
PHYSICAL REVIEW 0 VO LUME 13, NUMBER 10 15 MAY 1976

Class of scalar-field soliton solutions in three space dimensions*

R. Friedberg
Barnard College and Columbia University, New York, ¹wYork 10027

T. D. Lee
Columbia University, New York, New York 10027

A. Sirlin
New York University, ¹wYork, ¹wYork 10003

(Received 19 January 1976)

A class of three-space-dimensional soliton solutions is given; these solitons are made of scalar fields and are of
a nontopological nature. The necessary conditions for having such soliton solutions are (i) the conservation of
an additive quantum number, say Q, and (ii) the presence of a neutral (Q = 0) scalar field. It is shown that
there exist two critical values of the additive quantum number, Q~ and Qs, with Q~ smaller than Qs. Soliton
solutions exist for Q & Q~. When Q & Qs, the lowest soliton mass is & Qm, where m is the mass of the free

charged meson field; therefore, there are solitons that are stable quantum mechanically as well as classically.
When Q is between + and Qs, the soliton mass is & Qm; nevertheless, the lowest-energy soliton solution can
be shown to be always classically stable, though quantum-mechanically metastable. The canonical quantization

procedures are carried out. General theorems on stability are established, and specific numerical results of the
soliton solutions are given.

I. INTRODUCTION

In this paper, we shall present a class of soliton
solutions in three space dimensions; these soli-
tons are made of scalar fields and are of a non-
topological nature' (to be distinguished from the
monopole-type solutions given by 't Hooft' and by
Nielsen and Olesen'}. ' A brief description of
such nontopological solitons has been given in Ref.
1. As we shall see, they serve as prototypes of
a rather general class of soliton solutions, whose
realization hinges on the existence of some inte-
gral constraints on the fields, which are, in turn,
the consequences of the appropriate physical con-
servation laws in the theory, such as charge, iso-
spin, etc. Generalization of such soliton solutions
to include fields of nonzero spins will be given in
a subsequent paper. Throughout our discussion,
we consider only relativistic local fields with
nonlinear couplings that are renormalizable in the
usual sense (i.e., in terms of the usual perturba-
tion series expansion around the plane-wave solu-
tions of the free-field equations).

To begin with, it may be useful to give the de-
finition of a soliton solution that is appropriate to
particle physics. Following Ref. 1, we define a
classical soliton solution to be one that (i) has a
finite and nonzero rest mass and (ii) is confined
in a finite region in space at all times (i.e., non-
dispersive}. It can then be shown'~ that for every
such classical soliton solution there exists a cor-
responding quantum soliton solution. The quan-
tum soliton solution (i) also has a finite and non-

zero mass, expressed in terms of the usual re-
normalized quantities which are defined by the
usual perturbation series around the free plane-
wave solutions, and (ii} has a spatial extension
which gives rise to "soft" form factors' that go to
zero at large momentum transfer. Because of the
uncertainty principle, it is clearly not possible
to construct a nondispersive wave packet of the
quantum soliton solution. However, it can be
readily shown that when the appropriately defined
nonlinear coupling constant g becomes sufficiently
small, both the mass and the form factor reduce
asymptotically to their respective classical ex-
pressions; the mass is O(g '} and the form factor
O(go}. When g decreases, the spatial extension
of a quantum soliton, as determined by its form
factor, remains finite, in accordance with its
classical limit. This remarkable feature dis-
tinguishes a quantum soliton from either an atom
or a molecule, whose size approaches infinity as
the fine-structure constant a-0. This difference
underscores, once again, that in the context of a
relativistic field theory the soliton solution already
exists on a classical level, while atoms and mo-
lecules exist only in the quantum theory. (Our
definition of soliton differs from a more narrow
one, used in some mathematical and engineering
literature. ' In this narrow definition, the term
soliton is confined only to some extremely special-
ized nonlinear equations that have solitary wave
solutions whose shape and velocity remain un-
changed even after a head-on collision. Such a
highly restrictive definition would automatically
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X —X y

besides the U(1) symmetry

(1.2)

because of this U(1} symmetry, there is the cur-
rent conservation BjgSx„=0where j „=—i[(I) (BP/
ax„) —$(e((() /Sxg]. Consequently, the charge

(1.4)

is a constant of motion.
We shall consider first the classical solution,

and leave the discussion of the quantum solution
to a later section, Sec. IV. Since Q depends lin-
early on P, the classical solution for Q &0 must
be time dependent; for the lowest energy state,
(I) ~ exp(-iet). It is convenient to scale away both
the physical dimension and the nonlinear coupling
g. We introduce

y(r, t) =(p,/g)A(p),

0(r, f) =2'"(u/C) B(0-) e '",
where A and & are both dimensionless and real,

(1.5)

~ =~vac
is the mass of the neutral X meson as can be
readily seen from the Lagrangian (1.1). The cor-
responding mass of the charged (t) meson is

(1.8)

From (1.1) and (1.5) it follows that the functions
A(p) and B(p) satisfy

V'A —g B'A —~ (A' —1)A =0 (1.9)
and

V'B- /PA'B+v B=O,
where V is the gradient operator with respect to

(1.10)

exclude all the four-dimensional local field the-
ories that are of interest to particle physicists. )

For clarity, we consider first the simplest
example of such a soliton solution. We assume
the system to consist of only two spin-0 fields:
a complex field Q and a Hermitian field )(. The
Lagrangian density 8 is assumed to be (general-
ization will be given later in Sec. VI)

8$ 8(3I) 1 8X

ax ax 2 ax

-f'x'f Q--8g'(x'-x„„')',

where x„=(r,it), P is the Hermitian conjugate
of Q, and f, g, and y„„are constants. The theory
possesses a discrete symmetry

the dimensionless parameter p,

v-=(u/p. , and ((:=-m/p .

The charge Q is related to the frequency &u, or v,

by

(1.12)

The energy of the system is given by

(ui). ")=f()&'u,

&E/5A(p) = 5E/5B(p) = 0 . (1.15)

As we shall see, there exist tzvo critical values
of charge: Qz and Qc with Q~& Qc. Soliton solu-
tions exist when the total charge Q is greater than
the lower critical value, Q & Qc. In general, at
any given Q & Qc, there is more than one soliton
solution. A stability theorem will be established,
which states that among these soliton solutions the
one with the lowest energy is classically always
stable against arbitrary small functional variations,
while the others are not. When Q is greater than
the upper critical value Q~, the rest mass of the
soliton solution (with the lowest energy) is less
than Qm, the corresponding energy of the free
P-meson solution. Thus, when Q & Qs, the soliton
solution (with the lowest energy) is absolutely
stable against complete dissociation into free me-
sons. (In fact, it is absolutely stable against any
decay. ) When Q~&Q&Qc, the soliton mass is
& Qm. Nevertheless, classically one still has
stable soliton solutions. The corresponding quan-
tum soliton solution is, of course, metastable;
however, its lifetime can be quite long in the
weak-coupling limit, the lifetime -~ when the
nonlinear coupling -0.

The existence of the soliton together with some
general properties of the solution are discussed
in Sec. II. The question of stability is examined
in Sec. III, and also partly in Sec. IV. The quan-
tization is carried out in Sec. IV. The result of a
numerical calculation of the soliton solution is
given in Sec. V. Most of the methods developed
for the simple Lagrangian (1.1) are applicable to
a much wider class of problems. In particular,

where

g |(OA)8+| (VB)2+| (v2+K2A2)B2+| (A2 1)2

(1 14)
Through (1.12), v may be regarded as a function
of Q and a functional of B(p). Upon substituting
v= v(Q, B}into (1.14), we may express E as a func-
tion of Q and a functional of A(p) and B(p). Equa-
tions (1.9) and (1.10) can also be derived by keep-
ing Q fixed and setting the functional derivatives
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if (1.1) is generalized to

. 2t-f'x'p p-~(x),
8Xp ~X~ 2 ~X~

(1.16)

where u(X) is an arbitrary function of X, then ex-
cept for some obvious changes, our entire dis-
cussions of the classical soliton solution (exis-
tence, stability, etc.) for the simple Lagrangian
can be directly applied. For quantum soliton solu-
tions, because of renormalization, u(X) has to be
a fourth-order polynomial of p. The details are
given in Sec. VI.

Throughout the paper we use the natural units
A=c=l.

II. SOME GENERAL PROPERTIES

In this section we discuss some simple proper-
ties of the classical solutions of Eq. (1.9}and

(1.10). Most of the properties derived are of a
rather general character which can be applied to
a much wider class of equations (see Sec. VI).

and therefore, as expected,

&u= m and E =pm . (2.7)

The corresponding infinite-volume limits for the
fields are A. =1 and & =0. Had we started with an
infinite volume directly, the usual plane-wave
solution for & would not be square-integrable,
rendering the relation (1.12) between Q and B
ambiguous.

8. Existence of solitons

In this section, we shall show that when the
charge Q is larger than a critical value Q~, there
exists a soliton solution which is absolutely
stable. " A simple way to show the existence of
the soliton solution is to follow the variational
approach. For the soliton solution, the volume
of the system can be safely set to be infinite. We
assume the trial functions"

0 for r&g,
A=

1 —exp[- (r —R)/l] for r ~ R

A. Free-meson solution

In order to derive the classical free-meson solu-
tion, it is convenient to enclose the system within
a finite but extremely large volume Q/p, ' where Q
is dimensionless,

and

B~ sin&or for r ~Br

0 for r &2il,

(2.8}

Q — d'p (2.1)
where r = (r (, R and f are two length parameters,

(2.9)
We may assume 0 to be of cubic shape, and im-
pose the familiar periodic boundary condition on
the fields. The lowest-energy free-meson solu-
tion for a fixed charge Q can then be readily de-
rived by using (1.9) and (1.10), and by assuming
A(p) and B(p) to be constants. We introduce a
small constant angle e, defined by

(sin'e) cosa = 2g' Qz/Q; (2.2)

and

4 =cos&

& =(@g'/Q~)'"

=(2K') ' 'sinE. '

(2.3)

(2.4)

The corresponding energy of the system is

for Q large, sin'e =2g'Q&Q '+O(Q '). The fields
A. and & are given by

and because of (1.12), &, =(np) 'g( —,
' Q')' '. By

using (1.13), (1.14), and (2.8) we derive an upper
bound for the lowest-energy value E at a given

+ I g3 ~l p2E Qggy2 ~ Pvg v@2
mill g 6g 2 4 24 288

+ —, (R'+Rl+~P) .
p, l

(2.10)

This inequality holds for arbitrary lengths R and
/. As Q increases, the optimal value of R in-
creases with Q, while that of l remains O(p ').
Thus, for Q large, the right-hand side of (2.10)
becomes R ' vQ+ —,

' (wp'R'/g') +O(R'p'/g').
ing its minimum, which occurs at

R -=(2@g')"/~, (2.11)

we find
E = qm(secs) (1 —4 sin'e),

and the frequency is given by v= ecosoc, or

Qp =ps cosE' .

(2.5)

(2.6)

E.;.- —.
' sp(2g') "0'"+O(@"u/g) (2»)

By comparing this value with Qm, the energy of
the plane-wave solution, we see that

At a fixed 9, in the limit Q-~, we have &=0, E &Q wmh Qe&nQ8, . (2.13)
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where

381 2g
(2.14)

Therefore, when Q& Qs the solitop solution exists
and is absolutely stable.

It can be readily seen that the trial function
(2.8) actually satisfies the differential equations
(1.9) and (1.10) when r &Il, and it approaches the
correct boundary condition at ~. Because R in-
creases with Q, for Q sufficiently large the upper
bound (2.12) is the correct asymptotic expression
for E . Thus, (2.14}also gives the correct
limiting value of Qs when g =m/p-0. As will
be shown in Appendix A, when x- on upper
bound on Qs can be obtained:

ps&75 w'(v' —36)' '/(512 g'~') =111.8(g'~') ' .

(2.15)

(2.22)

There exists still another variational formalism
that is particularly useful in our later study of
the stability problem. We define a functional G

ofA and&:

G= —Qd3pP
g2

where

(2.23)

I-=(Wl!') ' JB'd'p (2.25)

(2.24)

The stationary condition (2.16), or (2.21), can
also be expressed in terms of G. We require the
functional G to be stationary, keeping

Therefore, when z-~, Qs-0. As we shall see,
in the quantum theory Q must be an integer Ac-.
cording to (2.15), for ~ sufficiently large, it is
possible to stay in the weak-coupling region (g and

f =g~ both small) and yet have Qs& 1; the quan-
tum solitons would then be stable for all Q &0.

C. Variational principles and virial theorem

fixed. The condition

(5G)r =0

implies

5G
6A(S)

(2.26)

(2.27)

As already noted in the Introduction, the dif-
ferential equations (1.9) and (1.10) can be derived
from the variational principle (1.15), keeping Q

fixed, i.e.,
(6E)o=0 . (2.16}

The resulting stationary value of E is a function
of Q. Its derivative is given by

E(Q) =a.d (2.17)

The Legendre transformation

(2.18)

defines a functional F of A and J3. We may write

5d3p
g 2 (2.19)

where the function 6' is related to 8 of (1.14}by

5 = 8- v'B' (2.20}

The variational principle (1.15), or (2.16), is
equivalent to requiring I' stationary against arbi-
trary functional variations in A and B but keeping
e fixed; i.e.,

(&E)~=0 . (2.21)

We may regard the resulting I' as a function of e;
it follows then

2

6E(-) =(Pg )' (2.28)

which are identical to (1.9) and (1.10}, with aP

now appearing as the Lagrange multiplier. The
resulting stationary value of G is a function of
the constraint I. From (2.28), it follows that

d—G(I) = —, e' .
dI

The functional G is related to E and I' by

G=E —2 (oQ

and I is related to Q and &u by

@=I&a .

(2.29)

(2.30)

(2.31)

The above three variational formulations, (2.16),
(2.21), and (2.26), are applicable to both the soli-
ton solution and the plane-wave solution, pro-
vided that we assume a finite (but large) volume
and impose the periodic boundary condition. Of
course, for the soliton solution, we may directly
assume an infinite volumewith the boundary con-
dition: At , A. - 1, and B-0; in addition, B is
square-integrable. We note that both 8 and 9 are
positive, but is not.

The virial theorem for the soliton solution can
be most easily derived by using the variational
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formalism (2.21). We consider the variation

A(r) -A(Ar) and B(r) -B(Ar)

for a soliton solution in an volume, where
A, = 1 + e and e = 0+. By setting

Let

1 dy' - ay +4y
2 d7

(2.37)

(2.38)

=0 at ~=1, Equation (2.37) may be written as

we find

where

T = 2 (VA)2+2 (VB)'

(2.32)

(2.39)

The solution of (2.37) has a simple mechanical
analog. We may consider a point particle at
"position" y and "time" 7, moving in a potential

(2.40)
and

U = 2 ( V2 —K'A'} B —2 (A' —1)'

(2.33)

D. Soliton solution when u is near m

From (2.9) and (2.11) we see that as ~ increases
from 0, the radius B of the soliton varies as n/&u

and its charge Q decreases from ~ in proportion
to ~ 4. On the other hand, for the plane-wave
solution, as the volume -, the lowest-energy
state at a given Q is one with &o =m. Now, both
the plane-wave solution and the soliton solution
satisfy the same set of differential equations (1.9)
and (1.10}. As we shall see, assuming that the
volume of the system is sufficiently large, when
~ increases from 0 to m, the soliton solution
would evolve continuously and finally join onto the
plane-wave solution. To find the connection be-
tween these two types of solutions, we shall in-
vestigate the soliton solution when + is near m

(i.e., v near K).
We define

=(K2 ~2)l/2

When $-0+, it is convenient to introduce

A =-1 —2 (t'/K)2 X,
l~2($/K2) y

and

fpl=r/(.

(2.34)

(2.35}

For the spherically symmetric solution, x and y
are functions of r. By substituting (2.35) for
(1.9), one finds that to the lowest order in P

Likewise, from (1.10) one derives

At ~=0, since v=0, Ubecomes &0 but T remains
& 0; the soliton solution disappears, in agreement
with a well-known result derived by Derrick, "
and by Goldstone and Jackiw. '

3 (0) = 3,(0), 3,(0), . . . , 3„(0},. . . (2.42)

Because of the gauge symmetry (1.3), y- —y is
equivalent to a gauge rotation 8= m. Thus, all
these y„(0) can be taken to be positive.

For n = 0, the particle begins at y, (0) at r = 0 and
ends at y =0 at 7=. Its entire path is on the side
y ~ 0, as shown in Fig. 1(b). For n=1, y(7 ) be-
gins at y, (0) at r=0 After a finit.e r, it passes
y =0 to the negative-y region; later, it returns to
y=0 at r=~, as shown in Fig. 1(c). In the soliton
language, these solutions are all radially sym-
metric. The n=0 solution has no radial node,
the n= 1 solution has one radial node, etc. (Nu-
merical calculation of these solutions will be
discussed in Sec. V.)

The charge Q is, according to (1.12) and (2.35),
given by

q 2~(~ g ~ ~ Jy='r'uw+o(O'. (l.4s)
0

and under a frictional force = —(2/r) (dy/dr); K
denotes the energy of the point particle, and (2.39)
gives the rate of energy dissipation by the fric-
tional force.

The soliton solution is one that satisfies the
boundary conditions

—=0 at 7=0dy
G7

(2.41)

y=0 at 7=~ .

The former is necessary so that the term (2/r)
x(dy/dr) in (2.37) does not become singular at
7=0, and the latter is because of the square-in-
tegrability of K

From the shape of W, given in Fig. 1(a), one
sees that there exists a family of soliton solu-
tions; each solution begins at a different initial
position y(r} at r=0 We may a. rrange the initial
positions of these different solutions in an ascend-
ing order:
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p
W

0
(a)

and

M4-~ y (2.47}

Another relation between these mome t b
erived by multiplying (2.37) by v'y and integrat-

ing over dv'. We find

N+M2-2M~ =0 .

Together, (2.46) and (2.48) yield

(2.48)

(2.49)M, =2M, and X=3M, .

By using (1.13), (2.35), (2.43), and (2.49), we de-
rive for the soliton mass

E=qmtl g+(t'/K)'+O(g')] . (2.50)

14

l2

10

Thus when e '
n e is near m, the soliton solution has

a higher mass than Qm; it approaches the plane-
wave solution as ~-m-.

From (2.43), one sees that the product Q$
=4n'(g' «'} 'M, is independent of Q. Equation
(2.50} may also be written as

E=Qm +c outs&& Q '+O(Q '}
where the constant =8m(vM / 'g K

Next, we would like to examine how these
solutions in th

ine ow ese soliton
ions xn the region + near m are related to

et us consider the functionsthe ones in ~ near 0, Le
A and B given by (2.8). We note that (2.9) me a . may be

I

(c)

FIG. 1. (a) Potential W= —2y +4= —2y +4y, ~v) ground state
y =yo(T), and (c) first excited state y=y&(T) of Eq. (2.37).

Since by using (2.37) one sees that as 7'- ~ y is
7' ' 8, the integral (2.43} is clearly convergent.

Thus, in the limit g -0+, &u -m and Q -~.
There also exists a variational formalism for

(2.37}. We define a functional L of y(v):

&oR=(n+1) v, (2.51)

where n=0 1 2 . It can be readily verified
that, as before, the field equations (1.9}and
(1.10) are satisfied when t &R Diff erent n de-
notes the different numbers of d' lo ra 1a nodes in the
solution. It is reasonable to expect that when ~
varies from 0 to mo m, each of these solutions should
change continuously into the correspondinspon 1.ng solu-

'
n o & . & with the same number of radial

nodes. The lowest-energy soliton sol t'
wz no node.

so u ion is one

L -=
1 1 2 1+pP gP g dT

The condition

(2.44)

E. Critical points

(2.45)

1
—,N+M, -M =0,

where

(2.46)

7'd7 M = —' y'7'd7
0

gives (2.37). By following an argument similar to
the one used in the derivation of (2.32) we

In Fig. 2(a), we plot the energy E vs the charge
Q for the lowest-energy soliton solution. Since

than m whe
is less than Qm when ~ is near 0 butu greater
an Qm when &u is near m, the curve E(Q) must

intersect the straight line E =pm at le t
c a y, only once); the point of intersection

defines the critical point S. Since Q-~ in both
limits cu-0+ and e-m-, the soliton solution
exists only if Q is above a critical value Qc. Fur-
thermore, because dE/dQ=~ wh' h '=~ w ~c is a ways
positive, when Q =go the curve E(Q) must develop
a spike; this determines the other critical point
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I
Qc

Qi)

Q

Qc- I
0&

(a)
Qs

iL

fbi

Gii

Ic

2

dgde=dId(2 a') . (2.54)

Since dG = (-,
'

aP) dI and Q = I~, in order that at S'
the soliton solution has the same G as that of the
plane-wave solution, we may again apply the rule
of equal area: In Fig. 2(c) the area of the wedge
D'L'~ =the area between the straight line 08'D'
and the curve S'C'D'. The relative locations of
these two pairs of critical points C, S and C', S'
are also given (schematically) in the other two
figures, 2(a) and 2(d).

III. STABILITY

Thus, the point C' can be easily determined graph-
ically from the curve Q(~) in Fig. 2(c) by drawing
from the origin a straight line OC' tangent to the
curve Q(&u). The point S' can also be determined
graphically. We note that under the transforma-
tion (Q, &v) - (I, ~ &u') the area is invariant:

FIG. 2. Schematic drawings of (a) E vs Q, (b) I" vs ~,
(c) Q vs ~, and (d) ~ vs'. [See Eqs. (2.18), (2.23), and
(2.25),]

C. In Fig. 2(a) the solid curve is E(Q) for the
soliton solution and the dashed line E = Qm denotes
the plane-wave solution. Both are only schematic
drawings.

In Fig. 2(b}, we plot the corresponding function
E vs &u, where E is defined by (2.18). One sees
that the critical point C is simply the point of in-
flexion:

(2.52)

The segment CS in Fig. 2(a) covers the region
in which the lowest soliton mass is & Qm. In this
section we want to prove that throughout the en-
tire region CS the soliton solution i.s classically
stable, though quantum mechanically only meta-
stable.

A. Second-order variation

Let us keep Q fixed and, for clarity, consider
first only an arbitrary real variation 5A. and DB

from a solution A and B of Eqs. (1.9) and (1.10).
(The case of a complex 5B will be discussed in
Sec. IV. ) The first-order variation in E is zero,
in accordance with (2.16). The second-order vari-
ation is given by

—=I at C' .dQ
d~ (2.53)

The charge Q of the same soliton solution is
plotted vs &u in Fig. 2(c). The critical point C is
the minimum of Q(e). In the same figure, the
plane-wave solution is represented by the straight
line cu =m. At the other critical point S, the soli-
ton mass E(Q) =pm. Since dE =rude, the critical
point S may be determined graphically by the
familiar rule of equal area: the area of the wedge
DI,~ =the area between the dashed horizontal line
SD and the solid curve SCD in Fig. 2(c).

In Fig. 2(d), we plot the function G vs I for the
same soliton solution, where G and I are respec-
tively defined by (2.23) and (2.25}. The dashed
straight line G = ~ m'I denotes the plane-wave
solution. There exist now two new critical points
S' and O'. At S', G of the soliton solution = &m'I.
At C', the curve G(I) develops a spike; since
dG/dI=-, ' aP, this implies (dI/dv)c =0. By using
(2.31), Q =I&a, we find

(O'E) o = —,'(p/g') i )Hgd'P

+mu. v'(qg') '
~

gbd'p)

where |It is the transpose of P,

(W.'}, (0)
q5B) (B)

(3.1)

(3.2)

(~2B2+ k(3&2 - 1) 2~'AB l
2a'AB ~'A' —v'J

(3.3)

In deriving (3.1), we start from (1.14) in which v

is regarded as a functional of B through (1.12).
Both 5A and 5B are completely arbitrary; the con-
straint Q being fixed simply induces the appropriate
variation in v, which in turn gives rise to both the
—v' term in (3.3) and the second term on the right-
hand side of (3.1).

Similarly, we may keep cu fixed and evaluate the



R. FRIEDBERG, T. D. LEE, AND A. SIRLIN

variation in F. According to (2.21), the first-or-
der variation (5E) is 0. The second-order vari-
ation can be easily seen to be

(3.4)

(3.5)

in which because of the constraint I being fixed,
5B satisfies

r
[2B5B+(5B) ]d p = 0. (3.6)

To derive (3.5), we may first consider an arbi-
trary variation 6A and 5B. By using (2.23)-(2.28),
we find that, to second-order in 5A and 5B, the
change AG—= G(A+5A, B+5B)—G(A, B) is given by

hG =—
2 ~

Iv B5B+~ [gHP+ v'(5B)']}d'p, (3.'|)

which leads to (3.5) because of (3.6).

in which 5A. and 5B are again comPletely arbitrary.
We may also keep I fixed and evaluate the vari-

ation in G. The first-order variation(5G)z is 0, on
account of (2.26). As we shall see, the second-or-
der variation is

eigenvalue of I must be lower thanthe lowest
p-state eigenvalue, Theorem 1 is proved.

In Sec. IIE, we have shown that the soliton so-
lution exists only if I &I«. At a given I, the
soliton solution with the lowest G value lies on the
lower branch C'CS of the curve G(I) in Fig. 2(d).

Theo~em 2. At any given I&I«, the H, evalu-
ated by using the soliton solution with the lowest
G value, has only one eigenvalue less than 0.

Proof. We assume that the total volume 0 of the
system is sufficiently large. Let us consider a
point P on the branch O'CS in Fig. 2(d). For I&I~, ,
P is the absolute minimum of the functional
G(A, , B). The corresponding H must have at most
only one eigenvalue &0. Otherwise, if there are
more than one, say both X, and A. , are & 0, we may
choose for g a suitable linear combination of the
two corresponding eigenfunctions. By using (3.2),
(3.5), and (3.6), we can easily satisfy the con-
straint that I be a constant, but we can make
(O'G), &0. This leads to a contradiction. The theo-
rem is then established for I&I~,.

The difficulty in proving the theorem is in the
region I«~I ~I~, , when P is no longer the abso-
lute minimum of the functional G(A, B). To bypass
this difficulty, let us consider a related problem.

We introduce two constraints, keeping both

B. Eigenvalue equation I, = Bd p and I2= B d p fixed, (3.11)

The stability problem is closely connected with
the eigenvalue equation where, because of (2.25), I, is related to I by

HP; =X(g), (3.8) (3.12)

Hgq =0,
where

(3.9)

(3.10)

and k= 1, or 2, or 3. Since the lowest s-state

where g,. satisfies the usual boundary conditions
of a Schrodinger wave function. There are a few
simple but quite general properties of this eigen-
value equation. For clarity, these properties are
stated in the form of mathematical theorems.
Throughout our discussions, we assume that A(p)
and B(p) satisfy (1.9) and (1.10), and they are both
radially symmetric.

Theo~em 4. II has at least one negative eigen-
value.

Proof, Because of translational invariance,
A(p+7) and B(p +a) must a.iso satisfy (1.9) a.nd

(1.10). For an infinitesimal e, their deviations
from the original soliton solution A(p) and B(p) are
e VA(p) and e VB(p). By using these deviations,
we can construct three p-state eigenfunctions of II,
all with zero eigenvalues; i.e. ,

Let G;„(I„I,) be the minimum value of the func-
tional G(A, B) under the two constraints (3.11). We
then plot G;„(I„I,) against I, at a fixed I,.

As before, let P be a point on the lower branch
O'CS in Fig. 2(d). For I, & p.g'I~, , P must lie on
the curve G;„(I„I,) vs I, and be its absolute mini-
mum, since P is the absolute minimum of G under
only one constraint, keeping only I, fixed. By
using the results derived in Sec. IIA, one can show
that on the same curve there is another local mini-
mum, called p, representing the plane-wave so-
lution. The point P is located at an I, -O(Q' ')
while P is at I, - (OQ')- (O1). Thus, these two
points, p and P, are always weQ separated in I,.
When I, = pg Iz, , these two points have the same
G = —,'m'I~, ; both are the absolute minima of
G„,„(I„I,) vs I,. For I, & pg Iz, , p becomes the ab-
solute minimum, while P is a local minimum. As
we continuously decrease I„Pwill remain a local
minimum of the curve G;„(I„I,) vs I„until at
some critical value, P becomes a point of inflex-
ion. Thus as we approach this critical value, P
must approach a local maximum, say P', of the
curve G;„(I„I,) vs I,. By definition, P' satisfies
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the stationary condition (2.26), (6G), = 0; therefore,
P' also lies on the soliton curve G(I) in Fig. 2(d).
A glance at the figure tells us that P -P' only at
the critical point C'. Thus, throughout the seg-
ment C'$', the soliton solution is a local minimum
of the functional G(A, B) under one constraint,
keeping only I, fixed. The same argument used in
the beginning of this proof can now be extended to
the region I~i &I&I~,. Theorem 2 is then estab-
lished.

Remarks. The introduction of an additional con-
straint on I, separates in a clear way the plane-
wave solution from the soliton solution; thereby it
enables us to distinguish these two types of solu-
tions even when they cross in Fig. 2(d). If one
wishes, one may introduce, in place of the con-
straint on I„aconstraint on I„=fB"d'p, where
n&2. The plane-wave solution has an I„-0as
0-~, while that of the soliton solution remains
nonzero.

a(p) =g a; 0&(p)

and (3.16)

b(P) =gb& 4, (p)

From (3.15), it follows that

(3.17)

thus,

(3.18)

(3.19}

which together with (3.17) leads to

5) =0 if A.; =0.

We note that faHad~p =Z, a&'X„ furthermore,
because of (3.2), (3.14), and (3.15) the same inte-
gral is also equal to 2v f abd'p=2v fB(sB/s v)d'p.
By using (1.12), we find

C. Classical stability

Since Q is a constant of motion but I is not, the
classical stability condition for the physical soliton
solution is that its E should be a local minimum at
a fixed Q.

Theorem 8. The necessary and sufficient con-
ditions for (O'E)c~ 0 under arbitrary variations 6A
and 5B a,re (i) H has only one negative eigenvalue
and (ii)

I
where the sum X:; extends over all A., oo 0.

Next, we expand an arbitrary (}):

|-gc, y, .

(3.20)

(3.21)

(3.22)

Because of (3.1}and (3.18), the corresponding
(O'E)c can be written as

1 dQ

Q de (3.13) where

where co is, by choice, positive.
Proof. Condition (i) is necessary because other-

wise, if there are two eigenfunctions of H that
have negative eigenvalues, by a suitable linear
combination of these two eigenfunctions one can
easily construct a (I) orthogonal to b; because of
(3.1), the corresponding (O'E)c is & 0.

To understand condition (ii), we first define

M;; = A.)5)) + 4 v'(Qg') '
b;b, . (3.23)

I
My~ fCf Z Cg (3.24)

which implies that z is the root of

The eigenvalue z of the matrix (M, &) can be readily
determined by examining the equation

o (A(p)l
())' (3.14)

By using (3.20), we find

(3.25)

Ha =2vb, (3.15)

where b is given by (3.2). The eigenfunctions of
H can be normalized to form a complete ortho-
normal set of real functions tP&]. We may expand

in which A(p) and B (p), being solutions of (1.9) and
(1.10), are rega, rded as functions of the parameter
v that appears in (1.10). By differentiating (1.9)
and (1.10), we find

o(o) = —(
—")„. (3.26)

In order for (52E)c to be always& 0, none of the
roots of (3.25) can be negative.

Now, assume that there is only one negative
eigenvalue of H, say only X, is&0. From (3.25),
one sees that (i(g) is negative when z & A.„ it- —~
as z Xy, then jumps to +~ as z A. 1 + Its deriv-
ative d$/da is always negative. Consequently, if
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g(0) is &0, g(z) =0 has no negative root. There-
fore, conditions (i) and (ii) are sufficient to insure
that (O'E)o ~ 0.

Froxn Theorem 1, II is known to have at least
one negative eigenvalue. Hence, by examining the
plot 8(z) vs z, one can easily verify that condition
(ii) is also necessary. This completes the proof
of Theorem 3.

As shown in Fig. 2(a), the soliton solution exists
only if Q ~ Qc.

Theorem 4. At any given Q ~ Qo the lowest-ener-
gy soliton solution is always classically stable.

Proof. In Fig. 2(d), the point C lies to the right
of the point C'. By using Theorem 2, one sees
that in Fig. 2(a), along the entire lower branch
CS'S II has only one negative eigenvalue. Since
Q '(dQ/d+) is negative, it follows from Theorem 3
that the soliton solutions on this entire lower
branch CS'S are all classically stable. Theorem 4
is then proved.

We note that the soliton solutions along the upper
branch CC' ~ in Fig. 2(a) are all classically un-
stable because Q '(dQ jd~) is positive.

In Sec. IID, it was shown that at a given Q there
can be other excited soliton solutions which have
radial nodes. As we shall see, those solutions
are also classically unstable.

Theorem 5. If in the spherically symmetric
soliton solution the function B has one or more
nodes, then (O'E)o can be negative.

aloof. I,et us consider E(I. (1.10), which is lin-
ear inB. The assumption that B has nodes im-
plies that there exists a B with no node, or fewer
nodes than 8, which satisf ies

(j) is a complex field; the variation 5B can be com-
plex. The general case of a complex 68 will be
examined in Sec. IV. As we shall prove, the clas-
sical stability theorem (Theorem 4 given above)
remains valid even when 6B is complex. [See
(4.78) and the remarks made at the end of Sec. IV
D.]

IV. QUANTIZATION

To derive the quantum soliton solution, we shall
follow the general canonical method developed by
Christ and Lee. ' For clarity of presentation, in
this section the quantization procedure is carried
out only for the center-of-mass system in which
the total momentum P is zero. (The details for a
moving system, P0, are discussed in Appendix
B.)

A. Collective coordinates

We introduce four collective coordinates, the
three components R„(f) of the center-of-mass
position vector (k = 1, 2, 3) and an over-all phase
variable g (t) for the charged field (j)(r, t) Follo.w-
ing Ref. 5, the quantum expansion of the operators
X(r, t), (I)(r, t) and its Hermitian conjugate (t) t(r, t)
is given by

X(r, t) = A(0) + g—qz(t)o. ~P),
N=5

p.
oo )

y(, t) =, -B(p) gq. (t)t~.(p) s-""',
(4 1)

(g' —x'A')8 + v'B =0, (3.27)

with p'& v'. The functionB is, of course, ortho-
gonal to B. Thus by choosing

pp oo

e'(r, t) =~2 -B(p)+ q (t)PIP) e'"",
=s

we find, through (3.1) and (3.3),

(3.28)
where the q„'s are the (Hermitian) coordinates
for the vibrational modes, p is, as before, the
mass of the neutral X meson,

(~'&), l(v/~ )f(~ -=~*)&'d''&«,' (3.29)

which establishes the theorem.
We note that if B has n nodes, then there are at

least n such linearly independent B functions.
(There may be more, since B does not have to be
spherically symmetric. ) Thus, the higher the
number of nodes a soliton solution contains, the
more unstable it is.

Remarks. The classical solutions A and B are
real functions. So far, for clarity of presentation,
their variations 5A. and 5B are also assumed to be
real. Since in a classical theory, X is a real field,
the variation K4 must be real. On the other hand,

't) -=fr —5(t)]p, (4.2)

o, ))((p) and P~(p) are c-number functions of p, and
A(p) and BP) are the same previously derived
radically symmetric classical solutions of (1.9)
and (1.10); n„, A, and B are real functions of p,
but P„ is complex. We note that if we could set
q„=0, H=O, and f= t, (dthen (4.1) would give the
classical soliton solution. The subscript N varies
from 5 to ~, which serves as a reminder that the
four collective coordinates R,(t), R,(t), R,(t), and
f(t) are excluded from the vibrational coordinates.

In order to separate the vibrational modes from
the motion of the collective coordinates, we im-
pose the constraints
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[(~~)~»+k(»)(e»+C») jd'p =o (4.3)

and

(4.4)

for all N= 5, 6, . . . . Thesetwo conditions, (4.3) and
(4.4), are introduced to exclude, respectively, the
translational mode in space and that in the phase
of P from the vibrational modes. [Mathematically,
as we shall see in (4.14) and (4.15), these two con-
ditions insure that the coefficients of A~q„and
gq» in the Lagrangian are O(go), not 0(g ').j In
addition, the n»'s and the P»'s satisfy the ortho-
normality conditions

(4.5)

and its time derivative g. We write

I. =-,' q ORq —V(q),

where

V= —. V, X + V„y' V„+ X

(4.6)

(4.7)

where 5»»i is the usual Kronecker symbol. [See
(4.35) and (4.56) for an explicit choice of these
c -number functions. j

By using (1.1) and (4.1), the Lagrangian 1.
= fSd'r can be readily expressed in terms of the
coordinate vector

+ z'(x —x,,') jd'~ (4.8}

and V„denotes the gradient vrith respect to r
(while V without any subscript always denotes the
gradient with respect to p). The mass matrix
OR(q) is ~&&~. We find

N

where

m= l (u/g )fdu[(v'a]'+(va)*]

Throughout the paper, the subscripts k (or k') are treated differently from N (or N'):

k (or 0') = 1, 2, 3,

while

N (or¹)=5, 6, . . . .

The other matrix elements of OR(q) are

OR,.=I++(~'g) ' d'p(P +i'*)&q +pi-' d'p(p p,*.)q,q,.,
Ni N

where I is given by (2.25),

~4~=%~4=a~(p, g) d p (P» —P»)q»+ —i ~ p. d & P» P»~ —P» P». q»q
ea, 1.~, p, a, , e

&PI NgN - PA

8 1 8 g g 8%.,=~,.=-Z~ ' d'~ ~ ~ ~ + —8 PN +4 0 ) ~ ~,
Bp 2 ~p~ ~p

(4.9)

(4.10)

(4.11)

(4.12)

(4.13}

(4.14)

and

1 . ~4»»4 M i p(t»P»' P»P»')q»' s2
(4.15)
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S. Canonical formalism

The conjugate momentum operators of R, f, and

q„{%=5,6, . . . ) are respectively

8P=-iV Q= i-—Ry

(4.17)

8

Since the variation R-R+&R is a space-transla-
tion, P is the total momentum operator. Similar-
ly, since & - ( +&) gives an over-all shift in the
phase of p, Q is the total charge operator. Be-
cause P is a cyclic variable with a period =2m,
the eigenvalues of its conjugate momentum Q are
all integers: 0, +1, +2, . . . . By following the
standard canonical procedure, we find from (4.7}

Since J'(q), 3R(q), and V(q) are all independent
of the collective coordinates 8 and &, we have, as
expected,

[P,K]=0 and [Q, K]=0. (4.24)

For simplicity, let us assume the center-of-mass
system; i.e.,

(4.a5)

C. Power-series expansion

So far, the state vector
l & can be an arbitrary

eigenstate of Q. However, as we shall see, for
g sufficiently small, in order that the solution of
the Schrodinger equation (4.20) have a power-
series expansion in g, we must have, to O(g '),
Q l ) =I&a

l ), where Itu is the charge of the classical
soliton solution.

p =ggq, (4.18)
Let us consider the formal expansion of in

powers of q„and P„(%=5,6, . . . ):
where K=Kg+K +++K~+' '' (4.26)

Pi

P2

P3

(4.19)

where X, is independent of q„and P„, K, depends
on q„and p~ linearly, &, quadratically, +, cubic-
ally, etc. In explicit form, 3'0 and &, are given by

K, = M + (2 I ) '[Q'+ (I~)'] (4.2'I}

and, neglecting the O(g) term due to the commuta-
tor between P~ and q„,

K =(ap'Z) '[~' —(Q/I)'] gq d'p(PE+PE)B,
N=s

The Schr5dinger equation for the state vector
l &

can be written as

Kl & =El &. (4.20)

In the representation where the q's are diagonal,
the Hamiltonian operator K is

K=(2J) 'P3R 'JP +V(q), (4.21)

(8')„=SR„—Q 3R,„II„„
N=s

(4.22)

where the subscript a, or 6, varies from I to 4:

where P is the differential operator defined by
(4.1V) and (4.19), 3R '(q) is the inverse matrix of
3R(q), and J(q) is the "Jacobian" given by

&(q) = [det5R (q)] 'I' .
As shown in Ref. 5, although SR(q) is (~ x ~), J(q)
can be evaluated in terms of a 4x4 matrix g(q}
whose square is given by

(4.26)

where, as before, Q = —Z (8/Bf), I and M are given
by (2.25) and (4.10), respectively, and cu=vp, is
the parameter that enters in (1.9) and (1.10) of
which A(p) and B(p) are the solutions. In deriving
the above expressions, we have set P =0 and used
the virial expression (2.32).

We note that &, is proportional to g ', and &, is
proportional to g '. For g sufficiently small, in
order that , does give the correct energy to
O(g '), we must have K, l & equal to 0 {or at least
to a higher order in g}. Otherwise, by combining
K, and K„we would find q„-O(g '}and conse-
quently an additional O(g ') term in energy from
K, +K, + . Thus, we require

Ql &=»I &, (4.29)

and therefore K, l & =0. Since the eigenvalues of Q
are integers, only those classical solutions with
I~ =integers can be used in the quantum solutions.

We may now expand the energy E in. a power
series in g':

E=EO+E2+E~+' ' ',
J(q) =det8(q). (4.23) where Z, -O(g '), E, - O(g'E )0- O(g'), etc. By
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using (4.2'7) and (4.29) we find

Eo =M+ IuP, (4.31)

which is identical to the classical expression for
the soliton mass.

To derive the lowest-order radiative correction,
we need to diagonalize &,. The details of the
diagonalization into its normal modes and the re-
lated characteristic frequencies will be given in
Sec. IVD. In terms of these characteristic fre-
quencies 0„, +, is

~R 2l 4RHRIR p+ 2 8 4 p
t 3 2+ t 3

p, g I
(4.37)

2~2 P 2

i'1=»p ' t 4g&y4yd'p+ ~ '. 4g(vd'p

(4.38}

where, as before, the dagger denotes the Hermi-
tian conjugate, b is given by (3.2),

X, = Q (-,
' +X„)O„—E„„, (4.32} a~ =a, (4.s9)

0
@vac =~~~ny (4.ss)

where E„„is the vacuum energy (without the soli-
ton), and X„ is the occupation number of the Nth
normal mode. The vacuum energy is, as usual,

which is given by (3.3},
QQ + I(2+2 p2I (4.40)

and II« is given by (4.15). In terms of gs and gi,
the constraints (4.3}and (4.4) become, respec-
tively,

where the sum n extends over all frequencies Qo

of the plane-wave solutions of both g and Q fields.
By setting the occupation number X~ =0 for all N,
we find that the lowest-order quantum correction
to the soliton mass is O(g'); apart from an addi-
tive counterterm due to the usual renormalization
of the zeroth-order energy term, it is given by

(4.34)

where

and

d3p 0

s
8P» (B)

'

(4.41)

(4.42)

(4.43)

Because the classical solutions A(p) and B(p) are
regular everywhere, it is expected that the com-
plete O(go) correction to the soliton mass is finite.

It can be shown that in order to evaluate E„one
needs only the bound-state energy and the 8 matrix
of the vibrational modes, which will be studied in
Sec. IVD. However, a complete discussion lies
outside the scope of this paper.

To diagonalize „we shall proceed in several
steps:

and

HR~RI si ~Rl (4.44)

1. Normal modes ofKz and KI

Let gs, and g» be the (c-number) eigenstates of

8~ and H

D. Normal modes
Hr6) =~sJ ~zs. (4.45)

To find the normal modes, we need the explicit
form of , . It is convenient to define

(4.s5)

&s -=-'» Z&~(&~ —p~).

Without any loss of generality, we may choose
all the g„,'s and (,~'s to be real.

Throughout this section, we shall consider only
those classical solutions A and 8 that lie on the
branch CS'S in Fig. 2(a) (i.e., they are the lowest-
energy classical soliton solutions at any given
charge Q). We recall that Hs =H. As shown in

(3.9), Hs has three p-state eigenfunctions p„g„
and g„all with zero eigenvalue:

By using the various expressions derived above
and after setting P =0 and Q = I&u, we find HR~» (4.46)

+» = 2 2 (&» - ~sg«)'+ i's+I's

with

(4.35)
where g» is given by (4.42). Furthermore, as
proved in Theorem 2 of Sec. III B, H„has one and
only one negative eigenvalue. By combining (1.10)
with (4.40}, we see that H~ has one zero s-state
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eigenvalue:

II,B =0. (4.47)
l9+( ) I( 2 )2P (4.52)

Since 8 has no node, HI does not have any negative
eigenvalue.

Let us define two sets of functions:

{0 ) and i4, ), (4.48)

~- d3p= p.3&-'

and (4.49)

&r~'4~'" p=& a'.»»

where the former contains all the eigenstates of
If~ ex«pt the three g»'s, and the latter contains
all the eigenstates of H~ except B. If we expand
the operators (~ and $1 in terms of, respectively,
the functions in (g„,j and (gz&}, then the constraints
(4.41}and (4.43}are clearly satisfied. The ortho-
normality relation (4.5} requires that

where 5, =f/is, bd'p and the sum Q f extends over
all A,„,e0. [We note that g„& and As& in (4.44) are
the same as P, and X, in (3.21)-(3.26).j Since the
classical solutions A and 8 are assumed to lie on
the branch CS'S in Fig. 2(a), Theorem 3 states
that none of the A~, 's is negative.

Almost identical considerations can be applied
to (4.51). Except for p states, (4.51) reduces to
(4.45), and therefore there is one zero s-state
eigenvalue of (4.51) whose eigenstate is B, in ac-
cordance with (4.47). For p states, both 4'z, and

Ai,. can be obtained from those of BI in a similar
way as in the previous case. As mentioned before,
none of the eigenvalues of Bl is negative; the
same holds for (4.51) [as can be seen directly from
(4.38) by noting that the second term on its right-
hand side is positive]. Thus, we establish for all
s and/

A~) & 0 and A~) & 0. (4.53)

2. Normalmodes of V~ and Vl

Next, we consider the eigenvalue equations gen-
erated by

Similar to (4.52), all nonzero eigenvalues of (4.51)
are the roots of

(4.54)

By labeling the respective e-number eigenfunc-
tions C~, and C~&, and their associated eigen-
values Ag, and Alp, we have

where b& =f (VB)gz, dp and the .sum p~z extends
over all Xr~ g0

Just as in (4.48), we construct two sets of func-
tions

4QP f

~3g 2I (4.50) f@~,) and {e„), (4.55)

4'IX~4„+, — d'p(TB) &„VB= A~)41~ .gg'M

where the former contains all the eigenstates of
(4.50) except the three g» 's, and the latter contains
all the eigenstates of (4.51) except B. The expan-
sion of the operators

(4.51) 4 = g &z Ps& and 4z
= g &rg +a (4.56)

Without any loss of generality, we may again
choose these eigenfunctions C~,. and 41,. to be real.

Because 5 is spherically symmetric, excePt for
the s-state solutions, (4.50) reduces to (4.44), and
therefore there are three zero p-state eigenvalues
of (4.50), whose eigenstates are the same P» given
by (4.42). For the s state, both the eigenfunction
%~,. and the eigenvalue A~, can be readily obtained
from those of H„, as shown explicitly in Sec. III C.
By following the proof of Theorem 3, we find that
for every zero eigenvalue A.~, =0 of Il~, there is a
zero eigenvalue A„, =0 of (4.50). All nonzero
eigenvalues of (4.50) are the roots of (3.25), which
may be written as

in terms of these two sets of functions clearly
satisfies the constraints (4.41) and (4.43), where
Pz and Pz are defined by (4.35). In order to retain
the orthonormal relation (4.5), we require

p = p.

(4.57)

cf p=+3 = 3

Equations (4.37) and (4.38) can then be written in
terms of their respective normal modes:
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and

1 2
VB & ABj qRj

(4.58)

[If in (4.6} and (4.19), one deletes the first four
components of q and p, then these bvo column
vectors reduce respectively to the above g and
5'.] 3C, can then be written

l 2
Vq 2 A» qq~ 2 2g (4.64)

where A~ j
-=p, 'A„j, Al~ = p, 'A», and the sums i and

j extend respectively over the two sets of functions
in (4.55). (The order in i, or j, is arbitrary. )
The same summation convention with respect to
the indices i and j will be adopted throughout Sec.
IVD 3.

3. Normal modes of ~

where

and

A~+ I'1 0

(4.65)

(4.66)

We now turn to the problem of finding the normal
modes of K. In the expression (4.36) for R~, the
subscript N now goes over all the normal modes of
V~ and Vz. X=Ai and N=Ij. It is convenient to
write the respective p„as p„, or p„. We define

To diagonalize X„we consider transformations
of the form

(4.6V)

where in order to retain the Hermiticity of the
new coordinates q„'„q~& and their conjugate mo-
menta P„'„Pl,, we assume T to be real, and in
order to preserve the canoni. cal commutation
relations between these coordinates and their
conjugate momenta, we require

(4.59)

Tp, T=p„
where

(4.68)

(4.69)

The transformation matrix T can be most easily
derived by considering the Heisenberg equation
of motion

On account of (4.58} and (4.59), (4.36}becomes

irj=[q, x,]

and examining its normal mode solution

(4.70)

X, =-,'(p„p, +p, p, )+-,'q„(X„+11')q„
+ ~qr (A~+ I"I')q~+ pal'q~ —pI I'q„, (4.60)

/0)
r„= (raid &fd P-k„r''

(+gg/
(4.61)

where A„and A, are diagonal matrices whose di-
agonal matrix elements are A~ and A», respec-
tively, and I' =(I',~) is a real ~ x~ matrix given by

g(i) p( e fQNt (4.V1)

&~ -A~ -2iQ~F
~

~

~Car2i QNl" u -A (4.72)

Thus, 0& is the root of the quadratic equation

By using the various expressions given above,
we find that the coordinate vector g -=gN of the
normal mode (4.71) satisfies

We may cast the above expression (4.60) into a
more compact form by introducing

—c, +c~QN+0„'=0,

where

(4.73)

where

and

(4.62)

(4.63)

cl ~N 0 P ZN (ZNCN)s

0 -2i1
2 N 2 'Ir 0 'ZN (~NZN)'

More explicitly,

(4.74)

(4.V5)
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0„=—,'[ —c, ~ (c,'+ 4c,)' '] .
Since

A~] = p. A~] -0 and AI, = p, AI, -0,

(4.76)

(4.77)

c, is real and positive. Because I' is a real ma-
trix, c, is real. Hence, the frequencies

0„'s are all real. (4.78)

The transformation matrix T can be obtained
explicitly in terms of these normal-mode solu-
tions in a standard way. Through T, X, takes
on the diagonal form (4.32), which gives the
radiative correction (4.34} to the soliton mass.
From (4.78}, it also follows that the classical
soliton solution is stable along the entire branch
CS'S in Fig. 2(a). (Therefore, Theorem 4 holds
even if the variation 5B can be complex. ) Quan-
tum mechanically, the soliton is stable only if
Q& Q~. For Qz & Q& Qc, the quantum soliton is
metastable; however, since the barrier penetra-
tion factor depends exponentially on (-g '), its
lifetime can be quite long if g' is «1.

if y'(7')&0, y, must be increased. In this way we
are led to the correct initial value yo A similar
strategy was used to find the initial value y, of the
first excited solution, with one radial node. The
corresponding solutions are depicted in Figs.
1(b) and 1(c).

Numerical integrations of the differential equa-
tion (2.37) were carried out with a fourth-order
Runge-Kutta method at intervals of 10 '. As a
check, the validity of the equalities 3K+I,=M, and

%+M, =2M, [see Eqs. (2.46) and (2.48)] was veri-
fied with a relative error «10 ' for the ground-
state solution and & —=10 ' for the first excited
solution.

For the two-component system of Eqs. (],.9)
and (1.10) we restrict ourselves to studying the
lowest-energy soliton solution. Thus we search
for spherically symmetric solutions of Eqs. (1.9)
and (1.10) with no radial nodes, subject to the
boundary conditions:

dA—= —=0 at p=0
dp dp

V. NUMERICAL CALCULATION

and

A. =1, B=O at p=.

(5.1)

In this section we discuss briefly our numerical
study of the soliton solution of Eqs. (1.9) and

(1.10). The aim of this analysis is two fold: (i)
to confirm some of the general properties dis-
cussed on theoretical grounds in Sec. II and (ii)
to give a more precise determination of the cri-
tical points Q~ and Qc.

In order to describe the strategy of the numeri-
cal calculation, it is convenient to discuss first
the solutions of Eqs. (2.37) and (2.41) which, in

conjunction with Eq. (2.35}, govern the behavior
of the soliton solution in the limit v-K. For the
ground state, we search for a solution of Eqs.
(2.37) and (2.41) with no radial nodes. The simple
mechanical analog discussed after Eq. (2.39) sug-
gests then the following approach: %e select a
tentative positive initial value yo at v'= 0 and in-
tegrate numerically the differential equation up
to the lowest value r at which either y(v}&0 or
its derivative y'(7)&0. When this occurs the so-
lution is rejected, a new initial value is selected,
and the integration repeated. The mechanical
analog indicates the direction in which yo must
be changed: If y(r)&0, the initial "potential en-
ergy" was too large and y, must be decreased;

The former is necessary so that the terms
(2/p)(dA. /dp) and (2/p)(dB/dp) do not become
singular at p =0, and the latter is necessary be-
cause of the requirement that b and B' be inte-
grable over the infinite volume. The differential
equations tell. us that A. and B approach their
asymptotic limits at infinity exponentially, modulo
inverse powers of p. From the symmetry of the
problem, it is clear that we can restrict our con-
siderations to the quadrant A. ~0, 8 ~0.

It is convenient to introduce the quantities

Z= —— hp dp
8xm 2K ~0

and (5.2)

q 2 ]0!!

8w 2~, B p2dp,

which can be calculated directly once the appropri-
ate solutions of the differential equations are
found. In terms of E and Q the condition for the
critical point S becomes B~ = Q~.

From Eqs. (1.9) and (1.10) we readily derive
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where U is defined in (2.33). As 2(dA/dp)'
+ 2(dB/dp )'+U is a monotonically decreasing
function of p and vanishes at p = ~, it follows that
U&0 at p =0. Thus we see that the initial. point
must lie in the region

36-

3.5-
A(0) & —,

1 -A2(0)
B(0) 2 [ v2 a 2A2(0)]1/2

(5.4)

The strategy we follow for the numerical in-
tegration is a generalization of the method used
for the one-dimensional problem of Eqs. (2.37)
and (2.41): for a given value of a and v&a, we
select a tentative initial value [A(0), B(0)] satis-
fying Eq. (5.4) and integrate numerically the dif-
ferential equations up to the lowest value p at
which any of the following possibilities occurs:
(i) A(p) &1, (ii) B{p )&0, (iii) the derivative
A'(p)&0, or (iv) B'(p)&0. When any of these four
possibilities occurs, the solution is rejected, a
new initial value is selected, and the integration
repeated. The sets of initial values leading to
the four possibil. ities described above define four
regions in the strip (5.4) which we denote by 1,
II, III, and IV, respectively. The four regions
intersect at a point which defines the correct
initial value for the ground-state solutions. The
numerical integrations of Eqs. (1.9) and (1.10)
were carried out with a fourth-order Runge-
Kutta method at intervals of 10 '. Using the so-
lutions A(p), B(p ) corresponding to the "correct
initial value, " E and Q are calculated on the basis
of Eq. (5.2). Changing v at a fixed e, we can ob-
tain the various curves of interest: E vs Q,
Q vs v, etc. Among other checks, the validity
of the virial theorem of Eq. (2.32) was verified
with relative errors &-10 ' to 10 4 for the so-
lutions corresponding to the majority of the v

values in the cases a=1 and 5. Figures 3(a) and
3(b) give the E vs Q and Q vs v curves, for a= 1,
while Figs. 4(a) and 4(b) illustrate the solutions A
and B for a particular case, v=1 and v=0.96. The
results depicted in Figs. 3(a) and 3(b) confirm the
qualitative picture that emerges from the theoret-
ical considerations of Sec. II. From our numerical
results we can also determine the critical points
Qs and Qe. Thus fol' K = 1 we obtain Qs = 3.47
and pe=3. 03. For a=5, we find Qs=0. 0213 and
pe=0. 0198. Finally, in the case of ~= —,', which is
calculated with less accuracy, we obtain Qs = 39
a.nd Qc=32.

UI. GENERALIZATION

3.2-

3I
C

3.0 '
3.0 3,2

(o)

Q

3.5

3.6-

Q34-

3.2-

3.0 ' I I

0.85 0.87 0.89 0.9I
(b)

0.93 0.95 0.97 0.99

FIG. 3. E vs Q and Q vs v curves for w =m/p = 1 in the
neighborhood of the critical points, where E = (87tm) ~

Eg, Q = {82) Qg, and v =co/)1. The dashed line in (a)
is E =Q, or E =pm.

discussions, except for some of the numerical.
results, very little actually depends on that spe-
cific Lagrangian. In this section, we will ex-
amine a particular class of generalization. We
assume the Lagrangian to be of the general form

-f'x'@ A-u(x),Bp 9$ 1 Bx

&XI' &X' 2 BX~

where u(X) is an arbitrary fourth-order poly-
nomial of g, so that the theory remains renormal. —

izable. The function u{X) is assumed to have an
absolute minimum at g =g„.„ its vacuum expecta-
tion value. For convenience, we choose u(x, .„)=0,
and therefore

So far, for clarity of presentation, we assume
the Lagrangian to be given by (1.1). As may have
already been obvious, throughout our previous

u(x) -u(x...) = o.

The mass of the charged Q meson is

~~f xvacs

(5 2)

(6.3)
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I.O "

0.9

As before, v—= co/p. and ~=m/p. .
To show the existence of the soliton, we may

assume the same trial function (2.8). This leads
to an upper bound for the lowest energy E,„at
a given Q. For Q large,

0.8 E,.„&—+ —u(0)R'+ O(R'g'/g'),vQ 43'
(6.8)

0.7
where g=g/X„„, as in (1.7). We separate our
discussion into two cases:

l. u(0) t 0. Taking the minimum of (6.8), which
occurs at R =[—,"Q/u(0}]'~', we find for Q sufficient-
ly large

E,„&-,'vv 2[u(0)]'~ Q'~'+O(R'g'/g'). (6.9)

0.5

2. u(0) =0. In this case, because u is a fourth-
order polynomial,

s(x) = 2 g'x'(x —x...)'. (6.10)

04

0.5

[To avoid ambiguity in the definition of the vacu-
um, the factor X2(X —X„„)'may be replaced by
(X'+ e)(X- X„„)', where @=0+.] We assume the
trial. function to be of the form

0.2
[ 1 +s - ll (r -s ) ]

-1 (6.11)

but B remains given by (2.8). This leads to, in
place of (6.8),

O. I

E,„&vQR '+ —,'vR'p, 'g ~+O(Rpm/g2). (6.12)

0.0

(b)

Taking the minimum of this upper bound, which
occurs at R =—(~ g2Q)'~~/p. , we find for Q sufficient-
ly large

FIG. 4. Ground-state solutions of Eqs. (1.9) and (1.10'
for K=1 and v=0.96. As canbe seen from Fig. 3(b),
this value of & lies very close to the critical point C .

and (6.5}

which will be assumed to be nonzero; consequent-
ly,

(6.4)

Ne consider first the classical theory. As in
(1.5) and (1.6), we define

--,'m(6Q/g)' 'p, +O(Rp. '/g'). (6.13)

In either case, (6.9) or (6.13), there exists a
finite critical. value Q~: For Q& Qz, R,„&Qm.
Thus, absolutely stable soliton solutions must
exist.

Except for the replacement of -', (A'-1)' by
w(A) in (2.24) and (2.33), the entire Sec. II 0 on
the variational principles and virial theorem is
applicable to the general case.

To study the soliton solution when + is near
m, we make the same substitution (2.35) for A and
B. As $ =—(v —v )'~'-0, A-l, and therefore

where p = p. r, and p. is the mass of the neutral
g meson. The charge and the energy of the sys-
tem remain given respectively by (1.12) and (1.13),
except that 8 is now, instead of (1.14),

b = 2(&A)'+ 2(VB)'+ —,'(v'+ x'A')B'+w(A),

(6.6)

where

(6.7)

zu(A)- —
2p, '(I -A)', (6.14)

which is independent of the detailed form of ce(A).
The discussions given in Sec. IID can be applied
to the general Lagrangian (6.1) without any change.
Therefore, by following the discussions given
in Sec. IIE, one sees that in general there exists
another critical point Qc&Q+. For Qc&Q&Qz,
soliton solutions still exist, though their energy
is &Qm. Furthermore, as ~-~, the inequality
(2.15) holds for the general case as well.
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Except for the replacement of —,(3A' —1) by
d2ur(A)/dA' in (3.3), the entire discussions given
in Secs. III and IV on the stability and quantiza-
tion are valid in the general. case. The numerical
integration of the differential equation (2.37) dis-
cussed in Sec. V is also appl. icable to the general.
case; of course, the specific solutions of (1.9)
and (1.10) giventhere hold only for a)(A) = —', (1-A')'.

The generalization to include spin-~ fermion
fields and spin-1 boson fields will be discussed
in a subsequent paper.
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APPENDIX A

In this appendix, we derive the upper bound
(2.15) for Qz when x =m/i(, -~, where p, and m
are, respectively, the masses of the neutral y
and the charged &f& fields

(1) We first show that when x -~, Qz -0 faster
than K '. It is convenient to define

When x-~ and for Q-O(x '), the right-hand
side of (A2) and the last term in (A6) may be ne-
glected, except at large s. This suggests a trial
function of the form

a for z~Z
1 —(1 —a)(Z/z)e " " for z~Z

(b/z) sin(vz/Z) for z~Z,Bz=
0 for s~Z,

(AV)

where a, b, and Z are parameters to be deter-
mined by minimizing the energy E. The charge
Q of this trial function is given by

Q = 2vn(gx) 'b'Z. (AS)

By substituting (AV) into (A5), we find E is equal
to a b-independent term plus

vm (gx)~b'Z [n'+ a'+ (v/Z)'], (AS)

where n' is, according to (AS), proportional to
(Q/b'}'. The minimization of E with respect to
b can be carried out by differentiating (A9) with
respect to b, but keeping a, Z, and Q fixed; this
leads to

n' = a'+ (v/Z)'. (A10)

The same result can also be obtained by requiring
the trial function (A7) to satisfy the field equation
(AS) for z(Z.

It is convenient to define

8:—PK = Pl%' q
-=(4n) '(gx)'Q. (A11)

n =—v/K = (0/m .
(A1) By using the trial function (AV), we derive an up-

per bound on the energy

For a spherically symmetric solution, (1.9) and
(1.10) may be written as

d ~cQ 2 1—
2
—z BA = (A-z —l)Az dz dz 2IP

E (4vm(gx)~e,

where

e =qn+ -', (1 —a)'Z'(Z '+ ~ ')

+ (24x') '(1 —a')'Z'+ e

(A12)

(A13)

~ —z -- -A. B+n8 =0.
d8 ds

Correspondingly, (1.12) and (1.13) become

(AS}
z = (2z') ' f z*(ZA)'[1+-,'(M)]dz. ,

6A -=-(1—a)(Z/z) exp[-(z —Z)/x].

(A14)

and

Q =4vn(gx) z'B'dz
0

(A4) Let us consider the minimum of e when K -~,
but assuming Q-O(x ), i.e.,

E =4vm(gx) ' z'Edz,
0

where

g ~ + + ~2++2 2

(A5) q -O(1). (A15)

As we shall see from (A17) and (A18) below, in
this case the optimal values of the parameters a
and Z are both O(l). From (A13), it follows that
when K -~

+ (Sx2)-'(A'- 1.)'. (A6) e =qn+z(1 —a)'Z+O(x ') (A16)
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a = [1+(q/v)'] ' ~' (A17)

where n is given by (A10). Neglecting 0(» '), the
minimum of (A16) occurs at

(2.43) we see that q increases as g '. On the other
hand, when g» 1 the choice of variables v = p$,
x=x=x/t', y=y/$' leads to

Z-' = [-,'a (1 —a)]'"/m;

the corresponding minimum value of e is

m&2([1+ (q/n')']' ' —1P '.

(A18)

(A19)

and

r' —=y(l —x),
1 d 2'

7 d& d'T

(A30)

Since (A19) is always &q, we find that, in the
limit »-~, the soliton mass E is always &Qm

provided (A15) holds; i.e., on account of (All),
when» -~, Qz must -0 faster than» '.

(2) To derive a better upper bound for Q~ in the
limit »-~, we assume, instead of (A15),

in which the term t' 'x is unimportant except at
large r, and y(r) is essentially independent of f
But from (A29) we have

(A31)

q-O(» ').
As q-0, because of (A1V) and (A18),

(1 —a) - (2m') 'q' and Z -2m'/q. (A21)

so that q increases as g.
Since q becomes large for both small and large

$, it must have a minimum, qc =q(fc), where
both qc and gc are O(l). Then from (A25},

A =1—(2»') 'x,

a =2-'~2~~y
(A22)

In the range (A20} we have then, when» -~,
(1 —a)-0(» ), Z-O(»), and, on account of (A14),
e-O(» ').

This suggests that we retain the variable p and
introduce scaled functions x, y satisfying

qc=4&&»') 'qc. (A32)

(A33)

The other critical point is given by qz—-q(gz),
where $~ is defined by C(g, ) =0. To obtain an up-
per bound for q~ we introduce the trial functions

&0 cos mp 2p, for p ~ p„
0 for p~p,

so that (1.9},(1.10) become

1d 2d" - -2—,—p' —=x —P+O(» '),
p dp dp

—,—p —=(] —x)v+0(» ),
1 d 2'

p dp dp

(A23)

(A24)

(y, /p)sin(wp/p, ) for p~ p„
0 for p& p0.

Applying (A28) and (A29), we obtain

q =
p(&y /4

(A34)

(A35)

where $'=»3 —v . We consider the limit »-~
for fixed $. Then defining q =q/» we have

C=X0 ——+1 + ——1

Q =4m(g'»') 'q,

E = 47Tp (g K~) '[q+ (8»~) 'E+ O(K~}],

(A25)

(A26}

ir = [& —(5/~) ] "f '*i*p*'&'o, -(A27)
0

A A 2

+2 ——2xy'+x' p'dp. (A28}
0 i dp dp

In the limit »-~, (A27) becomes

q= 2y p dp.
0

Since x and y are determined by g through (A23)
and (A24), it follows that q and i are well-defined
functions of $ through (A28) and (A29). Now, when

g «1 the equations (A23) and (A24) reduce (setting
x = t'x, y = (y) to (2.36) and (2.3V), and then from

+4q —,— Xo ~ (A36)

We wish to make & vanish for the smallest pos-
sible q. This is achieved by setting

x, = —.'(I.5v)(8 —6)/(8+ 6),

p, =-,'v(m'+ 6)' '/(v' —6)' '
(A37)

(A38)

so that i is negative whenever q exceeds the value

q = 75m'(m~ —36)' '/2048 —8.898. (A39)

Since, for given q, the true q is less than that
given by our trial function, it follows that the true
& must be &0 when q = q, . Hence the crossing oc-
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curs at q =qs &q, . [This argument does not give a
bound on $s, but from the previous reasoning gs
must be O(1) since qs is.] Comparing (A39) with
(A25), we obtain (2.15); i.e., as z-~,

Q & 75m'(v' 36-)'"/512g g'=111.8(g K )
'

(A40)

we impose the following constraints for all N
(+=5,6, .. .):

Bg 1 BBng+- (Ps+PS) d'p=0
Ps 2 BP

and

(Par PN)-&d 'p = o,

(B5)

(B6)

APPENDIX B

Ne shall discuss in this appendix how to derive
the quantum soliton solution in a moving system,
in which the total momentum P 10.

Let A(p) and B(p) be the same classical solu-
tions of (1.9) and (1.10), as in the previous sec-
tions. But instead of (4.2), the components of p
are now related to those of the space coordinate r
and the collective coordinate R(t) by

p, =t [r, -&,(t)], p. =t [r. -&.(t)1,

and

p. = p~[r -& (t)l,

where

(B2)

v is a fixed parameter (not a variable), and p is,
as before, the mass of the neutral y meson. Just
as in Sec. IV, in addition to the three components
of R(t), we shall introduce a fourth collective co-
ordinate r(t), which is the over-all phase variable
of the charged P field. The quantum expansion of
the operators y(r, t), P(r, t) and Qt(r, t) is now

given by the following modification of (4.1):

x(» t) = —&(p)+ P q (t)~ (p)
N=5

where the subscript I =1 or 2 or 3. As in (1.11),
we define v =&@/p and z=m/p. It is convenient to
combine the collective coordinates and the co-
ordinates of the vibrational modes into a single
column vector:

(B7)

The Lagrangian then takes on the standard form,
as in (4.7),

I = —,
' qII q —V(q), (B8)

where the matrix Ã(q) and the function V(q) can
be obtained in a straightforward way by substitut-
ing (B3) into (1.1). [If v=0, 3P(q) reduces to that
given by (4.9)-(4.16).]

The conjugate momentum operators of R, P, and

q„(N = 5, 6, . . . ) are respectively

and
and

8
~N

(B9)

(B10)

where p is given by (Bl), 8 is defined to be
which may also be combined into a single column
vector

&-=g(t) —~v~[r, -Z, (t)], (B4)

and c.„(~) and P„(p) are c-number functions of p;
as before, a„'s are real and P„'s are complex.
The q„(t)'s are the(Hermitian) coordinates for the
vibrational modes. [Note that if q„=0, 8, =8, =0,
8, =vt, and f =cot/y, then e=~(t- vr, ), and (B3)
would describe a classical soliton moving with
velocity v along the rs direction. ]

Just as in (4.3) and (4.4), in order to maintain
the independence of the vibrational modes from the
motion of the collective coordinates, R(t) and g(t),

(Bl1)
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By following the standard canonical procedure we
find that, similar to (4.18), (4.20), and (4.21).

X =(2M} 'y(P, '+P, ')+(2My) 'P, '
+ ,'y—(I '+M 'aPv')Q'-M 'vvQPS+ Vo,

P =~0's (812)
(816)

and the Schrodinger equation for the state vector
l &

is given by
where I and M are given by (2.25) and (4.10), re-
spectively,

where

K =(2J) PK 'JP+ V(q)

and

J(q) =[detII (q)]'" .

(814)

(815)

Vo=(a'» '
p]t d'pV,

1 BA BA 2 8A 88 &

(819)

It can be readily seen that J(q), II (q), and V(q)
are all independent of the collective coordinates
R and f, and therefore

[P, X]=0 and [q, z]=0. (816)
+ -'(v'y'v'+ K'A')B'+-'(A'- 1)' (82o)

This is, of course, to be expected. Since the
transformations R-R+ 5R and f -g +5) are re-
spectively a space translation and an over-all
shift in the phase of P, their generators must be
constants of motion; these generators are, re-
spectively, P =the total momentum and Q =the
total charge. Because P is a cyclic variable with
a period =2m, its conjugate momentum Q = iS/&)-
has only integer eigenvalues: 0, +1,+2, . . . . On
account of (816}, we may choose the state vector

& to be also an eigenstate of P, and Q. (So far,
& can be an arbitrary eigenstate of P and Q. ) As

we shall see, in order that the solution of the
Schrodinger equation (813) has a power-series ex-
pansion in g, the total momentum and the total
charge of

l ) must be the same as those given by
the corresponding classical soliton solution, at
least when g is sufficiently small.

Let us consider the formal expansion of X in

powers of q„and P„(N= 5, 6, . . . ):

and

P, l&=o, P, l&=o,

P
I & =r(M+» }vl )

ql,' =I ~l &.

(a22)

To O(g '), (813) may then be written as

3e, l &=E, l &, (823)

By using f(sA/a p, )'d'p= ', f(vA-)'d'p, f(da/sp, )'d'p
=

& f(VB)' d'
p, where k =1, or 2, or 3, and the

virial expression (2.23), we may reduce (819) to

v. = Rr I~'+r '(1+r')M].

Formally, Xp is proportional to g and X, is
proportional to g '. As explained in Sec. IVC, in
order that, when g-0, Xp does give the correct
energy to O(g '), we must require 3C~ l ) =0, at
least to O(g '). It can be verified that, in analogy
with (4.29), 3f',

l &
=0 implies now

X Xp +Kg +X/ +
p (817) where because of (818), (821), and (822),

where, just as in (4.26), 36, is independent of q„
and PN, Ã, depends on q„and P~ linearly, X,
quadratically, etc. By using (1.1), (81)-(84),
and (814), we find

E, =y(M+I&o'). (824)

This gives, to the order calculated, the relativis-
tic energy of a quantum soliton moving with veloc-
ity v. When v =0, (824) reduces to (4.31).
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