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A procedure is given for renormalization of finite-temperature and -density Green s functions to all orders of
perturbation theory. The Lagrangian counterterms are independent of temperature, density, and all mass

parameters of the Lagrangian. Thus renormalization-group equations may be written for Green s functions in
a medium for which the Callan-Symanzik functions depend only on the dimensionless coupling constants. By
scaling the temperature and/or chemical potential in the renormalization-group equations it is shown that
asymptotic freedom in non-Abelian gauge theories occurs for large temperatures (early hot universe) and for
large chemical potential (high density of the medium) as well as large momenta.

I. INTRODUCTION

This is the second paper in a series devoted to
collective phenomena in gauge theories. Several
authors have recently investigated the behavior of
spontaneously broken gauge theories of the weak
and electromagnetic interactions at finite tempera-
ture. ' We address ourselves here to the question
of renormalization of finite-temperature and/or
-density field theory (FTF). A renormalization
program is given here which we make use of in
our investigations of the behavior of gauge theo-
ries at finite temperature and density (FTD). This
program generalizes the mass-independent renor-
malization prescriptions of Weinberg' and 't Hooft'
to a mass-, temperature-, and density-indepen-
dent renormalization prescription. The advantage
of this formulation is that renormalization-group
equations for Green's functions at FTD have
Callan-Symanzik functions depending only on the
dimensionless coupling constants. This greatly

facilitates the investigation of the behavior of
matter at high FTD via renormalization-group
equations.

We begin by reviewing the Feynman rules for a
finite-temperature field theory. For simplicity
we consider a field theory with one chemical po-
tential, g, corresponding to a conserved charge
carried by the fermions, which we call fermion
number. Also, for simplicity, all fermions have
the same charge and antifermions have the op-
posite charge (for example, in a theory with frac-
tionally charged quarks with baryon number —,', p,

corresponds to baryon number density}. This
paper is organized as follows: Section II is de-
voted to renormalization of FTF to all orders of
perturbation theory; Sec. III presents the example
of P4 theory at the two-loop level; in Sec. IV the
renormalization-group equations for a medium
are derived and discussed. There it is shown that
asymptotically free gauge theories exhibit asymp-
totically free behavior as temperature and/or
chemical potential become large.

II. FORMALIZATION

The Feynman rules are the T =0 (T is temperature}, g =0 rules with the following replacements4:

d K i ~ )
d3K

(2m)' P ~N J (2m)' '

K'=or„, ar„=2mNi/P (bosons)

Ko =or„+p, ur„= (2N+l)in/P (fermions')

N=O, +1, +2, . . . .
A Feynman diagram in FTF has the general form

6' involves y matrices and polynomials in momenta. The P, are external momenta with

P0 = ur,', &u,
' = 2li v/P (bosons)

Po = m) +g, uI = (2E+1)i v/P (fermions)
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and m, ' are the squared masses.
The first step in relating renormalization of FTF to ordinary field theory is to convert frequency sums

to contour integrals. For bosons,

vg=2Nmi =
2 o

where contour C is given in Fig. 1. Thus for bosons

i g f ( }
1 '"" dKPf (KP) 1 ""' dKPf (KP) 1

p „„"2w, „exp(pCp) -1 2w, „, exp(-pKp) -1 2w
(2)

The terms on the right-hand side of Eq. (2}will be denoted respectively by (2a), (2b), and (2c). For fer-
mions

Q f(v„+i(,, v„= (2N+1)iw/P) =-
p

w r N

1 dK K +p.
2w „exp(PrP)+I
1 """dIPf (K'+ii. )
2w, „„exp(J1KP)+1

+f~-c dKPf(KP )
+(~

1+ -- dKf(K+i)

Changing the integration variable, we obtain

1 P
+&~ +9+& dKPf (KP) 1 +&~+0 & dKPf (KP) 1

ti „„""+" 2w J~,„,„„exp[p(Kp- y, )]+I 2w, „+„, exp[p(i), K}]pI+-+ 2w

+ dIPf (rP).
2 tt

(3)

The contour C' is shown in Fig. 2. Terms on the
right-hand side of Eq. (3) will be denoted respec-
tively by (3a), (Sb}, (Sc), and (M). When T, p, -0
only term (2c) in Eq. (2) and (3d} in Eq. (3) sur-
vive. Thus

i t d~K +~ dE d~K

P „„J' (2w)' ' o, 2w (2w)' '

which is an integral over Euclidean momenta.
The basic step in our renormalization program

is to show that all infinities occur in subdiagrams
in which the integrals over loop momenta are
temperature and chemical-potential independent
(Euclidean space integrals). That is, only terms
(2c) and (M) are involved. Then the infinities are
just those which would be there if we took p. , T-O.

This requires demonstrating that integrals over
loop momenta associated with (2a) and (2b) and
(Sa), (Sb), and (Sc) do not give rise to infinities.
The demonstration relies heavily on the contour
closing. We now illustrate the contour-closing
method. Consider Eq. (1}and let us treat

d3K,~~f (")
first, assuming K, is a fermion (we find that it is
easier to evaluate all fermion loop momenta be-
fore evaluating boson loop momenta}. There are
four terms in Eq. (3). In the first three terms we
close the contours; the fourth term is left alone
while we go on to the next loop momentum K,.
When we close the K, contours, keeping all other
variables fixed, we pick up the residues of poles
in K, . For example, a typical denominator con-
taining K~0 might be

Re K

FIG.'1. C contour in comp), ex%0 p1.ane, crosses are
poles at K p=2Nwi/p for bosons and K p= (2N +1)wi/p for
fermions.

-i C

FIG. 2. Contour C'.
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1 1 1
(K, -K&)' —mo (K& -Ko& —[(R, - R~)'+m']~} (K,'-K', +[(R, -R,)'+m']'~'} '

with Ko& =2N&»i /P.
Upon evaluating the contour integral we get in Etl. (1) that

(4)

i ~ d~K, 1
&3
~ (2«)' (K, -K,)'-m'

d'K, e([(K, —R&)'+m']'~ —q)
(2&) 2[(K& —KJ) +m ] [exp(P([(K& —K&) +m ] —g)}+I] «(-«)=+&&r& -K )o+~ao»h

d'K, 8(p —[(K, —K,)'+m']' )
2[(R -R&)'+m']''[exp(p(&&, —[(R, —R~)'+m']' )}+I]«o «o& + «K „&& +» h

d'K, 1
(2&)' 2[(R, —Rz)'+m ] [exp(p(&&, +[(K, —K~) +m']'')}+1]»o-« =-«K K ) +m &''

~

3
~ ~ ~

d'K, 8( p —[(R, —Rg}'+m']'+)
(2«)' 2[(R, —R,)'+m']'" „o «'=+ «z, -K )'+~'&)&"

1 9 1 f
1 1

+
(

„dKo d 'K, , „,~ ~ ~ + other pole terms

The first five terms on the right-hand side of Eq.
(4) will be denoted respectively by (4a), (4b), (4b),
(4c), and (4d). Terms (4a}-(4d) are respectively
from (3a)-(3d). In expression (4) the dots stand
for the remaining factors in Eq. (1) and we have
suppressed the summation and integration symbols
for the other variables. By each term we show
the value which K,'-Ko~ takes everywhere it ap-
pears in the factors not shown explicitly. The
other pole terms not shown came from other prop-
agator denominators containing K,. We have also
used the fact that exp(PKo~) =1 since K~o =2N~«i /P.
Before going on, it is easiest to change variables
in the above terms, so that R, -R, =R,' and Jd'K,- fd 'K,'. Now we see that closing the contours
has resulted in various terms which have absolute-
ly convergent three-momentum integrals over
K,'. Ultraviolet infinities due to large K, can occur

only in the term containing the T- and p, -indepen-
dent Euclidean space integral. We shall refer to
the terms (4a)-(4c) as "finite K,"; term (4d) will
be called "temperature-independent Z," or TIK,
for short.

Next, we treat the loop momentum K,. Closing
contours proceeds as for K„ that is, we close
the temperature-dependent K, contours and leave
the TIK, contours alone. There are now some
new complications which we must deal with. These
occur in the terms involving the TIK, and the tem-
perature-dependent K, contours (TDKo}. A possi-
ble factor in these terms is a denominator of the
form [(K, —K, -K&}o—mo] and closing the TDK,
contour around the poles of this denominator (let
us assume that K, is a boson momentum) will give
rise to factors such as

1

exp(p([(Ro —K, —K, } +m ]' +K,)}—1 «o «o «)=«K K, «, &o+„o&)&'o

+ joo

(K, is actually irrelevant to the discussion}. Since we are dealing with, „dK„ the K, in the argument of
the exponential complicates things. We first redefine K, -K, -K, =K,' with K,"= [(R, —R, —R )'+ m']'~', so
we have terms involving

I0 d 3~I

0

2
~ ~

2I
2 2 I

1
(2«) 2[(Ko) +m ]' exp(p([(Ko) +m ] +K )} 1 «o.=)(K~& +&& +

Now we must close the Ko& contour to the right (thus avoiding any poles due to the vanishing of
exp(P([(R,'}'+m']''+Ko)}—1. In doing so we will pick up poles from denominator factors such as

(K,o —m'), (K, +K&)' —mo ~» „«, and (Ko+K~-K } —m' .
In each case the resulting integration is a term involving absolutely convergent integrals over both K, and
K, . For example, the first denominator above results in a factor (exp(P[(R,')'+m')~'+(R, '+m')'~]} —1) '
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which gives the convergence. The second denominator above results in a similar convergence factor,
while the third gives

Il 3Z P([(K +Kd K )2 + m2]1/2 [(Kd)2 +m2]1/2)

(21I)' 2[(K, +K,' —K )'+m']'"[exp{p([(K,+K2'- K )'+m'] ')] -1]
For this last case we change variables to K,' =K, +K,' —K„, K01 =[(K,')'+m']'/', so we have

d 3' I g ([ (Kd )2 + m2] 1/2
[(K I )2 + m2] 1/2)

(211)' 2[(K,')'+ m']'"[exp f p([(K,')'+m']'")] -1] '

These are all convergent integrations. Of course, there will be contributions to TIE, —TDK2in which the
K, contour is closed around poles not involving K, . In such cases we leave the TIK, alone. Terms involv-
ing finite K, and TDK, result in absolutely convergent K, and K, integrals and we will call such terms
finite K, -finite K,. We leave the terms involving TIK2 alone for now. Proceeding in this way we convert
expression (1) to expression (5) below, which is a sum of terms, each of which will have some loop mo-
menta whose integral over d q, will be absolutely convergent (as in the case finite K, -finite K2 above).
The remaining loop momenta are associated with temperature- and density-independent Euclidean mo-
mentum integrals

1 dq, d q t' ll'f(, )' 2(q.. .) ~ I?0(y*' q'+ '» 1-*.- (',). ' 6'

tmax m+g-g

g (exp[P(y„q', +6; p)]+(-I)"") II [(~,', q+P,', &, )'-m, ']

where
nI„-—+1, 0, PI, i =a1, 0

~1,0, 1&j&s
I

~ij ~ ~ij
j~s+1

i,„&s, 1&~&N

f+' q1 f'"
(2w) (2w)3

g+m-g

Q [(12,'.„q„+p,', a, .)' - m, ']
j=1

In Eq. (6) we have a subdiagram whose external
momenta are q„& & l &s, and p,'. The integrals

(6)

6 6'-+I 0 q' —I2 (q'+m ')'+ with l~l~s

and nr =+1~

The q, (1 &1 &s) correspond to a change of inte-
gration variables from ]k1j to (q;); the q's are N
linearly independent propagator momenta from
Eq. (1) which have been redefined. The y„,y;',
are such that the integral. s over d'q, are absolute-
ly convergent, owing to the 8 and exponential func-
tions. For the purpose of identifying infinities we
may regard the q„1&l&s, as fixed and consider
the rest of the integrations:

over q„s+ 1 & E & N, are ordinary vacuum inte-
grals (although in Euclidean space), hence ihe in-
finities which arise are T, p, =0 infinities (TII,I) of
subdiagrams which are removed by Tp,I counter-
terms of lower order. The only new infinities
which arise are due to the term with S =0 in Eq.
(6), i.e. , 1n Eq. (1) let

gIJdd, f dK& fd Kr go„+2 &

However, this is just canceled by the new Tp.I
vacuum counterterm which appears at this order.

III. Q" TO TYCHO LOOPS

As an example we will consider P theory to the
two-loop level. The unrenormalized Lagrangian is

&o = -'(S1 4»' —2mB'4" ~

~I 2(mB R )4 gB4

For regularizing infinities we will use dimen-
sional regularization. ' The free propagator is
i/(P2 —mR' ). The one-loop self-energy diagram
and counterterm diagrams are shown in Figs. 3(a)
and 3(b). From Fig. 3(a) we get (using the contour-
closing method of the preceding section)

~ Nr~ E 12gR 4 R 41 d1 2 4 B ZgR N/2 (1 1 )( 2)1I/2-1 —2gR 4 B u
2 (2m)" K —m ' 2(2v)" 2 " 2 (2v)' (K'+m ')'

1

exp[p(R'+ m, ')'"]—1

g„im ' -gRii", ;„(I——,'X)m '
2g m ' m-„'

(4v)'(X- 4) 2(4v)' 32@2 4~~2

ig~ d K 1

2 (2v)3 (K'+ m ')' ' exp[P(K'+ m ')'"]- 1
'
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(a)

FIG. 3. (a) One-loop self-energy in Q4. (b) Counter-
term diagram for one loop.

)CO( 4

FIG. 4. Vertex corrections in two loops.

From Fig. 3(b) -i(mw' —m~') =ig„m„'/(4w)'(N —4). This complete the one-loop calculation. There arose
no temperature-dependent infinities to this order. Note that at finite temperature we have a finite-temper-
ature-dependent radiative correction to (mass)' as

d'K 1
(2w)' 2(R'+m ')' ' exp[P(R'+m ')' '] —1

'

Going to two loops we will encounter temperature-dependent infinities. We have vertex corrections from
Fig. 4. The infinities are all the same, so we may do just (4a),

)4
1'(2 —~l(i) + finite terms,

so

4-z 3g'z
8's =(u Zs 16 2(~ 4)

~

The two-loop contributions to the propagator and their counterterms are shown in Fig. 5. Figure
5(a} gives

16w'(N- 4) . (2w)" K —m„

2 16e'(N-4) (m„)' m' (2e)" .'

(2e) (14'em ')'~' exp[()(14 +m ')e'] —1I'

Figure 5(b) gives

(4w)'(P- 4) 2 . (2w)" K' —m„2 2(4w)2(N- 4)

i w"~'
2 2-&/2

d'K
(2w)'

Figure 5(c) gives

r(2 ——,'X)
2(2w)

P exp[]3(K'+m„')')'] 1

(exp[ P(K3+mz')')" ] —lj' 2(K'+ms')

1 1

[exp[i)(K eme')'&*] —1} 2(R'em„')'&')I

, ,„(-i')' I'd K i ' " d 1 i
4 J (2w)" K' —m„' . (2w) 1' —m„'

i w"~21'(2- -,'N),
t

d'K '
P exp[P(K'+m ')')'] 1

( ')' " '(2 )" j (2 )' 1exp[P(K'+mB')' ']-1)' 2(K'+ms')

1 1
2(exp[P(K'+ms')'~'] —1] (K'+m„')3™

X —gp
. „(,1"(1--,'N)(m„')"~ '

(2w) N

(2w)' (K'+ms')')" exp[ p(K2+m22')' ']-1
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(a) (b) (c )

FIG. 5. Two-loop corrections and counterterms to
the propagator.

FIG. 6. Overlapping two-1oop contribution to propaga-
tor.

The overlapping divergence in two loops is the last diagram to evaluate, Fig. 6. This gives

, (i)' "d"K, "d"K, 1 1 1
8 J (2w)" „(2w)" K,'-m„' K,'-ms' (K, -K, —P)'-m„'

(10)

, (i )' i f'd'K,=(-iZ)'
8 PQ Ji (2,)3

"dK~ 1 1x -z'
(2n')' 2(K,'+~„')' ' exp[P(g, +mz')' ]-1 K2 —ms (K2 —K, —P)'-mz x~,g,2,„2&x/2

"dsK,' 1 1 1 1
(2v)' 2[(K,')2+m+ ]'/' exp[/(Kg+m+2)'/'] —1 K,' —mz' (K,'+K2 —P)'-mz' ro', KK,'p ~p/2

1 "+'
0 "dK, 1 1 1

We use Eg. (2) to transform

P~ . (2w)'

into contour integrals. We see that there are temperature-dependent infinities coming from each term
on the right-hand side of Eg. (10). The first two terms have temperature-dependent infinities arising
from the J "dKO integration and contribute

1
12m'(N-4) J (2m)' 2(K,'+m„')'/' exp[P(K, '+mz')'/'] —1

'

The third and last term in Eq. (10) has an infinity when we take the TDK, contour integrals and close them
over the pole from (K,' —ms') ', thenweevaluatethe j","dK,' integral for the resulting temperature-de-
pendent infinity

24m (N —4) J (2v)' 2(K,2+ms')'/'exp[P(K, '+ms')' ]—1'

Adding these two infinities together we find that Fig. 6 contains the temperature-dependent infinity

18w2(N —4) J (2n')3 (K, +ms~)'/2 exp[P(K, +mz')'/']- I '

Adding the temperature-dependent infinities in Eqs. (7), (8), (9), and (ll) we see that they cancel. What
remains is the usual Tp.I arising at this order from

8,„'.'

(2v)' „,„' (2n)' (K,' —ms') (K,'-mz') (K, -K, —P)' -ms' '

This completes the example.

IV. RENORMALIZATION-GROUP EQUATIONS FOR A MEDIUM

In our Q example we used dimensional regularization for the temperature-independent infinities. This
conveniently allows for mass-independent renormalization procedures such as described in Ref. 6. Cou-
pled with our renormalization of FTF we have then a temperature-, chemical. -potential-, and mass-in-
dependent renormalization program. Thus the renormalization-group equation for an FTF Green's func-
tion has the form
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8 8 8 8 8+T +K —P(g„) +(I+y„(g„))m~ +yr-Dr I'„(KP„g,T, g„,m„, S) =0.
8p. 8 T 8K 8g&

(12)

Subscript R refers to renormalized quantities. S is the renormalization point parameter and K is a scale
factor for the momentum with P, a fixed momentum. yq and Dz are, respectively, the anomalous and
canonical dimensions of I's. Using standard methods the solution to Eg. (12) is obtained by defining a
E-dependent effective coupling, mass, temperature, and chemical potential through the differential equa-
tions

K g(K) = P(g(K)),
d

K —— m(K) =- [1+y (g(K))]m(K),

K p, (K) = —p, (K),
d

and the initial conditions

g(1) =gs, m(1) =ms, T(1)= T, g(l) =p. .
Then Eq. (12) has the solution

~E dK'
I'„(K&„p,, T, gs, m„, S) =K rI' (P„y('K), T(K,), g(K), m(K), S) exp —;(g(K'))

1
(13)

Note that p(K) and T(K) are the same for all
theories:

g (K) = p, /K, T(K) = T/K.

Instead of scaling momentum we could have scaled
p. or T and obtained a solution analogous to Eq.
(13).

One sees that the same behavior of the Green's
function occurs for any two variables held fixed

and the remaining one scaled. Thus, for ex-
ample, asymptotic freedom' in non-Abelian gauge
theories occurs for large momenta (small dis-
tances), iarge temperature (early hot universe),
and large chemical potential (high density of the
medium). See Ref. 8 for a calculation of the as-
ymptotic behavior of the equation of state in an
asymptotically free theory.
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