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Energy-momentum tensor near an evaporating black hole
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%'e calculate the vacuum expectation value, T„„,of the energy-momentum tensor of a massless scalar field in

a general two-dimensional spacetime and evaluate it in a two-dimensional model of gravitational collapse. In
two dimensions, quantum radiation production is incompatible with a conserved and traceless T„„.We there-

fore resolve an ambiguity in our expression for T~„, regularized by a geodesic point-separation procedure,

by demanding conservation but allowing a trace. In the collapse model, the results support that picture of
black-hole evaporation in which pairs of particles are created outside the horizon (and not entirely in the
collapsing matter), one of which carries negative energy into the future horizon of the black hole, while the
other contributes to the thermal flux at infinity.

It is now generally believed, on the basis of an
argument due to Hawking, ' that the gravitational
field of a collapsing object will induce the quantum
creation of particles, so that the object radiates
with a thermal spectrum at a temperature inverse-
ly proportional to the mass of the object.

Most calculations of this effect have examined
the behavior of the quantum fields only near in-
finity. Consequently, it has never been clear pre-
cisely where the radiation is being created, and
what is happening near the horizon of the "black
hole. " A knowledge of the energy-momentum ten-
sor of the quantum field in the vicinity of the ob-
ject would help in clarifying the details of the cre-
ation process. Unfortunately, this quantity is al-
ways formally divergent, and the meaningful phys-
ical component must be extracted by a regulariza-
tion procedure. Such procedures always contain
ambiguities which must be resolved by the appli-
cation of additional criteria, such as physical
reasonableness.

In addition to the problems of regularization,
mathematical complexities have prevented detailed
discussion of quantum field theory near the sur-
face of a black hole. In what follows, the latter
problem is circumvented by studying a simple two-
dimensional model2 of the black-hole-formation
process. This model has the advantage of possess-
ing a conformally flat metric, so that the mode
functions for the quantum field can be explicitly
evaluated everywhere, while retaining the essenti-
al features of the Hawking evaporation process.
The highly plausible character of the "renormaliz-
ed" energy-momentum tensor which emerges for
this simple model encourages the hope that the
qualitative features of the full four-dimensional
collapse are contained in this treatment.

The regularization procedure which we employ

has already been applied to an evaluation of the
energy-momentum tensor near moving mirrors in
two-dimensional flat spacetimes by Fulling and
Davies, '4 a study inspired by the striking formal
resemblance between the black-hole-formation
process and the accelerating mirror system. ' The
two field operators occuring in a term of the
energy-momentum tensor T,„(x) are evaluated at
points separated along a geodesic through x, and
derivatives of the field are parallel propagated
along the geodesic to the two points. Here we gen-
eralize the technique to an arbitrary two-dimen-
sional spacetime and apply it to the simplified
collapse model.

The metric for any two-dimensional spacetime
is conformally flat and may be written as

ds' = C(u, v)du dv,

where u, v are null coordinates. [Any other null
coordinates u, v are related to these by u =u(u),
v = v(v). j We examine the massless scalar field
P, which for this metric obeys the simple equa-
tion

The solutions of this equation are

g =f(u)+g(v),

T..=0, 4,„-2g..4, 4"
in some quantum state. In expanding the operator
@ in normal modes, we assume (as has always

(4)

where f(u) andy(v) are, in general, arbitrary func-
tions, restricted only by the spatial boundary con-
ditions.

We wish to calculate the expectation value of the
operator
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(6)

in powers of &. Here the points x', x lie on a
geodesic through the point x of interest, each at a
proper distance of &, but in opposite directions
from x, and e'„are the matrices of parallel trans-
port along the geodesic from x to x'. The expecta-
tion value of T„„is then defined as the limit as
& -0 after the pole terms have been eliminated.
The calculation, which proceeds along the lines of
Ref. 3, yields

8 tgfp ]

where t, is a tangent vector to the geodesic at the
point x, 8 is the curvature scalar, and the tensor
e,„as evaluated in the special u, v coordinates has
the components

8„-„-= —(12m) 'C' i'(C ' i')
QN

8 = (]2') C& &&(C-~ &2)
~VV

8—= 8„-„-=0.

(8)

In systems where the spectrum of ~ is discrete
(e.g. , a closed universe), 8 „contains an addition-
al "Casimir effect" term, whose evaluation is
straightforward.

Equation (7) as it stands is unsatisfactory. In
particular, it contains terms which depend on the
direction of point separation. It is hard to under-
stand how a physical result could depend on such
an arbitrary additional vector field. It appears
that such terms, mhich evidently would arise in
any point-separation procedure, must be discard-
ed. The expression as it stands is traceless, and
mill remain so if the entire first term is discard-

been found to be the case) that there exist null
coordinates 0, V such that the ingoing and outgoing
parts of a normal mode go, respectively, as

e '""/(4v( &u~)' e '"N/(4m~ v~)' '

The state which we have examined is the one an-
nihilated by the operators associated with the
modes ~&0 in the field expansion.

If the geometry is initially static or has an as-
ymptotically flat region at infinity, this state is
made unique by the requirement that the modes
reduce to ordinary plane waves in that region.
This state is then that in which no particles are
present initially (before the collapse begins, in
the problem at hand), and is conventionally called
the "vacuum" or "in-vacuum" state, ~0).

The expectation value of T„„in this state (also
designated by T„„)is calculated by an expanison
of the expression

ed. However, in neither case does it obey the con-
servation law

On the other hand, by discarding only the terms
proportional to t„t„one does obtain a conserved
tensor, but one which is no longer traceless.

Although conformal invariance of a theory form-
ally implies tracelessness of T„„, the appearance
of a nonvanishing trace is not entirely unexpected.
Already in Ref. 3 one naive consequence of con-
formal invariance, namely that the vacuum ex-
pectation value of T,„be the same in all conform-
ally related spacetimes, was observed to be lost.
Other regularization techniques (in different con-
texts) have also led to a breakdown of conformal
invariance in the quantum theory. "

In two dimensions, quite general arguments im-
ply that conservation, zero trace, and particle
production are incompatible. A traceless
conserved energy-momentum tensor obeys the
equations

QQy V VVy Q (10)

which imply that the energy flux along any null
ray must be constant; i.e., radiation cannot be
created or destroyed.

In what follows, we therefore adopt the following
expression for T,„:

(We have normalized t" to f f'=+1.) The leading
divergent term is present even in flat spacetime
and may be regarded as a renormalization of the
cosmological constant. The final "renormalized"
expression is thus

R
PV+ 48& &gV ' (12)

The term 8„„, evaluated in the special coordinate
system in Eq. (8), is not expressible in terms of
local geometrical quantities. This is to be expect-
ed, as the definition of the state of the system is
a global one. In this soluble model, the effect on

T„,(x) of the geometry elsewhere has been encoded
in the special choice of coordinates g7, v.

When C(u, V) is a function of gi alone, the space is
flat and the ambiguous finite terms in Eg. (7) van-
ish identically. T,„ is then in general both trace-
less and conserved. This situation reduces to that
treated in Ref. 3, in which radiation can only be
produced at the surface of the moving mirror,
where the conservation equations (9) break down.

The expression in Eg. (12) will now be evaluated
in the model of collapse described in Ref. 2. In
this model, the metric is obtained by eliminating
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ds' = (1 —2M/r)dt' —(I —2M/r) 'dr '. (13)

There exist three useful sets of null coordin-
ates for this problem. In the first, given outside
the shell by

u=t —x",
v=t+x~,

r ~ = r+ 2M ln(r/2M 1)—,

(14)

the angular coordinates from that of a four-dimen-
sional shell of matter which collapses at high vel-
ocity. Inside the shell spacetime is flat, whereas
outside the shell the metric takes the Schwarz-
schild form

ds' = (1 —2M/r)dPdV, (20)

that is, the conformal factor, C(u, V), to be used
in E(I. (8) is

C =1 —2M/r (21)

where B(u) is a slowly varying function of u whose
exact form depends on the nature of the collapse
process and does not affect the final result, while
u =A is the equation for the future horizon.

The above relat'ons lead to an expression for the
external metric in u, v coordinates and to values
for a renormalized T,„. For retarded times u be-
fore the onset of collapse, one obtains

the external metric takes the simple form

ds' = (1 —2M/r)du dv, (15)

in the external region of spacetime. The values of
T„„in this region expressed in u, v and in t, x
coordinates are

with r an implicit function of u, v by E(ls: (14).
The second set, U, V, is defined so that the in-

terior metric takes the simple form

4'„„=(4414 (
— ),

~
2M2 I

ds' =dUdV. (16)

u=-4M In(A —u)+B(u), (19)

The relation between the u, v and the U, V coordin-
ates is obtained in Ref. 2 by demanding continuity
of the metric across the shell in either coordinate
system.

Finally, the coordinates u, v which are to appear
in the mode solutions (5) and in the determination
[E(I. (8)] of the energy-momentum tensor are ob-
tained as follows. To ensure that the state con-
sidered is the usual initial vacuum, the modes are
defined to have the form e '"" near 8 . (8 and 8'are
past and future null infinity, respectively. This gives
the relation v =v everywhere. Using the relation
between V and v given in Ref. 2, one obtains

V=(1 —2M/R) 'i2V, (I'7)

where R is the radius of the static shell before it
begins to collapse. This relation holds only for
advanced times preceding the beginning of col-
lapse, but the assumption that the shell collapses
quickly makes this sufficient. The reflection
boundary condition at r —= (V- U)/2 = 0 implies that
the modes take the form

exp[-i &u(1 —2M/R) a ~'V] —exp[-i u&(1 —2M/R) ' ~'U) .
(18)

It follows that u = (1 —2M/R) ' ' U for all retarded
times which will be of relevance for the calculation
of T„„outside the collapsing shell.

The relation between u and U derived in Ref. 2
implies the following relations between u and u.
For retarded times before the collapse has begun,
one has u=u. For retarded times u long after the
collapse has begun, one obtains

3M M
T„„=(24w) '

a„(a4,)- (™--,),

(22)

M
T„„=-(24m) '(1- 2M/r) '

For retarded times, u, long after the collapse,
the external conformal factor in u, v coordinates
takes the form

aM) (23)

where O(1) are terms of order unity in p. Evalu-
ating T„„outside the shell, transforming to u, v

coordinates, and neglecting terms which die off
for large values of u or t, one obtains

, 3m' m 1
"sans')

=(468aM') '(1 —
) ((+ +, ), (44)

with T„„and T remaining as in Eg. (22).
Comparison with E(I. (22) reveals that the effect

of collapse is to add a constant t;erm to T„„,which
appears at large r as a flux of energy (defined as
in Ref. 2 by using the timelike Killing vector field
outside the shell) of magnitude (768zM') '. This
is just the energy flux one would expect on the
basis of Hawking's arguments (Ref. 1) as applied
to this model. Note that we have obtained it with-
out appealing to Bogolubov transformations or
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backward ray tracing.
From Egs. (24) and (22), one finds that the flux

of energy is given by two components. Near in-
finity it is dominated by an outward null flux of
energy (given by T„„). Near the horizon, however,
it is a flux of negative energy going into the hori-
zon of the black hole (represented by T„„for x near
2M). This negative energy flux would presumably
cause the area of the horizon to shrink at a rate
consistent with the energy flux observed at infin-
ity. [Note that negative energy densities are pos-
sible in quantum field theories even in flat space-
times (see Ref. 3).]

The energy-momentum tensor obtained here is
finite everywhere outside the collapsing shell
when expressed in coordinates which are regular
across the horizon. Therefore, the constant rad-
iation flux at infinity does not imply [even given
Eg. (9)] infinite energy densities or fluxes near
the horizon, as one might fear. Therefore our re-
sults are entirely consistent with Hawking's spec-
ulation (Ref. 1) that the process can be described
as the creation of "particles" in pairs near the
horizon, with one carrying positive energy to in-
finity and the other carrying negative energy into
the black hole. It also supports the result in Refs.
2 and 8 obtained in analyzing the behavior of freely
falling detectors near the horizon.

An alternative view of the Hawking process is

that the particles which reach 8' must have been
created entirely inside the collapsing matter. Al-
though the decomposition of T,„ into a static vac-
uum polarization and a constant outward flux can .

be construed to support that picture, we feel that
the form of the total energy-momentum tensor
near the horizon casts doubt on the physical rele-
vance of that description. Of course both descrip-
tions are only figures of speech since particles
are not well defined in the regions of high curva-
ture near the horizon.

In conclusion, we emphasize that the energy-
momentum tensor has been calculated by means of
a particular method of regularization for space-
time about a model collapsing star, including the
regions of high curvature. Althoug certain am-
biguities in the point-separation technique of reg-
ularization remain, and although this calculation
has been for a very simple two-dimensional mod-
el of collapse, we believe that the result greatly
increases one's understanding of, and confidence
in, the surprising effect discovered by Hawking.
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