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The recent modification and extension of Einstein's nonsymmetric unified field theory for gravitation and
electromagnetism is generalized to include the Yang-Mills field theory. The generalization consists in assuming
that the components of the linear connection and of the fundamental tensor are not ordinary c numbers but
are matrices related to some unitary symmetry. As an example we consider the SU(2) case. The theory is
applied to the gauge-covariant formulation of electrically and isotopically charged spin-1/2 field theories.

I. INTRODUCTION

g&a =g«»+&Fel ~

2
(1.2)

where A~ is defined by

(1.3)

P is a universal constant, the vanishing of which
leads to the Einstein-Maxwell theory with g«»
and F*~& as the metric and connection of general
relativity, and F,~ and A~ as the field tensor and
potential of Mmavell's electrodynamics, respec-
tively. The field equations for g, ~ and I'~& are
derived from a variational principle with the La-
'gl ang lan

I t:ab3~ay+ 2g gras g + 16mJ'Aa+ 8'

where R,~ is the contracted curvature tensor

R)~= I']~„—I'), ~ -I",~1 ],+ I', ~X']~,

and g"» is the tensor density

(1.4)

(1.5)

(1.6a)

The extended nonsymmetric unified field theory
is characterized by a tensor field g„and a linear
connection I"&,"which can be decomposed ac-
cording to'

(1.7) is equivalent to Einstein's i. transformation
of the linear connection

J'Ig = ~ay+ &a~, g (1.8)

The application of the unified field to the gauge-
covariant formulation of Dirac s equation4 suggests
fixing the universal constant P as

p=-2ih/e (c=G=1),

~p~
=3.8x10-- cm;

with this value, the deviations from the Einstein-
Maxwell theory must be expected to become sig-
nificant only for phenomena dominated by quantum
field effects. The only "classically" detectable
deviation found so far is the nonexistence of mag-
netic monopoles proved by Boal and Moffat, ' a
fact in good agreement with the asymmetry be-
tween electricity and magnetism found in nature
but not reflected in Maxwell's theory.

The close similarity between Einstein's gravita-
tional field equations and the Yang-Mills field
equations is well known, a correspondence arising
from the fact that both are self -coupled gauge
theories. ' It is therefore natural to investigate
whether it is possible to construct a unified field
theory containing both. In the following we are
going to show that this is indeed possible, the uni-
field field theory so obtained having a principle of
correspondence to the Einstein-Mmrwell theory
and the Yang-Mills theory.

ao = (—detg, „)'~', (1.6b)
II. THE YANG-MILLS FIELD EQUATIONS

g gga= ~y ~ (1.6c)
J' is the electric current density and L is a density
containing matter fields and the metric tensor
g&&». The theory is invariant under the ordinary
electromagnetic Abelian gauge transformation

where A. is an arbitrary function. %hen applied to
the decomposition (1.2), the gauge transformation

For the sake of completeness and in order to
fix the notation we shall give a brief review of the
Yang-Mills field equations. ' Let X be a two-com-
ponent wave function describing a field with iso-
topic spin —,'. Under an isotopic gauge transforma-
tion it transforms as

(2.1)

where S is a 2 & 2 unitary matrix. The isotopic
gauge invariance of the field equations for g is
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secured by four Hermitian traceless matrices
B,, i = 0, 1, . . . , 3 entering the gauge-covariant
derivative

~; —i'; (2.2)

and transforming under the isotopic gauge trans-
formation (2.1) as

B~=S- B,S+—S-p j.
&x' ' (2.3)

From the field B; we define the field

E)~ =B) ) -B; )+ill(B(B~ B)B(-),

which transforms as

E~]~ =S 'E)~S,

(2.4)

(2.5)

(0 11 (0

(1 of (i oj

with the three Pauli matrices and the unit matrix
given by

III. THE UNIFIED THEORY: FREE-FIELD
EQUATIONS AND GAUGE SYMMETRIES

The generalization of the nonsymmetric unified
field theory presented in Sec. I, which we are now

going to investigate, consists in assuming that the
components of the linear connection I ~~ and of the
fundamental tensor g, ~ are matrices instead of
ordinary c numbers. For the sake of clarity, we
are going to consider a definite case, namely that
of 2 x 2 matrices, corresponding to isotopic spin
[SU(2)], but the whole analysis can immediately
be carried over to n &n matrices corresponding
to SU(n). &.s matrices do not in general commute,
the order of the fields in the nonlinear terms now

becomes important.
Under the isotopic gauge transformation (2.1),

we assume that the fundamental tensor g,.~ and the
linear connection I'~,. transform as

(3.1)

(3.2)

01 r'1 O

~s/ /~ 0
—

/

(0 -1) (0 lp

(2.6}
Corresponding to (1.8), Einsteins X transformation
becomes

(3.3)

B;=~ b- (2.7)

where arrows denote three-vectors in isotopic
space. Similar to (2.7), we have for E,».
The four traceless matrices B, can be uniquely
written as a linear combination of 7] v2 73,

~gki

so = [——,'Tr(detg, »)]' ',
g ge=~o~ay

(3.4a)

(3.4b)

(3.4c)

To the fundamental tensor g,~ we attach the tensor
density g"~,

By use of the commutation relations

(2.6)
where Tr means that the trace of the matrix should
be taken. From (3.1) and (3.4), it follows that un-
der isotopic gauge transformations, g"~ trans-
forms as

[f a, f i]]=2if (ax b) (2.9)
gl lk S lgl gPS (3.5)

we obtain the relationship between f,~ and b~:

P =b; „-S„,—2gS,. x b .

The field b; satisfies the gauge-inva, riant Yang-
Mills field equations

f„,+ 2mb, x f,,+I,. = 0,

(2.10)

(2.11)

where j, is the isotopic current of the source
fields. From (2.11), we derive the equation of con-
tinuity

(2gb, x f), + j,) )-0, (2.12)

which leads to the interpretation of 2~1, x f„as
the isotopic current of the Yang-Mills field itself.
The whole theory is trivially transferred from the
case of isotopic spin to any unitary symmetry.

As a Lagrangian for the free-field equations we
shall use

g Tr grabs + fab )g1 (3.6)

where R,» is defined in (1.5). By use of (3.1},
(3.2), (3.3), and (3.5), the invariance of the La-
grangian (3.6), under an isotopic gauge transfor-
mation as well as under a X-gauge transformation,
may be verified by straightforward computation.
It is these remarkable symmetry properties of the
curvature tensor, that it admits both an Abelian
and a non-Abelian gauge transformation, which
make it possible to construct a un''ied theory con-
taining both the Yang-Mills field and the electro-
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magnetic field.
By independent variation of (3,6) with respect

to g"~ and I",~ we obtain the system of field equa-
tions

B~~~=O, (3.7)

R fa =R tb+ ftb (3 9)

Itb= a(gt—ag gbb+ bgtbgabg
' +g(tb)) (3..10)

p

In order to disclose the physical content of the
field equations (3.V) and (3.8), we decompose the
fields g,~ and I'~~& according to

gtb= g«»+&(&OFtb+ ~«b) (3.11)

gt jb + p j g tab+ gt jamb gt jbpt +Xgt jb6bpt pa$ ia jt 3 4 fbt]

(3.8)

where R fb is defined by

combination of the four matrices YD, 7'. With the
decomposition (3.11) and (3.12), the gauge trans-
formations (2.3) and (2.5) becomes entirely equiv-
alent to the gauge transformations (3.1) and (3.2).
Also, the gauge transformation of A&,

1
OA& ~OA&- &&X &7'oy (3.16)

becomes equivalent to the ~-gauge transformation
(3.3). The decomposition (3.12) is thus not only
a decomposition with respect to tensor symmetries
and matrix properties, but also with respect to
gauge properties: The three fields I'*, A~, and
B, generating, respectively, general covariance,
an Abelian gauge, and an isotopic gauge, corre-
spond to the three natural forces: gravitation,
electromagnetism, and the Yang-Mills field.

We have not written 1"*and g«» in terms of
the four Pauli matrices. In the following we shall
only be concerned with the possibility

(3.12)
I".*'='T (I',*') .,

g(tb) &Tr(gttb&)vo~

(3.1V)

where the decomposition is fully defined by

~&nag =0

«b=& ttb

(3.13)

(3.14)

(3.15)

and where we have used the fact that every 2 x 2
matrix can be uniquely expressed as a linear

which leads to Einstein's theory of gravitation.
The inclusion of traceless parts of F~&' and go~~ is
equivalent to the introduction of new, electrically
neutral, isotopically charged fields, the investiga-
tion of which will be left for future considerations.

Inserting the decomposition (3.11) and (3.12) in
the field equations (3.V) and (3.8) splits these
into the system of equations

R~,„,(r*)=0, (3.18)

R&, &(I'*)+ A&, „&r,+—itt. [Bt „-B,+itt(B B BB,)]=0,- (3.19)

gt jb + Pa jgtab+P[bgt jb Pat gt jb t&(B gt jb go jbB ) P
~ 5 af

I'F~) =o

(3.20)

(3.21)

=v Ft'+ pE
p 0 7 (3.23)

@tb f~Pb' (3.24)
and insert in (3.22), we obtain the following on
separating into parts with vanishing and nonvan-
ishing trace:

where Rtb(I'*) is related to I'* in the usual way by
means of (1.5). Antisymmetrizing (3.20) in j and k
and thereafter contracting in k and i, the I'*-de-
pendent terms cancel identically, and we obtain

;tt(B gsja& g.r.j ~B ) p (3.22)

If analogous to (3.11) we decompose g tb~ accord-
ing to'

(wF~), =0, (3.25)

(wt j'),+2ttb, &Fj'w =0. (3.26)

Equations (3.25) and (3.26) are seen to correspond
to the "current parts" of MMvvell's equations and
the Yang-Mills equations, respectively. We ob-
serve that the Yang-Mills fields do not carry any
electric charge, a result which already might have
been for seen from the unbroken unitary symmetry
of the theory. The unitary symmetry considered
can therefore not be connected with electric charge
such as is the case for ordinary isospin. An in-
terpretation which suggests itself is color SU(3)
in the quark model, where the quanta of the b,
field are then the gluons which keep the quarks
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together. Another possibility would be to intro-
duce a symmetry-breaking term in the Lagran-
gian —a possibility which we shall not consider
for the time being.

IV. THE EINSTEIN-MAXWELL-YANG-MILLS LIMIT

It remains to find the content of the field equa-
tions (3.18) and (3.19}. This is most conveniently
done by investigating the correspondence principle
of the unified theory, which, as in the theory of
Moffat and Boal, consists in taking the formal
limit of the system of field equations (3.7) and

(3.8) as P-0. This limit we shall eall the Ein-
stein-Maxwell-Yang-Mills limit, or for short,
the EMYM limit.

From the inversion relation (3.4c}we derive

Equations (4.5) and (4.6), together with (3.25) and
(3.26), form Maxwell's equations and the Yang-
Mil. ls equations. By use of (4.3), Eqs. (3.18) and
(3.19) in the EMYM limit become

2 Tr[R(;k) (I'*)]

1=8r M; rrr* —((„ l' ——,'Fl, ,lf, ' f'))4n'

g (&k) + (&&) Pek + ( k)P gj g(('(&k)Pgg 0,i+e ib g ai g (i&)

which is Einstein's equations with Mk; as Max-
we1.1's stress-energy tensor, and I'* as the
Christoffel symbols formed from the metric ten-
sor g(,.k).

V. GAUGE-COVARIANT FORMULATION OF
ELECTRICALLY AND ISOTOPICALLY

CHARGED SPIN-I/z FIELDS

1 ka ib [ki]
p g[aa]C

As F,k and &,.k remain finite, it follows from
(3.11) and (3.4c) that g[,k] and g " vanish as
P-0. Thereby we get from (4.1)

(ai) (Ok) f
Eik E g (ai) g (bk) fO p 0

The symmetric and skew-symmetric parts of
I„, defined in (3.10), are given by'

[a&] [ab]
(ik) =

~g (g(ia) g g[Vk]+g(ka) g g [Oi]

[a&]+ k g(lk) g[ak]g )r

[ab] [a~]I [ik] 2 ( g [ia] g 8 [bk] +8 ( ia) g g (bk)

[ab]+ 2 g[i ]gk[a ]gk+g[(k]),
which lead to the limits

(4.1)

(4.2)

The field equations in the presence of electric
and external isotopic currents can be obtained
by adding to the Lagrangian (3.6) a "phenomeno-
logical" interaction term of the form

2;„(= Tr [I'('„](A Jsk +BJ,')], (5 1)

where A and B are suitable constants, and J~k and

Jz denote the electric and isotopic current den-
sities of the sources, respectively:

Js= k ro Tr(Js),
vk ~

~
~ kdl -T ]I ~

In a nonphenomenological context, that is, when
some definite source fields are considered, the
interaction is obtained by the construction of suit-
able covariant gauge derivatives. We shall there-
fore proceed to find such a suitable gauge deriva-
tive in the unified field theory.

The contracted curvature tensor (1.5) may be
written in the form

-', llm Tr(rl, l)= —8r —(F,,F ' ——,
'

al,. l F„F"))
P~o 4n

k —:g(ik) f.O' f"

(4.3)

(4.4)lim pea[, ] 2(raF, k+]),E——,k). . .
D~O

+ik ~ts ~ik Dsk ~$g ~

with the derivative Dki& defined by

Dkg = ~k ~&+I'k~ ~
i

Using the decomposition (3.12), D& becomes

(5.2)

(5.3)

(5.4)

F;» = —2A

f ik bi, k bk, i
—2+bi X bk ~

(4.5)

(4 6)

where by comparison with (2.10) we have fixed
the constant p. as

j. ~

g ZAP. (4.7)

Split into parts with vanishing and nonvanishing
trace, (3.19) then becomes in the EMYM limit

Dki& is the gauge derivative we are looking for. It
contains three gauge fields: the Abelian gauge
fields, the isotopic gauge field B, and the field
I"*securing general covariance —all three fields
united in a field I'. If the derivative (]& —(2/p)Az
-i'& should correspond to the gauge derivative
used in electrodynamics and in the Yang-Mills
field theory, the constants p and z must be fixed
as
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p = -2ik/e, (5.5) have a correspondence to the gauge-invariant Dirac
equation in special relativity

K= e/Kq

by which the constant ik in (4.7) becomes

p, = -e/e,
and the gauge derivative D~& becomes

(5 6)

(5.7)

kp ge ze p m pr0~2+p sk g +k @ +k X
p

P P ge Ze.
P

Sl I/&o&2& ~ sk- I &k-
@

&k 5 =
I, X

(5.15)

te zE
D~»=~a 7.~»- @&»&0- g &» +I v (5.8)

we must demand that the mixed connection l @„ in
a local inertial system, reduce to —(ie/ff)5qA, ro
—(ie/ff)68 B„ in the EMYM limit

where e and e are the elementary quanta of elec-
tric and isotopic charge. As an example we shall
consider the general gauge-covariant formulation
of an electrically and isotopically charged spin-
—,
' field.

In the special theory of relativity, such a field
satisfies Dirac's equation, which in spinor form
may be written ''

~~o";"(&k&') =
~

X'

( 5.9)

where Greek indices take on the values 1,2 and
Latin indices as usual take on the values 0, 1, ...,
3. os" are the generalized Pauli matrices which
connect the ordinary metric g~&~~ and the skew-
symmetric spinor metric y»,

P 1.P &l Po 1.P Po
g(ag) (5.10)

from which we derive the orthogonality relation
~ X p+1.Po (5.11)

Xp)k =skXp I ukXa

(5.12)

transform as mixed quantities. This requirement
is expressed in the transformation rules

(5.13)

for a spinor transformation with transformation
coefficients AP, and as a covariant vector in the
indices s, under an ordinary coordinate trans-
formation. In order that the generally covariant
Dirac equation

As the 0's transform as mixed quantities, "we see
from (5.9) that the problem of general covariant
formulation consists in finding a mixed connection
I"~, for which the covariant derivatives

I's, —
~ 6sd, v~-

@ 5s B, for p 0, (5.16)

whenever

0, &, g(k/) =0.

It may be verified by straightforward computation
that the mixed connection defined by

rps, = .' (y) '-/'-ok„s&'„k (r)'/'c""", r = r1kr1k

(5.17)

satisfies the transformation rule (5.13), as well
as the condition that it transform as a covariant
vector in the indices s. In order to verify the
gauge invariance with respect to Abelian and non-
Abelian gauge transformations, as well as the
correspondence condition (5.16), we decompose
rPs„using (5.8),

p ze p zc pI Ss g ~8+sVo g ~8+

1 (y)-1/4g ~ (6A 6 ~ +p +k)grct p{y)1/4

(5.18)

where we have used the relations (5.11). By com-
parison with (5.15), we see that (5.18) is gauge-
invariant, as I'* does not change under Abelian
and non-Abelian gauge transformations. Using the
fact that I * reduces to the Christoffel symbols in
the EMYM limit, it follows that the correspon-
dence condition (5.16) is also satisfied.

VI. CONCLUSION

The unified theory for gravitation, electromag-
netism, and the Yang-Mills field presented in the
foregoing is characterized by a linear connection
I'~& and a fundamental Hermitian tensor field g&„,
the components of which form rq.atrices related
to some unitary symmetry. The field equations
of the theory can be derived from the Lagrangian

~I

~2~p"(Xt', ) =
~

t'

(k'peak)
=

g X

(5.14)
& = Tr g"k(D' I' -O' I" ) + —g'~'kjg1

(6.1)
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by independent variation of g"" and F„'&. D„'& is a
gauge derivative defined by

Day
—5a8g+ 7

The universal constant p is given by

p = —2i a/e (c = a = 1),

(p )=3.6xlo "cm.

(6.2)

(6.3)

The theory is invariant under three different kinds
of gauge transformations: general (coordinate)
covariance, and Abelian gauge transformation, and
a non-Abelian gauge transformation. The system
of field equations is split up into the Einstein-Max-
well equations and the Yang-Mills equations if we
take the formal limit p 0. This principle of cor-
respondence is deepened by comparing (6.3) with

the metric of the Moffat-Boal solution

dt

+] + —, df' +&2 dg +sin gd
2m Q'
y

(6.4)

We would expect deviations from the EMYM theory
to become significant for phenomena characterized
by a distance R,

Rs~,
of the order of a Planck length. At these distances
quantum field effects must be expected to dominate.
A positive test of the theory therefore presumably
awaits its quantization.

A. Einstein, The Meaning of Relativity (Princeton, New

Jersey, 1955), Appendix 2.
2J. W. Moffat and D. H. Boal, Phys. Rev. D 11, 1375

(1975).
3K. Borchsenius, report, 1975 (unpublished).
4K. Borchsenius, report, 1975 (unpublished).
5D. H. Boal and J.W. Moffat, Phys. Rev. D 11, 2026

(1975).
~R. P. Feynman, Magic Without Magic: John Archibald

Wheeler, a Collection of Essays in Honor of His 60th
Birthday, edited by John R. Klauder (Freeman, San
Francisco, 1972), p. 377.

7C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
8It is important to notice that E' and E'~are defined by

(3.23) and not by raising the indices of E;I, and 8;~ with
the help of the metric tensor g~;g. We shall later see
that these two definitions become identical in the limit
p~0

SL. Infeld and B. L. Van Der Waerden, Sitzber. Preuss.
Akad. Wiss. , Phys. —math. Kl. 9, 380 (1933).
W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714
(1953).

~~A mixed quantity is a quantity transforming as a tensor
in the Latin indices and as a spinor in the Greek indices.


