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We reexamine the calculations of the K~ ~I',P, decay rate and the K~-Ks mass difference in the Weinberg-
Salam model with the Glashow-Iliopoulos-Maiani mechanism incorporated. We consider both the free-quark
model and corrections due to strong interactions in an asymptotically free theory, and compare our results
with those of other recent calculations. Our conclusions are basically identical to those drawn from our
original free-quark calculation: The decay amplitude for K~ ~p, p, is dominated by the conventional two-

photon exchange, and the decay rate places no useful limit on the charmed-quark mass, whereas the K~-Ks
mass difference constrains this mass by m, & a few GeV, as noted previously.

I. INTRODUCTION

A number of authors have computed the decay
rate K~ - p, p, in the Weinberg-Salam model of elec-
tromagnetic and weak interactions which incor-
porates the so-called GIM (Glashow-Iliopoulos-
Maiani) mechanism, and commented on the mass
scale of the fourth quark, i.e., the charmed quark,
which appears in this scheme. More recently,
several authors discussed the effects of strong
interactions on these amplitudes, assuming that
strong interactions of hadrons are described by
an asymptotically free gauge theory.

One of the purposes of this note is to clarify
the discrepancy between Ref. 1 and those of Rus-
sian workers, ' especially of Flambaum, on K~- p, p.. We find that the result of paper l is in er-
ror, and our correct result agrees with Ref. 2.
However, we disagree with Flambaum regarding
the Ward-Takahashi identity for the Sds vertex.
Under the circumstances, we feel it necessary
to describe our calculation in some detail. The
second subject we wish to discuss here has to do
with estimating the size of strong interaction ef-
fects in the processes. We obtain results which

are not completely in accord with previous au-
thors, ' including Vainshtein, Zakharov, Novikov
and Shif man.

II. WARD-TAKAHASHI IDENTITY

Zp, Zu

FIG. 1. Diagrams contributing to the effective Zds
vertex.

The effective Zsd vertex discussed in Appendix
B of I is a sum of diagrams depicted in Fig. 1,
where black circles represent one-loop correc-
tions. These diagrams are separately divergent,
but the sum is not. To extract the finite sum, we
make use of the Ward-Takahashi identity described
below. We shall also outline the direct calculation
of Fig. 1.
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It was shown elsewhere4 that in a gauge specified
by

~[4]=f 'gqp&

the Ward- Takahashi identity for the generating
functional for proper vertices may be written as

(2)

where I'= I', —&E,
' is the generating functional of

proper vertices with external Q lines, and
c'f;r~[(II)]c' is the generating functional of proper
vertices with two external ghost lines and an arbi-
trary number of external (II) lines. The index a
refers to the adjoint representation of the gauge
group in question.

We consider a special case in which the index
a in E(l. (2) refers to the transformation which
leaves the photon field invariant but changes the
Z~ field by a translation:

In one-loop approximation, we consider

ra[y] 0[ p] p
62 5s

We need to concentrate on the case in which r;[Q]
takes its bare form, and I', is given by the one-
loop approximation. To this order, E(l. (4) is a
statement that I', is invariant under the gauge
transformations (3a)-(3d). Taking into account
E(ls. (3a)-(3d) we obtain the expression (B2) in I:

(4)

g(&) + ~5

where the on-shell value of E is related to I",
through E(l. (4):

(q -p)"r."'(q, p) -[~(q)T -T*~(p)]
= ig(g'+g")' 'ur, (q, p). (5)

As explained in I, to lowest order in (m, /m)), )',
the effective vertex E', ' can be written as

gA, =O,

5S.= s,x(x).
(3a)

~2'(g'+ g ")'"v2(q)r, (q, p)s(p

= 2(q)(m„L mQ) s (p)-E. (7)

(d (d')

(s (s
(3b)

where

7 = {-& —(Q —1)sin'8 ~L+ [-(Q —1)sin'8~]R].

&& (g g2)) 2

(3c)

Under this transformation, the d and s fields and
the Higgs field (t), change by

It is important to observe here that the Ward-
Takahashi identity (5) is correct in all linear gaug-
es of the form (1), and to all orders in strong in-
teractions if they are invariant under the gauge
symmetry of electromagnetic and weak interac-
tions. We note that this Ward-Takahashi identity
disagrees with that of Flambaum. ' It will be use-
ful for the calculation of E,"' to recall the follow-
ing facts from I. Again to lowest order in

(m, /m)q, )', and assuming m„= m„= m, «m„Z and
I "' have the forms

L = —,
' (1 —y, ), R = —,'(1+y, ),

50, = i(-k)(g'+g")"'(iA. ) (3d)

r(')(q, p) = y„L~,

Z(p) =pLa+ bL+ cR.

E,' ' can thus be written

(8)

= i2(q)y, Ls (p)[x+ Q+ (Q —1)sin'8~] (g'+ g")'~'a];

III. K~~pp, . b k„(1 —1/$) 1
i&„„(k)= -ig „+i

We proceed to the computation of I', and of E„' '.
To ascertain gauge independence of our result, we
carry out the computation in the R, gauge, wherein
the W' and (t)' propagators are, respectively,

i~(u) = i(u' —m, '/[)-'.
Dimensional regularization is used for the treat-
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m 2

jI',"'= ln, -1 —-'ln C,
~C

(10)

ment of divergent integrals.
There are altogether five diagrams which con-

tribute to I', to order G~n(m, /m~)', shown in Fig.
2. [Henceforth we neglect m„, but we cannot neg-
lect the external masses as the Ward identity, Eq.
(7), is valid only on the mass shell. ] The graph of
Fig. 2(a) is convergent, but the graphs 2(d) and
2(e) have a logarithmically divergent term pro
portional to the external mass. This divergence
cancels when the u and c contributions are added.
Explicit evaluation of the diagrams 2(a), 2(d), 2(e)
yields

Graphs 4(a) and 4(c)-4(e) yield

I"„I"= I —2ln n + 2Q nln'nn)
C

+ (2 —3Q sin'8~)in( K„, (16)

using the Ward identity of Eq. (7). However, as
we wish to demonstrate explicitly the validity of
Eq. (6) we shall proceed to the direct evaluation of
E~ . The relevant diagrams are those of Fig. 1,
which are made explicit in Figs. 3 and 4.

Graph 3(a) gives the following contribution to the
(nondiagonal) self -energy:

3 ging 1
2 $ —1 2

where the common factor

2 c c C P(g P)Lt/(16w') m~' (12)

r',"'=3cos'8 &+
y

K„

I ""'+'"'= sin2g y+ Z3g in)
2V

g 1 212

(17)

(18)

(13)

in the limit n-4, where n is the dimension of
space-time. Combining Eqs. (10)—(13), we find

, sine, cos8, rn, '

m~2 3 (7$ —1)
m, ' 2 4(( —1)

x d(q)(g P)Ls(P). - (14)

The Zds vertex may be extracted from Eq. (14)

has been extracted. The contributions of graph
2(b) are exactly canceled by the counterterm 2(c)
[see Eqs. (24) and (25) below]:

where, for brevity of notation we have extracted
the common factor

g2(g2+g22)1/2 m 2

K~ = (l„„sin&,cos8, ', y L.
4 16m2j Pl p'

(19)

Substituting these contributions to Z and I'"' into
Eq. (9), we obtain

2( 2 f251/t 2 m2E(z) g ig +g I s ne cosg mc
2(16'') ' ' m '

m~2 3 (7g —1)ln, ———
(] 1) in) y L. (20)

This is in fact the final result for E„' ', as will
now be shown.

The cancellation of logarithmic divergences
which occurs for the above graphs does not occur
for graphs 3(b), 4(b) or 4(f), since the divergent
parts of these diagrams are proportional to m, '.
The counterterms required to render Z and I'~ '

finite are given by

I tI)2

(a)

I

I

I
I fI)2

(b)

I

I

I

I $2

(C)

dlty ' 8 —(g +g ) [a+ (Q —1)sin 8s]y'Z]

x Ls sin8, cos8, (Z Z//. )

+ H. c. , (21)

where, as in I, S~ and Z~ are the wave-function
renormalization constants for the left-handed quark
doublets. The same renormalization constants

l

I
I fl)2

(d)
lo,

(e)

s d

(Q)

/

C,U

(b)

s d

(c)

FIG. 2. Diagrams contributing to the effective @tlf s
vertex to order G&=a(m, /mz, ) .

FIG. 3. Lowest-order diagrams contributing to Fig.
1(a) .
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render Z and I'„' ' finite, and can be chosen to can-
cel the sd transition on mass shell. Z~ and Z~ can
be determined from graph 3(b):

sin8, cos8, m, '
2(16m') m~'

1 2 1
X PI—+ —+ 1n 5)4-n 2

Both procedures are equivalent as regards the
final answer for E'~'.

The second term in Eq. (22) represents adirect
sd transition, as does the first, and must be can-
celed by another counterterm in the Lagrangian.
This term is of the form

APLs($, + n+ iQ, )+Bus�($,+ v —iQ, ) + H. c. ,

2—(m„L + mQ) + 1 + jn)4-n where p, is the physical Higgs scalar and

(24)

(22)

where the expression represents the limit as n-4,
with n the dimension of space-time. Thus,

+ sin8, cos8, m, '
4(16m') m~'

x + —+ ln

It is readily checked that the corresponding Zds
counterterm cancels the sum of the contributions
of graphs 4(b) and 4(f) to I"~~'. As is evident from
Eqs. (9) and (21) the sd and Ssd counterterms give
equal and opposite contributions to E~ '. Thus,
alternatively, one could simply add all of the
graphs in Figs. 3 and 4 together directly, without
adding the counterterms in graphs 3(c) and 4(g),
and the result would be that the divergences aris-
ing from Z would exactly cancel those from I'~ '.

0
&0).=

~

i, vjv 2

The renormalization constants A and 8 are given
by

A= "8
ms

sin8, cos8, m, ' 2
4(16m') " m~' 4 -n +1+in) . (25)

This is just the counterterm for the P,sd vertex
as shown in Fig. 2(e).

Now we may compare the expressions obtained
for E'~', Eq. (20), and for 1"„Eq.(14), and we
see that the Ward identity of Eq. (7) is indeed satis-
field. Our corrected resultagrees with that of Ref. 2.

To conclude our discussion, the Z-exchange
contribution to the process s+2- p, + p, , relevant
to K~ decay, is given by

~ —cos8, sine, ' (iry y, p)—(2y'Ls)»,
2 7r

' 38Gev 4

whereas the W'S' contribution to the process is

(26}

-i —cos8, sin8, ' —(py y, p)gy Ls) -ln,———+ in) .
m. 2

The sum of Eqs. (26) and (2t) is gauge indepen-
dent; while the sum is not equal to zero, as as-
serted in I, it is nevertheless small, being of or-
der 6~a(m, /36 GeV)' without any logarithmic fac-
tor. If m, ~ a few GeV as the K~-K~ mass differ-
ence implies, then the dominant mechanism for

K~ - p, p would be the conventional one of K~
—2y(virtual) —p, p.

IV. STRONG-INTERACTION EFFECTS ON E~ ~pp

We treat the strong interactions by an asymp-
totically free gauge theory —specifically color

I,
It

'Zp

(a)

Zp

C,U

)1

Zp

(c)

I 4
)t
I

Zp

(e)

C,U

Zp

It

Zp

(g)

FIG. 4. Lowest-order diagrams contributing to the s-d transition [Figs. 1(a), 1(b)].
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j,(x)jt(0) = ~ ~ ~ + c.„,(x)m.'z'(0)+ ~ ~ ~ (28)

where j is the standard charged weak current,

j~ =up„' (d cos8, + s sin8, )
1-y.

+ cy, (-d sin8, + s cos8, ),
1

SU(3). We quantize the gluons in the Lorentz
gauge: n= I//=0. In this gauge, there is no re-
normalization of the gauge parameter n, and no
quark wave-function renormalization to lowest or-
der

The box diagram s+ 2- 8"+ W" - p, + p, is cut off
at p =m~, where p is the integral loop momentum,
for removal of both 8'propagators renders the
integral logarithmically divergent. For this dia-
gram, therefore, the analysis of Nanopoulos and
Ross is correct.

The operator-product expansion relevant to this
amplitude is

Equation (31) takes into account the fact that in
the momentum range rn, &

~ p
~

~ m~, all four kinds
of quark degrees of freedom are excited. Strictly
speaking, we should add to Eq. (29) a contribution
from the momentum region //,

' &
~

p'
~

' ~ m, ', but
this gives a correction factor

Furthermore, Eq. (31) ignores any complications
that might arise from the breakdown of perturba-
tion theory near the charm-particle threshold.

For the Z-exchange diagrams, we note again
that the relation (7) is valid in the presence of
strong interactions. The bare Q,cc vertex is of
the form

PB

y cc= i c'4c42
2

and we are led to consider the operator-product
expansion

J)„=dye — ' s.

Since both j„and J)„have zero anomalous dimen-
sions ~

j (&)j.(x)p(0) = "'+ c„'„~(~ yu (o) +

where

P= cy,c

(32)

m, 'C, „),(P'x, g) = m, '(g)c,„,(x,g(g))&

= ~,'c.„,(x, o)t-'

&& exp —2 ye
mc],

(29)

&o= 8.4.
8'll

(30)

Thus, the effect of strong interactions is to mul-
tiply the amplitude of Eq. (27) by the factor

m&/v dt~ & (~ )
-24/25

exp -2 ye g

where g(g) is the running gluon coupling constant,
g(1) =g. //, is the momentum subtraction point, and
the anomalous dimension associated with the quark
mass operator, yo, is given by

is a pseudoscalar density. Since we have set the
external masses to zero, the relevant operator
on the right-hand side is necessarily a t/'-A cur-
rent operator. One c mass insertion is necessary
to obtain a nonvanishing result since p is a right-
left transition operator and j, is a left-left opera-
tor.

The analysis of this contribution differs from
the above in that the operator p(0) on the left-hand
side has anomalous dimensions. %e find

4g2
Yp Yo

Solution of the Callan-Symanzik equation then
gives

x exp — yo

where

n„(m~) = 1+,b„in8~2 t1

(31) with I (g) scaling as before. Then the expression
on the right-hand side is modified with respect to
the free-field case by a factor

33 -2n
b„=

exp -2 y g
mc l y

(33)

and n is the number of quark degrees of freedom
in ordinary symmetry space SU(n) (i.e. , flavors).

This is equivalent to the result of Nanopoulos and
Ross, who instead considered the expansion of
the product of three currents with two mass insert-
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ions. This corresponds to the effective PsZ vertex
which one is actually trying to determine. How-
ever, our analysis is more straightforward as it
is free of the complications entailed by the sum
over individually divergent diagrams and the wave-
function renormalization arising from the weak
s d transition.

Our result therefore reduces to that of Nano-
poulos and Ross if the momentum cutoff is effec-
tively m~, i.e., $ -m~/iL in Eq. (33). This is
precisely the point which is contested by Vainsh-
stein et al. ' and which is crucial if the cancella-
tion of the leading contributions [-In(m~'/m, ')] is
to be maintained in the presence of strong inter-
actions. Vainshtein et aL argue that while the ef-
fective distance x —y is determined by the W prop-
agator [see Fig. 5(a)],

lx -y l'- l/m, ',
the effective distances x, y are determined by the
charmed-quark propagator,

lxl' lyl'-»m. '
~

In such a case the short-distance behavior of the
coefficient function C~„~(x,y) must be treated more
carefully, as is in fact the case for the K~-K~
mass difference.

In the free quark case, to lowest order in I/m~',
the hadronic weak vertex reduces to a local cur-
rent-current interaction by the replacement

(mw' —A,
')-'- mw-'.

This replacement is legitimate in a loop diagram
[Fig. 5(b)] if the remaining integral is convergent;
then the effective cutoff of the integral is clearly
independent of the W mass. However, for the ef-
fective 2sg, vertex considered here, removal of
the W propagator [which is equivalent to taking
first the limit x —y -0 in Eq. (32)] leads to a di-
vergent integral. Thus the momentum cutoff must

c, C,

(a)

FIG. 5. Diagram (a) contributing to the effective oper-
ator of Eq. (32); the same diagram {b) in the limit
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be provided by the W mass, and we conclude that
the result of Nanopoulos and Ross is the correct
one.

A further argument supporting this conclusion
is the following. We saw in Sec. IG that the WW

and Z contributions to K~ - p, p, are not separately
gauge invariant with respect to the gauge group
of the weak interactions. Since the hadronic oper-
ators appearing in the Wilson expansion are the
same for the gauge-dependent and gauge-indepen-
dent pieces of each contribution, gauge invariance
cannot be maintained unless both contributions
have the same scaling behavior. Thus we conclude
that the cancellation of ln(m~'/m, ') terms must be
maintained in the presence of strong interactions.
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