTENCE OF A SECOND-ORDER PHASE TRANSITION IN. . .

g/p, 2

IO

IO

2
!O

that there must be a phase transition in the bvo-
dimensional p' theory with a fixed mass term but
a variable coupling constant g as described by 3C

in (2.7).
The connection between X and 3C' also supplies

us a method of computing the exact behavior of
the effective potential of the system X for both the
small and the large values of g in the neighborhood
of the ground state. For a smallg, we use the
loop expansion and obtain the effective potential:

O. I
I

IO IO

I

IO

I

IO4 IO g/m2

g~2
8m

1 (m'+3gy ')ln ma+3 2

8m
C m'

FIG. 3. Invariant coupling g/p, 2 as a function of g/m2.
The functional relation is defined in Eq. (2.14).

form under the Hartree approximation. '' In Fig.
3, we plotg/g' as a function ofg/m' as defined
by (2.14). This function has the following proper-
ties:

(i) For g/m'& 9.045, there is no real solution
for g/p, '.

{ii) For g/m'= 9.045 we reach the left tiy of the
curve withg/p'=2m/3=2. 0944 (i.e., 4a'c'=3); for
g/m2& 9.045 we have two solutions corresyonding
to the upper and the lower branches of the curve.

(iii) As g/m'- ~, the upper branch approaches

2 -2@+0 (2.15)

and the lower branch approaches zero as

ln 2+in In 2 ~

+O(1) . (2.16)

The fact that the lower branch approaches zero
as g/m'-~ is very important. It means that a
strong-coupling theory in terms of 3C is identical
to a weak-coupling theory in terms of X'. In par-
ticular, we conclude that the ground state associ-
ated with a strong-coupling theory of 3C is an ab-
normal vacuum and is described by its equivalent
theory in+' as

(2.17)

On the other hand, the ground state associated with
a weak-coupling theory (i.e., g/m - 0) is the nor-
mal vacuum described by (p) =0. Obviously, as
we fix the mass term m and increase the coupling
strength g/m2 from 0 to ~, at some critical value
of g/m' the vacuum exyectation value of P will
start developing a nonvanishing value. This proves

+higher-loop corrections. (2.18)

In (2.18), the expression in the square brackets
represents the one-loop correction and is of the
order (g/m')'. The higher-loop corrections are.
of O((g/m')') or smaller. For a large g, we use
the equivalent relation and obtain through loop
expansions in 3!'

Vfl(pc) gC —'rgc +4g (@ —C )

+ —(g -c )+—(3g -c ) ln3g 2, g &
2C

Bm ag 3g -c
+ higher-loop corrections. (2.19)

In (2.19), the first two terms represent the large-
g/m. ' limit (or, equivalently, a large-c' limit) of
the additive constant appearing in (2.12). The
expression in the square brackets denotes the
one-loop corrections computed from 3.", and is of
O(1/c') = O(1/ln(g/m')) in comparison with the other
terms. The higher-loop correction terms are of
O(1/(lng/m')') or smaller and can be ignored in
the large glimit. In t-he large-c limit (or equiv-
alently, a large-g/m' limit), the additive constant
appearing in (2.19) is large and negative. It con-
firms the yicture of a stable vacuum at Q, '=c'.

It is interesting to note that the Hartree calcu-
lation described in Ref. 1 gives rise to the correct
effective potentials for both the weak-coupling
(g-0) and the strong-coupling (g-~) limits as
given by Eqs. (2.18) and (2.19), respectively (See.
the Appendix for the analytic expression of the
Hartree effective potential, and Fig. j. for a
graphical representation. ) Physically, this is not
surprising. The Hartree approximation is equiv-
alent to a variational calculation based on Gaussian
fluctuations. Thus, the Hartree description is
faithful when we are away from the phase-transi-
tion region as described by the limits g-0 and
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g-~. However, the Hartree approximation may
not be reliable near a phase transition where the
fluctuation is large and no longer described by a
Gaussian distribution. In the next section, we
shall study the nature of the phase transition in
the Q' field theory in more detail.

III. NATURE OF THE PHASE TRANSITION

To understand the nature of the phase transition
in the P' field theory in one space dimension and

one time dimension, we shall make use of several
rigorous results obtained by Simon and Griffiths. '

A. Simon-Griffiths theorems and the nonexistence

of a first-order transition

Simon and Griffiths made an important observa-
tion that the two-dimensional Euclidean P' field
theory can be obtained as a proper limit of a
generalized Ising system with ferromagnetic spin-
spin (pair) interactions only. ' Using this limiting
relation, they are able to establish many Ising-
type results in the g' field theory. The following
results are important in our analysis:

(Z) (Simon-Griffiths). For a scalar field theory
in two dimensions,

X=N(3!0+&gQ'+bp' BQ), g-&0

the infinite-volume limit of the ground-state ener-
gy density exists, and is analytic for
BOO, ReB &0 withg, b fixed.

(2) (Simon). For a scalar field theory

R =N(3C, + ,'g Q'+bg' -BQ), g&-0, B C 0

in one space dimension and one time dimension,
the vacuum is unique.

These Simon-Griffiths theorems imply the non-
existence of any phase transition for B10, and
also rule out the possibility of a first-order
phase transition at B =0.

To understand the last conclusion, let us accept
the contrary and assume that there is a first-
order phase transition at g/m' =g, /ma = G, and
B=0. By a first-order phase transition, we mean
that the first derivative of the energy density
with respect to g is discontinuous at g=g, . This
discontinuity is due to a transition between a
normal vacuum characterized by a vanishing-
order parameter ( Q) = 0 and an abnormal vacuum
characterized by a finite-order parameter ( Q)
= $,40. En the presence of a first-order tran-
sition, we find for g/m'&G, that the energy den-
sity Vassociated with the normal vacuum is low er
than that associated with the abnormal vacuum. For
g/m'& G„ the energy density associatedwith the
abnormal vacuum (@,0 0) should be lower. Near the

B. Simon-Griffiths theorems in the Landau-Ginxburg model

In the fol. lowing, we would like to show that
there is no contradiction between a second-order
phase transition and the Simon-Griffiths theorem
in th neighborhood of the phase transition. We
shall use the Landau-Ginzburg model. as an ex-
ample to illustrate the point. This model pro-

V)

I

I
I

/
Gc Gc

2
2

FIG. 4. Typical crossover phenomena for the effective
potentials in the presence of a first-order transition.
V& describes the effective potential associated with the
normal vacuum. V2 and V2 describe the effective poten-
tials associated with the abnormal vacuum for B =0 and
for a small and positive B. Note that Vi is not affected
by B to the lowest order. The first-order transition
persists for B & 0, as indicated by the crossover of
V, and V2at g/m =G,'.

transition point, the energy density difference be-
tween the vacuum states various linearly as g —g, .
Now we turn on a constant external field B. For a
small and positive 8, we expect that the energy den-
sity associated with the normal vacuum is not aff ected
to the first order in B owing to ( Q) = 0 and the
energy density associated with the abnormal vacu-
um ( P) = Q, &0 is lowered by an amount propor-
tional to B, & V= Q, B. Thus, at sufficiently small
B, this sma11 energy difference will not change
the nature of the first-order energy density cross-
over phenomenon between the normal and the
abnormal vacuums. It only lowers slightl. y the
transition coupling constant. The above argu-
ment can be understood most easily in a graphical.
representation as given in Fig. 4. Hence, we
conclude that a first-order phase transition per-
sists for a sufficiently small B (i.e. , B small
but & 0), and thus violates the Simon-Griffiths
theorem. This contradiction impl. ies that the
original assumption of the existence of a first-
order phase transition at B=0 is inconsistent.

In Sec. II, we proved that there definitely ex-
ists a phase transition as we increase the cou-
pling strength in K. Since this phase transition
cannot be of the first order, it must be of second
order.
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vides a simpl. e realization of a second-order
phase transition.

In the neighborhood of the phase transition, we
can express the effective potential V,«(Q, ) in
Landau-Ginzburg theory as

as desired. Typical behavior of I/', ff in the vicinity
of the critical point at B=O is shown in Fig. 5.

For B&0, the position of the minimum for V,ff
is given by

V, =a/, + bQ ——BQ (3.1)
'" =2ag, + P, ' —B=O.
C

(3.5)

where parameters a and 5 are functions of g, m,
and B'. In the weak-external-field limit, we can
ignore the B dependence in the parameters a and
b. At the critical point

In terms of scaled variabl. es n and y,

we have

(3.6)

g/m' = G, , B= 0

we have

(3.2)
d c

'' =B(y'+2ny —1) =0. (3.7)

a =0, b&0 (critical point). (3.3)

In the neighborhood of the critical point, param-
eter a is positive for g/m'&6, and negative for
g/m'&G, . Parameter b can be considered as a
constant. Since we can always rescale the Q,
field in the neighborhood of the transition point
(i.e., the critical region), we may choose b =1
without losing any generality.

For B=O, the effective potential V„«has a min-
imum at

(3.8a)

lim f(&) =(-2u)'/'. (3.8b)

Equation (3.7) defines y as a universal function of
n, and this function y = f (n) is shown in Fig. 6.
Note that y is positive for the true minimum of
V ff and th is restriction s e lects a unique s ingle-
valued branch of f(c.). It is easy to show that
this branch of f(n) defines an analytic function
of a, and obeys the asymptotic rel.ations

0 fora&0

and has two minima at

(3.4a)
In terms of a and B&0, the position of the ground
state is described by

P, =a(-2a)'/' for a&0. (3.4b)
y =B~/sf(nB-2/&) (3.9)

(Recall that we have set b =1.) Thus, for a &0
the ground state is at @,= 0 and for a &0 the ground
state is at @,=+(-2a)'/'OO. At a =0, Q, is con-
tinuous, but its derivative with respect to a is
not. It describes a second-order phase transition

which is an analytic function of a and B as long
as BIO. Thus, there is no possible phase tran-
sition of any kind as long as I3W 0, as required
by the Simon-Griffiths theorem.

As B-O, however, a discontinuity in g (here

Y(gc)

a=-I

I

r ---I
a

---4

FIG. 5. Behaviors of the effective potential in the
Landau-Qinzburg model near the second-order transition
region. We expect to have a qualitatively simi1ar result
in the exact solution.

FIG. 6. Universal scaling function f(u) appearing in
the Landau-Ginzburg model. Only the branch with

f (n) & 0 is responsible for the critical behavior near the
transition.
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&c

I = 0

(3.10)W( g, 8) = W„, ( g) + W„„,( g, 8).
Only the singular part of 8' is responsible for
the critical behavior. The scaling law suggests
that for small values of B and

phase transition and the Simon-Griffiths theorems.
The true analyticity behavior of Q' field theory
near the transition point is undoubtedly more
complicated than that given by the I anda, u-Ginzburg
model. . Indeed, if we accept that the scaling law
established in the theory of second-order tran-
sitions in statistical mechanics" is also valid in
Q' field theory; we would expect that the vacuum
generating functional W(g, 8) [—= (1/i) ln(OI 0) ]
can be separated into a B-independent regular part
and a singul. ar part near the transition point g= g, :

PIG. V. The vacuum expectation value fI), as a function
of a at variou. s values of 8 in the Landau-Ginzburg
model. Note that Q, is an analytic function of a for
J3 & 0, but develops a second-order transition at B =0.
For a fixed and negative a, Q, undergoes a first-order
transition when 8 changes from a positive to a negative
value. For a positive a, Q~ is a continuous function of
8 . These properties are expected to reflect the true
behavior of the Q4 field theory near the transition point.

7=8'c 8'~

we have

(3.11)

(3.12)

where the subscript + stands for the sign of 7.
Constants + and & are known as critical expo-
nents. Given S', the effective potential V„f, can
be obtained by a Legendre transformation.

The vacuum expectation value of Q is given by
via a) can develop. To see it, we assume that
8&0 and approaches 0 from above. (We denote
this limit as 8-0".) As 8-0+, we find from
(3.8) that for a&0 (or equivalently g/m'&G, ) the
ground state is described by

B
P, = lim 8'~'f(aB '/'") = Lim —=0

g~o+ g~p+ 2Q

@.=,8 =lrl' " 'a'(8/ITI')

=8"- -" 'f, (lrl /8'")

f,(x) =x' " g', (x ).

(3.13)

(3.14)

while for a&0 (or g/m'&G, ) the ground state is
described by

lim 8'~'(-2aB '~')'~' =(-2a)'~'e0
8 0+

as given in (3.4). The functional dependence of

Q, as a function of a and 8 is shown in Fig. V.

So far we have concentrated on the dependence
of the system as a function of a at fixed B. In the
fol.lowing, we consider the dependence of the
system on 8 As a func.tion of 8 at fixed a (or
fixed g), g„ is an analytic function of 8 for 8 4 0.
However, as it passes through the point B= 0,
the system undergoes a first-order phase tran-
sition between P, =(-2a)'~' and P, = —(-2&)' '
for g/m'&G, (i.e. , a &0), and has no phase tran-
sition for g/m'&G, (or a&0). Since we are dealing
with the B dependence at B = 0 the Simon-Griffiths
theorems are not applicable here.

f (&) =f.(- &) =f(&)-- (3.15)

defines an analytic function of x. Then, Q, is
analytic in 7 for all B0. If we assume further
that f (x) has the asymptotic behaviors

lim, ~ z, = f inite constant 4 0,
f (x)

~Op X

lim I, „g=0,f (&)

g~ +0

we have for B-0

(3.16a)

(3.16b)

Q, ~r " 40, r&0 (or g&g, ) (3.1%a)

Equation (3.13) is a natural extension of (3.9)
with r playing the role of the parameter a. [Ex-
pression (3.9) has the critical exponents n =0,
b, = ~. J The Simon-Griffiths theorems are satis-
fied if

C. Simon-Griffiths theorems in scaling regions $, =0, w&0 (or g&g, ). (3.17b)

In Sec. III 8 we used I.andau-Ginzburg models
to illustrate the compatability of a, second-order

Equation (3.1'7) describes a second-order phase
transition in the absence of the external field B,
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and it possesses a power-dependent scaling be-
havior for the order parameter Q, . Note that
conditions (3.15)-(3.17) are satisfied in the Lan-
dau-Ginzburg model.

IV. DISCUSSION

Simon and Griffiths tell us that Q' field theory
can be viewed as a proper limit of a general. ized
Ising theory. In particular, we would expect that
the large-distance behavior of a Green's function
in P' field theory is related to the behavior of a
similar Ising Green's function. We learn from
the Ising model. that two-point functions have the
following asymptotic (i.e., r ~) behavior in con-
figuration space (T= temperature)s:

and for T=T,

g(y ) y -1/4

(4.1a)

(4.1b)

=2 T&T, . (4.2b)

Parameter a can take different values for dif-
ferent generalized Ising models. On the other
hand, the power dependence ~ '~' at T = T, is
believed to be universal, and is the same for all
generalized two-dimensional s ingle-component
(i.e., one field component) Ising models. On the
basis of this information, we expect that the
Green's function in two-dimensional Q' field theo-
ry should have the familiar asymptotic form
(4.1a) both above and below the critical coupling
but have the r '~4 dependence at the critical cou-
pling.

Note that the r '~~ long-range dependence does
not correspond to the Green's function of an iso-
lated single-massless-particle pole. It corre-
sponds to a coherent sum of many-massless-
particle contributions. The Green's function
r '~~ has a far more convergent large-distance
behavior than the free-massless-particle Green's
function G, - lnr. Thus, the infrared divergence
due to the emission of coherent massless states

where r is the distance between the two lattice
points, and $ and a are constants which depend
on T. Temperature T serves as a free param-
eter. For a given Ising system, varying T is
analogous to varying the coupling constant g in
the Q' theory. Parameter ( is known as the cor-
relation length, and is equivalent to the inverse
of the physical mass in the particle theory. For
the simple two-dimensional Ising model, the
Onsager solution gives rise to these values of a:

(4.2a)

in the Q~ field theory at the critical point is softer
than that due to the emission of a single massless
particle. Hence, Col.eman's theorem on the non-
existence of a massless particle in two-dimen-
sional. field theory does not apply here. "

In this paper, we consider a P4 Lagrange func-
tion normal-ordered according to a fixed mass
parameter. Then, by varying the coupling
strength, we find a phase transition in this theory.
On the other hand, if we consider instead a I a-
grange function with a fixed physical mass, then
we can never reach a phase transition. This can
be seen from the fact that the asymptotic behavior
of the Green's function in a theory with a fixed
physical mass m is always given by a damping
exponential e "jr' which can never be a simple
power r '~' for fixed nonzero m. This point can
also be understood in the language of statistical
mechanics: There can never be a second-order
phase transition for fixed finite correlation length
g (- Iim). Since the phase transition in a Q' theo-
ry is of second order, this would preclude the
existence of a phase transition in a theory with
a fixed physical mass.

If we consider instead a Hamiltonian with a
fixed Q' coupling constant g, and vary its mass
term, we obtain the expected classical results
that a large and positive (mass)' term leads to
a normal vacuum, and a large and negative
(mass)2 term leads to an abnormal vacuum. We
can understand these results from the fact that
in the two-dimensional Q theory the coupling
constant g has the dimension of (mass)'. Thus,
a large (mass)' term implies a relatively weak
Q' coupling. Hence, the semiclassical picutre
pr evails.

In a previous paper, we have studied the stabil-
ity of the vacuum in the Q' field theory under the
Hartree approximation. The Hartree calculation
leads to a first-order phase transition in the two-
dimensional Q' theory as we increase the coupling
constant. This result is in contradiction to the
Simon-Griffiths theorems. We now realize that
the Hartree approximation predicts correctly
the existence of a phase transition and gives rise
to the correct effective potential in both the weak-
coupling and the strong-coupling limits, but it
describes incorrectl. y the nature of the phase
trans ition.

It is interesting to know whether the results
obtained in this paper can be generalized to three-
or four-dimensional P' theory. We know that
Ising model. s in three and four dimensions also
possess a second-order phase transition, and
that many of the Simon-Griffiths results are ap-
plicabl. e to higher-dimensional theories as well.
The main difficulty which prevents a straight-
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forward generalization to three- or four-dimen-
sional theory is how to handle the additional re-
normalizations appearing in the Q' field theory

NOTE ADDED IN PROOF

(1) The method developed in this paper can be
generalized straightforwardly to a three-dimen-
sional Q' theory. Just as in a two-dimensional
theory, the only divergent diagrams in a three-
dimensional Q' theory are self ener-gy diagrams.
In addition to the divergent diagram given in Fig. 2,
we also encounter in the three-dimensional Q' the-
ory a second-order divergent graph described by
the splitting of a single Q line into three Q lines
at one vertex and recombining them into one at
another. We can define a finite Q' theory by add-
ing a mass counterterm (6m')„ in the Hamiltonian
X to cancel these two divergent diagrams,

X= ,'y'+—,'(V y-)'+ ', m'y-'+ ,'gy' ———,'(6m')„y'.

The counterterm is given by

In (6m')„, A stands for the ultraviolet momentum
cutoff and M' is an arbitrary mass parameter de-
noting the renormalization point. The parameter
M' is an extension of the normal-ordering mass
introduced in this paper. In the small-coupling
limit (g/m « I}, it is natural to choose M = m.
Then, it is easy to establish that the theory de-
scribed by X possesses a normal vacuum at small
g/m by the method of loop expansions.

For the Q' theory describing a broken symmetry,
it is natural to introduce an alternative Hamilto-
nian,

X'= zQ + z(VQ) —~p, Q ~ ~gQ —2(6m }&&fP.

The Hamiltonians X' and 3'. with M set to m be-
come identical if

m' —(6m )„=--,p.
' —(6m')„.

This relation can be expressed in a A-independent
form,

term and a variable coupling strength. We have
also generalized the three-dimensional Q' theory
to include the internal symmetry as well, and
found that the phase transition exists too. (This is
opposite to a two-dimensional P' theory, which can
never admit a broken continuous symmetry. ) The
result of this investigation will be published else-
where [S. Magruder, Ph. D. thesis, University of
Illinois at Urbana-Champaign (in preparation)].

(2) For a given g/m', the upper- and lower-
branch solutions to Eg. (2.14) (see Fig. 2} are re-
lated by

p2 p2 3 p+2 p+2—ln———=—ln
4m g 2g 4m' g 2g

'

This equation defines a dual transformation be-
tween an upper-branch solution (strong coupling in
X') and a lower-branch solution (weak coupling in
X'). This relation is reminiscent of the well-known
dual transformation which appears in the two-di-
mensional Ising system [see, e.g. , the review ar-
ticle by I. Syozi in Phase Transitions and Critical
Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1972), Vol. 1]. In the two-
dimensional Ising system, the self-dual condition
gives rise to the transition temperature. It is in-
teresting to know whether the self-dual condition
in a two-dimensional Q' theory,

g g g 2'or —=—= 2.0944
p2 ~42 & ~2

also determines the value of the transition coupling
strength. The author wishes to thank L. Kadanoff
for pointing out the similarity of these two dual
transformations.
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APPENDIX: HARTREE CALCULATION IN THE PRESENCE
OF A CONSTANT EXTERNAL FIELD

The above equation is the generalization of Eq.
(2.14) to a three-dimensional Q' theory. We find
from this equation that the strong-coupling limit
of X' corresponds to the weak-coupling limit of K.
By arguments analogous to those presented in Sec.
II, we can establish that a phase transition exists
in a three-dimensional Q' theory with a fixed mass

It is known that the Hartree approximation is
equivalent to a variational calculation with Gaus-
sian trial functions. In a scalar field theory, we
can identify these Gaussian trial functions as
ground states associated with free-particle Ham-
iltonians with certain masses. Using this identi-
fication plus Coleman's normal-ordering methods,
we can reproduce the previous Hartree calcula-
tion very efficiently.
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Consider a normal-ordered Hamiltonian in the
presence of a constant external field,

s 2

4

(Al)

To find the effective potential V,«(Q,}, we first
separate Q into a constant part and a q-number
part:

By the help of (A5), we can easily compute the
energy density associated with this trial state:

V(y„m') =-&B)„./I.

=2m'Q, '+4gp, '-BQ,

m2
+ 2 (m'+ SgiIi,') 4

ln

4 =4.+0,. (A2) +
4 4

ln I2 ~

H=H +H +H,

H, = (2m'p, '+ 4gp, ' —Bp,)I
= classical energy due to Q„

H„=odd in Q„

(As)

(A4a)

(A4b)

We then decompose II according to the separation
From (A6), we obtain the Hartree result by mini-
mizing V with respect to m", giving

BV 1 3gg +m 3g m
Bm" 8v 8iim" 2(4v)'m" m"

m —m —Sgg — ln
1 p2 2 2 3g m

e~m" 4w m"
1 8a =X d —.'(y )2+ — ' +-.'m'y '
2 Bx =0. (A7)

(A4c}

N —
Q + — ' = —(m" —m'), (A5a)

2 eg 8n
m'

&8 )„.=0,
m2

&& (0,')& ~ =

(A5b)

(A5c)

4 1 m'
&N„(P, )),=3

4
ln (AM)

+ -'Z(4. '+ 64.'4.') I,
with I. the total volume of the system. Then, we
choose the trial state

~
), as the ground state

associated with a free-particle Hamiltonian (in

Q, ) with mass m'. Then, using identities (2.4)
and (2.6), we have

Equation (A7) defines m' as a function of m and

g, (m' is independent of B), and (A6) and (A7)
give rise to the Hartree effective potential,

+«(~+& } ~V(~c& )jN, ' givenin(A7)

Note that

V.ii(4~») = V.«(A, ) -B0„ (A8)

where V,«(P,) is the Hartree effective potential
at B=0. V,«(Q,) was computed earlier, ' and its
numerical results are reproduced here as Fig. 1.
The Hartree calculation predicts a first-order
transition at g/m'= 10.211 for B= 0. The first-
order transition persists for small but finite B.
This prediction violates the Simon-Griffiths theo-
rems.
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