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General-relativistic kinetic theory of waves in a massive particle medium
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In this paper, we give a general-relativistic kinetic theory of waves propagating in a medium filled with

massive particles. A major difficulty of this problem is to handle simultaneously dispersive and expansion
effects. Matter itself is at the root of both phenomena, and in our treatment they are conveniently separated

by using a two-time scale approximation. It turns out that the expansion modifies both the amplitude and the
frequency of the waves. Dispersion effects give rise to proper modes, which are shown to be the 0, 1, and 2
helicity components of the total field. The dispersion equations for these different components are obtained in

a general form. The propagation of gravitational modes is examined in more detail for the two extreme cases
of cold and ultrarelativistic matter. A lower cutoff frequency appears, and no Landau damping is found in the
case of a thermalized gas.

I. INTRODUCTION

In this paper, we study the propagation and
growth of perturbations in an expanding, homo-
geneous, and isotropic universe filled with mas-
sive particles. A kinetic description of the med-
ium is used: Such an approach is now quite com-
mon in the field of relativistic cosmology. ' 4

Up to now, gravitational-wave propagation has
been studied in an empty and usually stationary
space-time. ' ' Matter is generally included
through a hydrodynamic approximation. "'Kinetic
studies have appeared only rather recently, and
have been limited either to zero-mass particle
media" or to gravitational waves propagating in
a nonexpanding universe. '2" Other types of waves
have been considered only in the hydrodynamic
approximation, '4 and that in relation to the stability
of Friedmann models.

Our aim is to give a single, unified description
for every type of wave propagating in a gas con-
sisting of nonzero-mass particles interacting
gravitationally. Now, the very existence of a
background requires that the universe expand, and
so the waves propagate in a nonstationary medium.
Furthermore, matter also gives rise to dispers-
ive effects; the two phenomena are therefore
coupled in a rather complicated way.

Ne have overcome this difficulty by considering
only waves of period shorter than the Hubble time.
Then, on a short time scale (of the order of a few
periods), the amplitude and phase of a wave be-
have as if the medium were stationary, but under-
go a slow variation on the longer Hubble time
scale. We may therefore use these two character-
istic times as the basis for a two-time scale ap-
proximation which allows us to readily separate
expansion from dispersion effects. The same
idea was first used in this context by McCallum

and Taub who introduced it in the form "averaged
Lagrangian" method. We finally study in some
detail gravitational-wave dispersion in cold as
well as in ultrarelativistic media.

II. FUNDAMENTAL EQUATIONS

In the kinetic theory, the structure of space-
time is described in a self-consistent manner by
coupling the Einstein equations to the Liouville
equations. Neglecting correlations between par-
ticles (i.e., collisions), the Liouville equation
reduces to a Vlasov equation for the one-particle
distribution function 5'(x",u"). The coupled
system is then written as

Rpp=g(T/„— g Gp„T), (2)

d'
T„,= det(-G „,) u„u„Ã(x, u"),

Q4

where R „, is the Ricci tensor, G „, is the metric
tensor, T„, is the energy-momentum tensor, and
I"~, is the Christoffel symbol; y is the Einstein
constant, which is related to the gravitational
constant G by

8~@
x

We assume that we already know some particular
solution of the system (l), (2), (3), which we refer
to as the background solution. This specifies in
principle a background metric g„„ together with
a background distribution function N(x, u )."
We want to study small deviations from this back-
ground solution as h„, for the metric perturbation
and as Z for the perturbed distribution function:
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Gv =&u"h~'

Z(x, u ") =N(x", u")+Z(x", u ).
(4)

1 8
44 2 9 4 44 &

+2(h„„S,"+h„„S„"),
1~p. = —2{I~„,- aa, .& ~ ),

(6)

(7)

K~„=g ~ uqu, (Z+-hy N) .
Q4

Here S,R, and R" P' are the Einstein, Ricci,
and curvature tensors of the background metric,
respectively, and ~ is the de Rham-Lichnerowicz
operator for a symmetric tensor:

~h~. =~p~'h~ -Ru ph' -R ph'u

+2Rp pe~ho

We next choose the de Donder gauge by putting I„
equal to zero:

Since h and Z are small perturbations, the system
(1), (2), (3) {Ref. 15) may be linearized.

The perturbations of the Christoffel symbols
may be written a.s

(5)

If the perturbations of the left- and right-hand
sides of the Einstein equation (2) are written as
(Lh) „, and Z „,, respectively, then

(Ih)„,=d, h„,+(V„I„+V„Iq)-h„,Sg -gq„h„8S"

1 9 $
X~4=

2 8„( h44-2$ h4~ (15)

92 1 O' S 9

(s(a) s sx's ' s sx

S 9 9 S S+2 — . h. + h; — 6 —+2 —
hingS 8x "9&~" S $2

S
+(2SS —5S') k4, 5;;+ 2 ———h), 5(;,

where

h4) + — h4; — h;; -2SSh~45];
1 9 9 8

2 9x& 9x& ' 9x4

9 1 9 S 8h44gh = —— . h +3—
44 a(x4)2 S2 sx sx " S sx4

S 9 S 2 S2
+4 h g h 3 h~~ p$3 9xi " S 44 S4

92 1 92 S 8
(Zh h4]+ — h4,8(x4) S Bx~&xi S Bx4

8 $8
S3 9 $

1 l S 9 $ 44

+ 11 h4$
$ $2

I „=V,(h~' ——', 5„hg ) =0

(we note that Weinberg uses a different gauge).
The full linearized system then becomes

(10)
hll h11 h22 33 '

The basic equations are simply obtained by
inserting expressions (14), (15), (16) into the lin-
earized self-consistent system {5),(6), (7).

u &~Z —1 p u u —Xp uu =0, (11)a8Z n

In these equations, I'z, is taken as the background
Christoffel symbol.

%'e next consider a background Robertson-
Walker metric:

2( )
dx +dy +dz

(1 +kr '/4)'

r', , =sso.. .
{14)

For the sake of simplicity, k will be put equal to
zero. This is rigorously correct in the case of
an expanding Minkowski universe, and constitutes
a good approximation when the wavelength is much
smaller than the radius of the universe. It then
follows that

~F1 $ ~ (17)

It is shown in a later part of this paper that dis-
persion effects alter the phase of the wave on a
time scale comparable to v„, and so neither
phenomenon can be neglected. If waves whose
periods are comparable to v'& are considered,
then full account should be taken of the fact that
the medium is not stationary. However, in the
other limit v '«~~, the medium remains es-
sentially stationary for a number of periods, and
expansion effects will appear as a slow modula-
tion of the instantaneous dispersion character-
istics. This feature gives rise to the two-time
scale approximation: It was first introduced for
the analysis of slightly nonlinear oscillations by

III. THE TWO-TIME SCALE APPROXIMATION

Let us emphasize that dispersion and expansion
effects occur necessarily simultaneously by the
characteristic time of expansion, which is the
Hubble time
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Poincare and its application to that case is de-
scribed rather well in the book by Cole. '6

We begin by describing this method briefly. It
will be seen later that our linearized set of equa-
tions can be reduced to a system which resembles,
for example,

[&.'+~2'(t) lt =
S
S(t) (18)

(dp(t) is an eigenfrequency which varies slowly
with time on the same scale as S(t) itself. We now

introduce two different time variables, t, and tL;
the former will apply to phenomena occurring in
times of the order of ~„' while the latter de-
scribes phenomena which occur over time periods
of the order of 7„. As a result, &ok and $ will
both be functions of the long-time variable tL only,
and (18) becomes

f&,'+(d&'(t&)1 g= S (&&)&.0 .

dv = (d, (t)dt,
(20}

t

(d, (t)dt .
~o

In terms of the variables T and tL, the total de-
rivative with respect to t can be written as

d7 B dtL+
dt dt Bw dt BtL

(21)

The second term of this derivative involves the

A slowly drifting frequency appears in this equa. -
tion; this snag (see Ref. 16,p. 102) is eliminated
immediately by redefining the short-time scale
variable. Let us define v such that

long-time scale, so that when it operates on some
function f it will yield a contribution which is of
the order of ((d, w„) ' smaller than the first term
If we put

Ldt
dt (22}

92
+ 2'

Bt (23)

Substituting now (23) into (19) and considering P
to be a function of the two variables w and tL, we
obtain

2Q B Q B(g B ~2 B2 1

~k BtLB7 ~2 Bt L BT

S 1= E —(tr, ) 2 (d2(tg) —+6 g (24)S Mk BT BtL

Henceforth Sgjete will be written as ()I. The func-
tion g is next expanded as a polynomial in e:

y(p) +~y(1) +~ 2q(2) +. (25)

Using (2&), (24) can now be split into a hierarchy
of coupled equations for $(o), P"), (((2), ~ ~

we may the more easily assess the order of mag-
nitude of each term; e will be put equal to 1. at the
end of the calculation. Substituting (22) and (20)
in (21}and iterating, we obtain the formal ex-
pansion of the operators

B B B—= (dp(tg) —+6
Bt B7 Bt

B 2 B B41k B

Bt2 B72 BtL By BtL B7
=(d2 (fg) +6 2(d2 (fg) —+

B2 (o'}

+ y(o) 0
BT2

(g)
2E' & f s(d2 (p) S 1 s (p)+ (13 + — + —

(/) =E ——
B7 &k BtLB~ &k2 Bt, B~ S ~k B~

e +() +e — +e, —q()+ q() =e ———
(C

)+e—9 g (2) 2E 8 (d2 s
y

E' () p 2 S 1 s (g 2S 1 s p

BT2 ~k BtLB~ ~„2 B& (uk2 B tL 2 $ +k BY

(26)

etc (the othe. r equations are obtained by replacing
by g"', g" by (1)"', g' by ()I"', etc.). The syst m

can then be solved easily by iteration. Indeed, the
fjrst equation gives immediately the solution for (I)")

2 (Z)
(i) (~ S 1 (d2 (o)+g =e i ————(p

BT 2 $ (dk (dk

B+(o)
(tL)

k tL
(28)

~(o) +(o)(t (27)

Here, q" is some as yet undetermined function;
substituting (27) into the second equation of the
system, we obtain

Now, it is well known that the P") derived from
(28) increases in a linear way: In effect, the
eigenfrequencies of the left-hand side of the equa-
tion resonate at the frequency of the right-hand-
side forcing term. Consequently, the terms in
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(25) increase without limit and so invalidate the
expansion for times in excess of some rather
small limit. This characteristic can be circum-
vented by choosing cp"' in such a way that the
factor in the square brackets in (28) vanishes —we
are allowed to do this because q"' is not so far
determined, and this is a consequence of the way
in w'hich the physical time was decomposed into
two mathematical variables. This procedure is
the only one that allows the series (25) to con-
verge over a time interval of the order of v&, ap-
plying it, (28) becomes

d' "'
+(0) p

47 2

s
S co„(p&" '

(29)

u"s„Z = P(t),

P(t) = —', (Bph", +B„hp —9"hp, )uPu'
Qgn

(3P)

At this stage it is convenient to introduce a spatial
Fourier transform (the definition of this is given
by Weinberg'0). Then

Z= S exp(-iq x),
P =6' exp(-i q ~ x),

u —+i@;u Z =P(t) .4 ~~ ~ i

(31)

Equation (31) is formally solved by taking P, (t) as
a second member:

Each order may be handled in a similar way.
Let us now return to the system (11),(12). It

readily follows from (17) that the factor cp is O(e').
The unperturbed distribution function as well as
its perturbation Z is proportional to p, and so
from (8) and (7) we see that Z„„is also O(e'). Z„„
includes the dispersion effect of matter, and so
we have to expand the solution up to second order.
The zeroth and first order will then describe
geometrical effects (trailing effect") from the
dispersion effects of matter, we combine the
zeroth order of 2 with Z&, . In order. to obtain
S in terms of h„, we solve the linearized Liouville
equation (11). The explicit expression (5) for the
perturbed Christoffel symbols X~, shows that the
gravitational force due to the perturbation [third
term in (11)] is of the same order of magnitude
as the first free-streaming term. The second
term, however, is of higher order because the
long-range gravitational force which produces the
expansion of the universe is weak; i.e., it is of
order S/S as can be seen in the expression of the
Christoffel symbol (14). The Liouville equation
then reduces to

P(t -7) . qu'Z= i dT exp —i
4 0 Q4 7/4

We look for solutions of the form

(32)

t
Z = Z exp —i &u(7')rl7'

I a (3
t

P =P exp -i to(v')dv'
a

P

where Z and I' are slowly varying functions of
time. This allows us to expand the function P in
Eq. (32) in the neighborhood of t. Keeping only
the lowest-order terms, we obtain

q.u'
Z =P(t)

~ exp i
Ja Q4 g4

,. P(t)
(34)

h»(t)=h»(t)e~ -i ~„(~ )dT
a

(38)

The operator X)„8 is the time Fourier transform
of a nonlocal time operator. This arises as a
consequence of the dispersion. The interest of
shift-type solutions is that Q"~8 acts on them in
exactly the same way as does the simpler, local-

This solution is substituted into (8) and (7) to give
n8

~u =Ou" 8.
Equation (12) is then reduced to a linear homo-
geneous system for h„8

n8" n8"
S„„,h 8=8„„h 8.

The left-hand side then represents the dispersion
characteristics of matter. It is obtained by putting
the Laplace operator which is in (2 h) [Eq. (16)]
together with Z&, . The right-hand-side term con-
tains all the trailing effects due to the expansion,
which originate in terms proportional to 8 and 8
in Eq. (16). After some algebraic manipulation,
the operator @„"„is found to be given by

n8 g, (d 9 g 9(d 9
qnq8 O n8

c2 S2 c ~t c ~t ~t2

(36)

The system has a nontrivial solution at zero
order given by

2 2

——+ —gg -0 h 8=0n8 n8
$2 P U PU

~

n

if the determinant of this latter operator vanishes.
This defines a set of eigenmodes h ), to each of
which corresponds a particular instantaneous
eigenfr equency &o,(t) .

Let us consider a particular form of the solution
which we shall call a shift-type solution:
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time operator:

92
2+Ay (t) g~gq (39)

We limit ourselves to shift-type solutions, be-
cause the operator (39) is appropriate to the two-
time scale approximation. (35) is then seen to
reduce to the foQowing system for the various
polarizations (Z):

92
+(d,'(t) q„"q8h~'8(t) = 8„„'&' tI(~) (40)

IV. PROPER MODES OF THE DISPERSION OPERATOR

We shall first study the properties of the left-
hand-side dispersion operator S„s; after this,
we can come back to the full equation (35). The
dispersion operator has a certain number of
proper modes whose polarization can immediately
be specified as a consequence of the isotropy of

This equation is of the form (18). We emphasize
that the limitation to a shift-type of solution is not
particularly important; in fact, equations of the
type (18) have just this form of solution. Coupling
between the different eigenpolarizations introduced
by the trailing term in (40) does not occur before
the third order; we note that this independence is
by no means as obvious as is often assumed in the
literature.

space. In the case of a plane wave propagating
in an isotropic medium, the only perferred space
direction is that of the wave vector K. W'e choose
the coordinate system in such a way that K lies
along the x axis,

K = (q, 0, 0, e/c) .

One might think that these independent proper
polarizations would correspond to the 2, 1, 0 spin
components of the field h„,. It is, in effect, pos-
sible to define such components by the way they
transform under space rotations; this is usual
in the theory of the Pauli-Fierz fields. How-
ever, this procedure is not applicable to our case
because the field nf the wave is organized around
the privileged direction of the wave vector K; it
is instead more profitable to define a helicity for
the wave. Following Weinberg, "a given plane
wave P is said to have helicity h if a space rota-
tion of angle 8 around the wave vector transforms
it to P', given by

(41)

In our case, the components of the symmetric
tensor h„„(the field of the wave) can be grouped
into a number of variables, each of which repre-
sents a partial field of given spin and helicity.
These are given in Table I. The dispersion oper-
ator can be written explicitly in terms of the vari-
ables h 8.

S„"8= (KqK")-(qqq „+gag~) +2X(qq T~s+q, Tq +qq T„"+q„Tq)+3Xq" (Tq„—,'qq„T)+2y—(KqK")(4„"„2qq„j-" )-

—Q(K„I"„8+K„I„"8)—2y[K "(I~~,—', ri»I8) +Ks (I-„"„,'q»I ")j-. - (42)

The notation is formally covariant because the
time axis u" = (0, 0, 0, 1) and space are well defined
by the background solution. The Robertson-
Walker metric is flat, over the short-time scale
only, because the scale function is a function of

only. Then

1
K, =q„K~ =&a/c, K =-—,q„q2=5 ~q, q&.

TABLE I. Variables H& characterized by a definite spin and helicity, given as a function
of the components h&, of the wave's field.

licity

H+(2, 2) = 2(h22 —h33) + ih23

& (2~ 2) = 2(h22 —h33) —~h23

H'(2, ~) =h„+ ih„
H (2, 1)=hjg —ihg3

H+(i, 1)= h42+ ih43

H (i, i) = h4) —ih4~

H(2, 0) = h« - -.'h»

H(i, 0) = h4g

H (0, 0) =h44

H~(O, O) = h„
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7.'„„is the energy-momentum tensor and I„8,
4„„,. . . are integrals involving the distribution
function:

uI~a =S' ' ~( " ~)u, (Kgu")

23

22

23 22 (33 (11 (14 (44 12 (24 (
13 34

@+8-S3 ll II ~( IX IX)

u (Kyu~)&
(44)

For simple distribution functions (such as the
ZQttner-Synge distribution function, which depends
on the single vector parameter 9„), most of these
integrals vanish. This is most easily shown by
noting that each is some linear combination of
the tensors that can be formed from z7 and the
four-vector K, and have the same order. "

We can see that I and J vanish when they are
labeled by an odd number of index 2 or 3. This
results in a straightforward block diagonalization
of „"8, as indicated in Fig. I.

We now introduce spin-helicity variables H q.
These are defined in such a way that each of them
is an element of given spin and helicity (see Table
I):

44

24-

34

FIG. 1. Block diagonalization of $~» for an isotropic
distribution function that depends on one parameter.
Shaded blocks contain all nonzero elements.

detSq =0 (7«A. «8, 7 &g «8),

H q = 0 except 7 & X «8; .(46d)

det&q = 0 (9 «X &10, 9 «Y & 10),
H, =h~~,

H2 & (h22 h2S)s

H3 S~TI ~l l ~

H4 =kl11

H5=h

H6 =&44

H7 =h~~,

H8 =h~~,

H9 =h, 3,

H20 ~84~

&.s =H

1
h~~ =H~ —-H3+ -H4,

h„—-H, ——,H, +-, H„I I

1 1
hq~ = p H3+ 3 H~,

A„=P„
&4c =He

h~~ =H7,

h~4 =H„

is=He

&3~ =Hio

(45)

8 q = 0 except 9 «X &10. (46e)

In fact, sets (46d) and (46e) have the same dis-
persion relation, because the directions perpen-
dicular to K are all equivalent and the modes of
helicity I, represented by (46d) and (46e), are
identical. Similarly, explicit calculations show

1 '2( 3( 4(6 (6 V( 8( 9 I'0

In the H representation, the dispersion operator
can be reduced to the block-diagonal form repre-
sented in Fig. 2.

The elements are given in terms of ~8 in Ap-
pendix A.

It can be seen that the proper modes, defined
as nontrivial solutions of Eq. (3V) can be grouped
into five sets defined by:

Z),'=0, Hq=0, except H, ;

@~=0, Hq=0, except H~;

(46a)

(46b)

9

10

detn', = 0 (3 «X «6, 3 «X' «6),

Hq =Oexcept 3& ~ &6; (46c)
FIG. 2. Block diagonalization of u~»8 in the representa-

tion using variables H~.
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the x)', =X)2, so that modes of helicity 2, repre-
sented by (46a) and (46b), are also identical. We
see that, as expected, the proper modes decom-
pose into independent components of helicity 2,
1, and 0.

Helicity-2 waves represent radiative gravita-
tional waves. Their polarization is determined by
the two arbitrary parameters H, and H, . All
other variables vanish. Coming back to the usual
h~s variable, we see that the gravitational wave
field is determined by

h„s =0, except h23 k3Qy &22 833. (4V}

This result is well known; we have generalized it
here to the case where waves propagate in the
presence of matter.

Helicity-1 and -0 waves do not exist in a vacu-
um. Consequently, they do not appear before the
second order in e, which is the point at which the

Z~„ term can be consistently included in (12).
We still have to prove that our solution does

actually satisfy the gauge condition, because at
the outset we dropped the gauge terms in (6). The
gauge condition is a constraint on the polarization
of the proper modes. In order to show directly
that it is satisfied, we would first have to find
these modes, and this is beyond the scope of the
paper, except for gravitational radiating modes.

We show in the Appendix that this condition is
automatically satisfied for the order in which we
are interested.

V. CASE OF GRAVITATIONAL WAVES

Gravitational waves have helicity 2, and their
dispersion equation is just

8', =S,'=KgK (1+v)(J'ii)-8)(Z ',
with

(48)

r
J~~ =S d'g~

A. Expansion effects

Substituting the explicit expressions (42} and
(46) for ~"„'8 and 8„"8 we obtain for successive
orders

u, ' pr . (49)
u, (K„u")'

The subscripts & and
~ ~

refer to directions per-
pendicular and parallel to the K vector, re-
spectively.

As we explain in Sec. III, we use the two-time
scale approximation to separate dispersion from
expansion effects. The former determined the
eigenfrequency, which in this case is the solution
of (46a), and the latter are given by the expansion
scheme which we have already described.

hf, =h(f',)e% i ",
(p)

L y p

h'"+ a "&=e'" s(t)
U ii ii S(P)

h"'+a"&+h "~= e(,"&i ~i9

~,(t')dt'

exp i &o„(t')dt' +h~'j exp i &v, (t')dt'

(0}
exp i ~ dt'(d, (t') —

2
5$+8 — + e ')i, +e'&' exp i ~,(t')dt'

Of course h;; =0 if i or j are neither 2 nor 3, and

823 k32p 822 833 as shown in Sec. IV
The last equation of the set (50) can also be

written correct to the same order in a more com-
pact form:

time derivative of its phase factor, is

$2
(i)(t) = &u„(t) ——5S + 8—

2q $ (51)

h(0)+(1)+ (2) (t)
ii si j S(0)

x exp i, &u, (t')dt'
4 p

5S + 3—d't'

It can be seen readily that, at this order, ex-
pansion makes the amplitude vary, and also shifts
the phase of the wave slowly. The instantaneous
frequency of the wave, which is defined as the

B. Dispersive effects

The dispersive part of the frequency is obtained
by solving Eqs. (48) and (49). This can be done
for a given background distribution function. It
is well known that the equilibrium JQttner-Synge
distribution function is, strictly speaking, not a
solution of the self-consistent cosmological equa-
tions, since in an expanding universe, neither
the energy nor the three-momentum are constants
of motion. However, this function is a solution
when the background is made up of a gas of mass-
less particles; the JQttner-Synge distribution is
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nm)
N =

4 ( )
exp(- gu ) . (52)

As we have already noted, we may for small-
time scales take space-time to be Minkowskian,
modulo the scale factor S(t) which we leave out of
the calculations themselves. Note that the time
dependence has nevertheless not been lost, be-
cause integrals such as J~~ are functions of the
parameters which define the medium:

$ =mc'/kT(t), (og2=yn(t)mc2. (53)

The time variation of these quantities is well
known for the two cases in which we are inter-
ested: for a, hot medium,

n(t)=n, S'(0)/S'(t), T(t)=T,S(O)/S(t), (54)

and for a cold medium,

therefore a good approximation in a very hot
medium —i.e., when the rest mass is negligible
with respect to the kinetic energy. When the med-
ium is quite cold and the universe expands slowly,
the Maxwell distribution is a good approximation";
however, in the cold case the Maxwell distribution
is equivalent to the JQttner-Synge distribution.

For the sake of simplicity, we shall use the fol-
lowing JQttner-Synge-type background distribu-
tion function~'.

1 1
K &,

u" (&11/c}u4 -qu'

u4[(~/c) +iv] —qu'

((u/c)u4 —qu' c

In that case, the asymptotic response varies as
exp[ —i&a,(t}], where (d, is the complex zero of
D'(k, &o) which has the largest imaginary part.
However, in the case of relativistic pla, smas, the
situation has been recognized as more complicated
due to the existence of branch-point singularities
w =+ck in the Laplace transform of the electric
field (33), so that, to the usual Landau pole con-
tribution, a contribution is added which originates
in the cut between -ck and +ck (see Fig. 3).

This cut usually contributes a damped term, '"'

which may decay faster than the Landau contribu-
tion or not, according to the physical conditions.
Strictly speaking, the whole problem of gravita-
tional-wave propagation vould be best treated in
this initial-value point of view. Here, we shall,
however, keep this problem apart because our
method is not suited for treating initial values;
the cut contribution is presumably damped, as
in the case studied in Ref. 23, and we shall show
that the Landau pole contribution is actually un-
damped, so that the latter would asymptotically
dominate. Let us switch now to an easier notation:

n(t) =n S (0)/S (t), T(t) —T S (0)/S (t). (55) u' = vi(, y =[I —(u')' —(u'}' —(u')'] '/'. (5V)

The kinetic integral 711 in (49) may become
singular due to the factor (K1u ) '. This is a
well-known difficulty, first studied in plasma
physics, when kinetic-theory calculations of the
propagation of electrostatic waves were made.
Landau" noted, however, - that the time Fourier
transform should be replaced by a time Laplace
transform. Indeed, the correct way to attack the
problem is to put it as an initial-value problem,
and seek for the asymptotic solution, for which
all transitory modes are negligible. Therefore,
co should be looked at as a complex variable of the
convergence domain of the Laplace transform,
which is, with our present sign conventions, the
upper half plane. Evaluation of the causal re-
sponse for t positive is best made by shifting the
Laplace inversion contour towards (-i~), then
enclosing the singularities of the integrand. This
integrand is made of some usually regular func-
tion of e divided by the "dispersion function"
D'(k, (d). In classical problems, the singularities
are the zeros of D'(k, (d), and the analytic con-
tinuation of this function when ~ is rea1 is readily
obtained by putting

For an arbitrary isotropic distribution function

f(y), J'11 is given unambiguously by (56), and,
putting k =q/S,

I

(g -1)V (P ] 2)2—f(y) „8(d k „, y & (p,p/2 vll —(41y/ck

(58)

J'm (~)

-ckr
Re (~}

Landau pole

Laplace lnverslon contour

FIG. 3. Example of Laplace inversion contour.

The imaginary part of J» is nonzero if the res-
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onance condition implied by the 5 function in (56)
can be satisfied. When the dispersive phase velo-
city exceeds c, Im J«vanishes. In this case, the
physically interesting solutions of the dispersion
relation are purely real, and there is no resonant

"Landau damping. " Equation (58) can be explicitly
calculated by integrating over v~~, which is the
same as integrating over the pitch angle of the
particle. We put v = (0/ck:

(20 2 1 1/2

ReZ3l =— f(y)dy (y —1)" [8y v ——'(y -I}]—4yv(y —1-y v )ln
(y' —1"'+yv) .

(59)

It is possible to find approximate expressions for the extreme cases of cold (kT «mc ) and ultrarelativ-
istic (kT&)rnc2) matter. In the former case y= 1+t is near unity; expanding around this value gives

Re Jl3 = — dtf(1+t)
1

t ~
j fk 4)O

64M2

4 p 15@2

Re Jll =— — (Jiittner-Synge).
1 nm 1 c'k'

k' 2w P

(60a)

(60b)

In the second case, we can expand (59) in y ', this result is the ultrarelativistic approximation:

(e 1
Re,J» =—

) y'f(y)dy 8y' ——"—4v(1 —v')ln (61a)

1&m1, „,1 —vRe J 3
= — —8v ——"—4v(1 —v')lnk' 4)l t' g 2 1+v (Jtfttner-Synge). (61b)

In the case of cold matter, the dispersion re-
lation is obtained by substituting (60) in (48). It
is seen that Z l is O($ ') and then negligible with
respect to the pressure term on the right-hand
side of (48), which is 0(( '). We are left, for
a Juttner-Synge distribution, with

2
~ '=A, 'c'+S QPt

(62)

This represents gravitational waves propagating
in the presence of matter. The eigenmodes have
a cutoff at low frequencies: No wave can pro-
pagate with a frequency lower than (8/( )"'&uG.
This frequency, however, is so low that our two-
time scale approximation breaks down very much
earlier. Equation (62) describes essentially a

4 (a)~' 1
td(t) =ok (1+ — ——33+3—

$ c2k2 2k $ (63)

In the case of ultrarelativistic matter, the dis-
persion equation (48) can be written [using (61) in
(48}], for a Jiittner-Synge gas, as

correction to the vacuum propagation in the
frequency range co, » ~G which is of thermal origin
and would vanish in a cold universe. Furthermore,
the dispersive phase velocity is supraluminous,
so that gravitational waves do not suffer Landau
damping, at least when the distribution functions
are approximately Maxwellian. The complete in-
stantaneous frequency including trailing effects is
given by (51):

(,k,) I)
3 u) '

3
w' 13

4
td w'

1 1
(td/ck) —1

4 )c2k2 c2k2 3 ck c'k' ((o/ck) +1 (64)

This equation bears similarities with the equation
for a hot photon gas derived by Chester. " ActuaQy
Chester's equation (2.3) approaches

144' GI'2 =C2
5 c2

Not only is there a difference in the coefficient,

but Chester's result gives a subluminous phase
velocity that gives rise to a Landau damping [his
equations (2.1), (2.2), (2.3)]. Our result, on the
contrary, gives rise to supraluminous phase
velocities, and consequently to undamped waves.
%'e think that Chester's result is in error. Indeed,
his equation (2.3) gives for the small-wavelength
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gravitational waves a group velocity

9 (o 72m'I'

k
=c 1+ 5c2k'

which is faster than light. In the short-
wavelength limit, k- ~, our Eq. (64) gives essen-
tially the same dispersion relation as in the cold-
matter case, namely

2

(d =c4 +8 (do (65)

Our result (64) can be solved in principle numer-
ically. It is possible, however, to see that it
gives supraluminous phase velocities and sub-
luminous group velocities in the whole wave- vector
range. Indeed, Eq. (64) can be arranged to the
form

x' =G (v),

32 1 ~ v —1 2 16
G(v) =—, — 4v(v' —1)ln +Sv' ——

3 v' —1,v+1 3

k 2 3 CO@ 43x=, kg v
k 2 4$ c2 ck

which relates the u~ave vector k/k~ to the phase
velocity &o/ck. G(v) is a universal function which

is plotted in Fig. 4. The intersection with the
line of ordinate x gives a phase velocity between
c and , so that no Landau damping appears. For
small wavelengths (k- ~) we recover the approx-
imate solution (65) and for large wavelengths
(k- 0) we get approximately

(d(o'= 6

The dispersion curve is shown in Fig. 5. We note
the existence of a cutoff frequency at M6&uo $

'~'

which is of the order of the Hubble time scale for
a hot univer se. Our calculations become invalid
in that region. Note, however, that the collision-
less approximation was used. At very high den-
sities this might not be good enough, and a hydro-
dynamic viscous fluid model would be more ap-
propriate.

APPENDIX A: EXPRESSION OF THE OPERATOR S~i IN
TERMS OF THE VARIABLES H~

In this appendix each element Sq is given in
terms of the components S~8:

I' G(v)

(&), )=

X

'l6
3

FIG. 4.
32 1 v —1 2 16

G(v) =—, 4v(v +8v ——
3 v —1 iv+1 3

as a function of v: v 0: G(v) = -&~- Tv ~ v 1: G(v)
—32/3(v —1); v ~: G(v) = 8/v2

k

FIG. 5. Dispersion curves for gravitational waves in
the hot universe $«1 (solid line) and cold universe $&&1
(dashed line). The calculation is valid for ~»co&.
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& is the column index and X' is the row index; they
run from 1 to 10. +, and $3 are 2X 2 matrices,

g(0)I (2)

(some operator acting on t~) )& h(~'„) = 0.

(86)

(87)

(2n, , 0 c012 c024

S24 +24
1(2) g(0)I 4(2)+ g I «(2) 1 g(0)I X(2)

4 4 4 i 4 2 4 )t

1(2) g(0)h4(2) + g g«(2) 1
g hX(2)

(86)

Proceeding in the same way as for (85), we obtain

and S2 is a 4 ~4 matrix,

ll 22 33
+22 22 22

3 6
coll c022 +~33ll 11 11
3 6

22
+14 + +14++14
3 6

11 22 33
22 + 22 22
3

'
3

~11 co22 + g)33ll + ll 11
3

'
3

ll 22 33i4 + +14++14
3 3

~14 ~c44
22 22

14 +44
11 11

c014 g)44
14 14

11 22 3314 + +44 +44
6

ll 22 33
&14 + +44+ 44 ~14 ~44
3

'
3 44 44

g(0)I (0) p I(0) pPV (81)

Here we introduce the Qat- space wave operator:

g(0) g (0)
4 $2(f )

We stress that, to this order of approximation,
the scale factor must be regarded as a constant.
(Bl) gives the usual gravitational-wave solutions:

(82)

Continuing as in Sec. III, the next term in the ex-
pansion gives a system that determines h„"„' as a
function of the short time and h„"„' as a function of
the long time:

APPENDIX B

Equation (12) can be written explicitly to any
order, using Eq. (16) and the fact that g o„ is O(e2).
The zeroth-order approximation yields the vacu-
um system of equations:

By subtracting the first from the second, and keep-
ing terms linear in the perturbation, we are left
with

V K "+X T "+X" T "=0.p@ pC (811)

We now calculate this quantity to the second order
in the time- scale ratio E, keeping in mind that E~"
and T'" are of the second order in &. Then, we
must retain that part of V„and X„" which is zeroth
order in e. This yields

p(0) g (0) (812)

Equation (86) can be written as
d Q2"'(h""' —2 5'„h„" ")= 2y t u u" (Z+ —'h~N)

(89)
The second member of this equation is easily rec-
ognized as twice the perturbation E „of the en-
ergy-momentum tensor. Now, the total energy-
momentum tensor is conservative, a property
which is indeed satisfied by (2) provided that N is
a solution of the Liouville equation (1) [for a proof
see Israel"]. This property is true for both the
background energy- momentum tensor, with the
ba,ckground cova, riant derivation, and for the total
energy-momentum tensor, with the complete co-
variant derivation. Let V, and T""be the quanti-
ties referring to the background and X„„the per-
turbation of the Christoffel symbol; the above
properties are written as

v, T "=0
(810)

V (T "+I&")+X~ (T "+K"")+X"(To" +E~ ) =0.

g(0)p (» 0PV

(some operator acting on t~) && h,"„'= 0. (84)

and, using expressions (15) and (82),
x"" =-'e(')a(') = 044 2 4 44

Using the fact that most of the h"2) vanish [see
(82)] and depend on 2( and t only, we get

x&'".,=-,' ~.I,",) = 0
X(o)4 ((s h(o&+ s h(o& s(o)h(o))

2 i 4j ~ 4f,

(812)

I(1) Q(0)g4(l) + Q g«(1) 1 (0)@X(l) p4 4 4 i 4 2 4 )t (85)
I(» g«)g4(»+ g h«(» —'g g)t(» -0

(84) describes the trailing effects on gravita-
tional waves, whereas (BS) and (85) give the usual
flat-space wave operator and flat-space gauge
condition. The solutions to first order for k'" are
then exactly the same as those for zeroth order
for h"'. Let us now go to the second order in 6:

~( )~ «+X~ ~.T"+X~ ~ T~ = 04i pCX

8("X"+X&0» T"+X'" T""=0.u P4 P+

But using (818) and (82) we are finally left with

(814)

So, Eq. (Bll) to the second order in & may be fi-
nally simplified. We used the fact that T„„is di-
agonal and expressions (82) once more:
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g(0)~ u i 0

8(0)~ v 4 0

Operating with e(0& on Eq. (B9) gives

s(o&g(o&g v(2& L6v~x(2&) 0p & p

(B15)

(B16)

(0)I(2) 0 (B17)

We can choose the conditions on some timelike

S„'o& commutes with 'o' and (B16) is reduced to

initial hypersurface such that I"' =0 on this sur-
face. The hyperbolic character of the operator
ensures that I,"' vanishes everywhere.

This proves that our solution is a solution of the
full system of linearized Einstein equations (6),
(12).

This would be due to the fact that up to the sec-
ond order the universe can be considered to be lo-
cally flat, and curvature is locally gauge invariant
in the weak-field linear theory. This has already
been stressed by Isaacson. '
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