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Electrodynamics and the electron equation of motion
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%e show the extent to which Lorentz-Dirac equations of motion for the electron follow from Maxwell's
equations. The standard derivations depend on cutoff procedures and other prescriptions. The conclusion is
that the Lorentz force is cutoff-independent but radiation-reaction forces are not.

I. INTRODUCTION

The purpose of this paper is to show the extent
to which the equations of motion for charged par-
ticles, including radiation-reaction forces, actually
follow from Maxwell's equations. The main dif-
ficulty encountered in deriving these equations is
that the electron's self-energy is infinite.

Since Dirac, ' ' the way around this problem has
been to isolate the electron's world line (EWL) by
a timelike tube (Z) and to evaluate the energy
integral outside Z only. Once the trick of mass
renormalization'' is performed g is shrunk to the
EWL. We study the dependence of the equation of
motion on the tube Z and other necessary pre-
scriptions. The conclusion we arrive at is that
the Lorentz force emerges independent of the cut-
off procedures while radiation-reaction forces do
depend on them. The dependence is explicitly
calculated. Ambiguities are removed in Sec. V.

In the following we describe the way the pro-
blem is solved, leaving the details of calculation
for the sections to come.

Classical electrodynamics is a very good theory
far away from the charge, but it breaks down
somewhere on the way as we approach the charge
since physically important variables such as the
four-momentum diverge. For regions close to the
electron all we have is a missing theory. On the
other hand, we know that very little detail of this
missing theory actually shows up. At the classi-
cal level it is just the electron's mass which is
accounted for in an ad hoc manner.

We begin by assuming that Maxwell's equations
are valid for distances greater than some length
& away from the electron, that is, outside some
world tube Z surrounding the EWL.

As is well known, ' it is the conservation of four-
momentum that gives the equation of motion most
easily. An action principle plus translation in-
variance4 ensure that the total four-momentum

T""der,

does not depend on the hypersurface o as long as it

is spacelike at spatial infinity and the physical
system is closed. This property is also valid for
radiating systems if the total radiated four-mo-
mentum is finite. T"' is the energy-momentum
tensor. 4 This conservation theorem cannot be
applied to the electron without modification be-
cause P" is divergent. What is usually done is to
evaluate integral (1) outside the tube Z postulating
that its contribution inside Z is just mg, where
m is the mechanical mass of the electron and v"
it s four-velocity.

Let f"" denote the external electromagnetic
field driving the electron and E""denote the retarded
potential. 4 The total electromagnetic field outside
Z is then f~" + F"" and the corresponding energy-
momentum tensor T"" is given by

T T + T + T

where

(2)

yP& FPof v +f P~F u + L~PvFn8f

v @pap v+ i pv~aaE
e (y agr

(&)

(4)

Tjlv f PQf v + I Pvf c(8f

The contribution Pmix. Of T"';„to P" is best cal-
culated by applying Gauss's integral theorem on

Tmi, v = 0 in the space-time region bounded by
o, E, the remote past, and spatial infinity (see
Fig l). We a. ssume the external field f"' to van-
ish at spatial infinity and at the remote past and
thus see that the integral P~mi. = /TED;"„der, may be
evaluated entirely on the tube Z. The advantage is
that when Z is shrunk to the EWL values of f"' on
the EWL only contribute to P";,.

The contribution P," of T,"" to P" can be calcu-
lated explicitly and consists of two parts P~ and
P„" which require separate computation. The
following geometrical construction is essential in
defining P~ and P~. Let S denote the closed two-
surface of intersection between Z and g as indi-
cated in Fig. 1. g is the three-surface generated
by null rays joining points of S and the EWL. Z"
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is a timelike tube surrounding the EWL which
eventually will tend to spatial infinity. In apply-
ing the Gauss integral theorem on T,""„=0in the
space-time region bounded by C, 0, and 5" we
see from Fig. 1 that the contribution to P," due to
the portion AB of g may be decomposed into an
integral over region A.D of t" and another over
region BD of Z" . We now see that P,"consists of
two integrals, one over C up to S and one over
Z" up to its intersection with C. The contribution
P~~ due to t" is called the bound four-momentum'
because after Z is shrunk to the EWL it depends
on the kinematical variables of the EWL at the
point of intersection of g and the EWL, at y =y in
Fig. I. P„", the radiated four-momentum up to
proper time 7, depends on the entire history of
the EWL since it is the contribution to P," due to

The existence of P"„is the only asymptotic
condition for the infinite past needed in our calcu-
lation 2'

P„"„ is conserved independently since f"" is as-
sumed to satisfy Maxwell's equation for a vacuum
and to have no singularities.

Anticipating the results (22}, (35), and (36) for
P";„, P~, and P~, respectively, we write the
four-momentum conservation law as

(mv" +P";„+P"+P„")= 0dr'

by ignoring all cutoff-dependent quantities, which
we know should not appear in a "good" theory any-
way. Lorentz-Dirac equations then obtain:

mv" = ef""v„+', e'—(v'v" v—")

Strictly speaking, these equations do not follow
from electrodynamics unless extra assumptions
are made. The Lorentz force is reliable since it
is cutoff-independent.

II. PRELIMINARY GEOMETRY

The main mathematical problem to be solved is
the evaluation of the integral P, for small c. This
is best accomplished through the use of the retard-
ed coordinates introduced by Newman and Pen-
rose, ' which we describe briefly below. Let
x" =z "(r) be a timelike world line parametrized
by its proper time z. To any given point x" in
Minkowski space we associate four labels
(r, K, 8, p) as follows: ~ is the retarded proper
time of x", that is,

[x"-z'(r)] [x„-z„(g)] =0;

a is defined to be

K =v„(r)[x"-z" (v)],

(6}

where v„(r) =z„(r)=dz„/dg; and 8 and p are the
polar angles of the null vector x" —z" (T} as re-
ferred to an arbitrary inertial system with a
constant time axis along t".

Coordinate transformation formulas are best
written in terms of the ray vector k" = K' '(x" —z")
which does not depend on K, that is, k" = k" (7., 8, p}.
Py definition of 8 and y we have' k" =Pk", since
the direction of k" is fixed for constant 8 and fII),

which combined with v„k"=1 gives

=- (v ~ k)k" (8
BT

where dots denote differentiation with respect to
g and s b=s„b". Fromx"=z"+Kk" and (8}oneob-
tains

dx = [v —K(v'k)k" ]dr + k"dK+ Kk"d8 + Kk~pdp,

FIG. 1. The world diagram describing various hyper-
surfaces used in evaluating the total electron four-mo-
mentum. 0' is a spacelike hypersurface cutting the elec-
tron world l.ine (EWL) at proper time w. ~ is a time-
like tube surrounding the EWL. C is a three-surface
generated by light rays joining points on the EWL and
points in the intersection of & and 0. This intersection
is referred to by S.

where K~e =8k"/88 and k~&=8k"/ey. The vectors
v", k", ke", and k~& satisfy nice orthogonality rela
tions. We first notice that from k k =0 and v.k =1
we have ke k=k&. k= ke v=k& v =0. We can set
ke ~ k&=0 too because from (8)

a—(ke k~) = —2(v k)(k k~)8r e

follows, and therefore if ke k& =0 for any given w

it vanishes for all y.
Now let o denote a spacelike hypersurface that
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cuts the EWL z" (7.) at 7 and let Z denote atimelike
tube surrounding the EWL but never touching it.
Let e & 0 be a distance scale such that when &-0 Z
degenerates tothe EWL; S denotes the intersection
of o and Z. We represent 8 analytically by two
functions of four variables as

7 =T(8y;7; e),

~ =R (8y;7; e),

where

d00 e ) ~ „p v k"k 8+1Gd p (15)

which is the solid-angle element for the inertial
frame with time axis v~.

The volume element dZ„ for the tube Z is given
by

dZ" =z'dvdQO (1 +Zg —Kv' k)k~i+ (E, —Kv k)v&

such that when 7 is eliminated from these equations
we get the tube Z given by

~e ke+ 2+ 2Z ke Z k@
(16)

K =Z(78$;e), (12)
where ki = k" —v" is the projection of k" onto the
hyperplane orthogonal to v".

and when c is eliminated we get the hypersurface
p given by

v' =o(a'8y;7).

Equation (10) is of central importance by itself; it
describes the three-surface C generated by null
rays emanating from the EWL and piercing S. As
seen in the Introduction, C contains the domain of
integration for the integral P~.

It is very easy now to calculate the volume ele-
ments for C and Z. We give the details for C only
since for Z the calculation is the same. Let dC„
be the volume element of C, that is, '

dC p
= Epp gpdKx dex d@x

where &p p p is the Levi-Civita permutation symbol
and d, x", dex~, and d~P are three independent
displacements within C. d, x" is the displacement
when K alone varies, dex" and d&x" are displace-
ments when 6 and P alone vary, respectively.
From (9) we have

d, X" = k"dK,

d8X =[(V —KV' kk )Tg +Kkg]d&,

d&x" =[(v" —z8 kk")T&+Kk~&]dg,

III. LORENTZ FORCE

In this section we compute the contribution of
T"';, to the total four-momentum P" as described
in the Introduction.

The integral under consideration is

Tmlx d @pe
p

I
pv

~ 0

where T" „ is given by (3). Reasonable physical
assumptions on the asymptotic behavior of the
external field f"", as discussed in the Introduc-
tion, allow this integral to be evaluated on the
tube Z, that is,

P" = — T"'dZ
Z

(18)

The minus sign is due to the fact that g is space-
like and Z is timelike. ' The limits of integration
are from the infinite past up to g. The advantage
of putting (1'I) in the form (18) is that when Z
shrinks to the EWL the external field f"' con-
tributes to P" on the EWL only. In this limit the
nonvanishing contribution to (18) is obtained by
inserting for the electron field

which gives for dC„ the following:

dC~ = (/Pa~p~p k k8ky +KTeeppgpk v ky

+~TeeuU~~k keivp)def

e' 2
Fu (kv v" —k"vv) (kuv" —k" v"),

7T K2 4@K2 i i
(19)

The first term in this expression is orthogonal
to k", ke~, and k& and is therefore parallel to k„
because of the orthogonality relations given below
Eq. (9).

For the same reason the second and third terms
are parallel to ke and k~& respectively. The pro-
portionality factors are calculated by contraction
with v", k~e, and k~&. The result is

ku y kdg" =K d7dg k" +~ +~~
0 J k 2 k 2 (20)

is obtained when the regularity condition
Z(v8$; c) =y(v8$)e+0(e') is assumed for (12).
From (3), (18), (19), and (20) we see that the
angular integral to be calculated is

which is obtained from Ref. 4 as the leading term
when z- 0. In the same limit, from (16),

dc" = 'dKdn k" -~- ~
K k

(14) k. k'i + 2 24m ke yk
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which is simplified to get

I = — h — 1 +3 I lny
"dQ
. 4w

+3
I

lnyk~k~ (21)

(22)

The arbitrary function y =y(78') cancels out.
This shows that Prnix is independent of the way p is
shrunk to the EWL.

IV. BOUND FOUR-MOMENTUM

by use of the partial integration formulas (A2)
developed in Appendix A and Eqs. (A4). We have
defined h ~ =g —v v~ to be the standard pro-
jector onto the hyperplane orthogonal to the four-
velocity v .

Once (3), (19), and (21) are put together into (18)
we get the final result:

In this section we calculate the electron bound
four-momentum as defined in the Introduction,
that is,

(23)

We quote T,"" from Ref. 6:

2

T,"" =—[ —» '((k ~ v) +v')k" k" +» {2(k v)k"k' —(k ~ v)(k" v" +kv")+k" v'+k"H)

+» '( k"k" -+k" v" + k"v" -,'8"")]-. (24)

In computing (23) we need the following relations:

e2

T, k„ —
8 4 k

gK

2

T,"'k, =
~ [2»(ke ~ v)k ~-ke" ],Bgg4

2

T,""k~ =
4 [2»(ke ~ v) k" —k~].8gl(.4

n 1+ P, „k~
y y„v" (29)

n, p, y, and 5. These relations are most easily
expressed by representing the surface 0 by
y(»"; 7) =0, where y is the proper time at which

0 intercepts the EWL. We now differentiate Q
twice with respect to e and use (9) to get

From (14) and (25), once the integration in» is
done we get ——=k ~ v+—2+2/ q pk~k~,P U

y y
(30)

e' ~" dQ, 2(ke v)Te 2(kz ~ v}T~4'
1 ~T ~k" 1 r~ ~k"

(26)

where all quantities are evaluated at z =7 and
e =0. In Eq. (30) we have assumed the normal

to be parallel to v" (7} since no use of it is
made otherwise.

The leading term for Ps" is read off from (26)
by using (27) and (28) to get

where the functions T and R are defined in (10)
and (11). A simple expression can be found for
this integral in the limit c-0. We consider the
first two leading terms that go like I/e and a con-
stant; all other terms vanish when g is shrunk to
the EWL.

Expansions in & are carried out by assuming the
regularity conditions on T and R,

T= T(0y;7; e)

o.(8y; 7)e-+P(8y; F) +0&( ), e

=R(R@;87; e)

(28)

which prevent wild behavior of the closed surface
S. The existence of the normal and the second
fundamental form for the hypersurface g at the
EWL gives some relations among the functions

d~o
4ny

e' " dO, 1 „1~ak~e 1 ~a k~q

2&& 4w 2 2 y ke 2 y k&-'

(31)

v" and k" are evaluated at y=7. We see that P~
has a divergent component orthogonal to v" in the
limit e- 0. This makes mass renormalization
impossible in the usual sense."The second in-
tegral in (31) vanishes when o cuts the EWL ortho-
gonally. This can be seen from (29) when (A3) is
applied to I' =1/y = I/u.

From now on we shall assume that g cuts the
EWL orthogonally (o =y), and therefore the lead-
ing term for P~ is
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PP dQ0OvP
2c 4' (32) In writing (26) in terms of g" we need the follow-

ing conversion formulas:

In calculating the next term, the constant term
when &-0, it is necessary to normalize the angles
8, p to a fixed inertial frame with time axis along
a unit four-vector t". For this we define a light-
like vector q" = g" (8, P) parallel to k" such that

g ~ t =1. The solid angle as seen by the observer
t" is given by

k" =q"/g v,

8
8 lg, 0 ' Vy

dA
dQo=

( )2
. (33)

d~ = & zu~a t rl" riel ef gd p

just as dQ, is given by (15). Both are related by

ke' =ye'/(q ~ v)',

k@' =g ~'/(q ~ v)'.

Af'ter a simple but long computation, we get

QQ && r QQ

2z 4zy 2 4' 3(yk ~ v- —+ 2-— ' ', +

2o 5 . k", 2Q/5 o kg+ tie+ -ouev'k 2 + p+ -oo&v ~ k 2 +O(e)
y 2yk~ y 2yk~

Severe simplificat'ion results when (30) and the partial integration formulas developed in Appendix A are
used. The final result is

P = —
~

+ — ——2-3lny(v k) ——P, k v ——,e v +e Q, (J' -~J, 'k ),
e' " dII e' dII[P g p 2 2 2 P & &P

2e . 4' 2 4w gy' 12 '~ ~ , fy~7 2 II y (35)

where

~~yI ~I "I~.dQ
4 J J. J'

P„" = —,e' v'v"de, (36)

which is the well-known Larmor formula.

V. HOW TO REMOVE AMBIGUITIES

In this section we give a prescription in order to
remove the ambiguities that show up as cutoff-de-
pendent quantities. The following two assumptions
are made:

(1) Infinities may be mass-renormalized.
(2) The total four-momentum P„ is as indepen-

dent as possible on the arbitrary spacelike sur-
face 0 used in calculating P„.

In a theory without infinities, assumption (1)

All quantities are evaluated at 7 =7., that is, at the
intersection of 0 and the EWL.

Equation (35) tells us that Pe", as contrasted with
P";, is highly dependent on the way we approach the
singularity of the electron. The last term can be
made parallel to v" so as to modify the Schott"
term, -3e'v", at will.

The radiated four-momentum P~ is calculated
in a standard way, so we just quote the result:

does not arise, and assumption (2) is satisfied
since P„ is independent of 0 as long as the total
radiated energy-momentum remains finite.

The timelike tube 5 that surrounds the EWL is
assumed to be the surface outside of which elec-
trodynamics is valid; in this context the shape of
Z is not entirely at our disposal. Hypothesis (2)
will actually restrict P, as will be shown below.

The total four-momentum P4 of the electron and
the external field is

as given by formulas (22), (35), and (36). The ex-
ternal four-momentum P,"„will not enter in our
considerations because it is conserved indepen-
dently. The expression (35) for Pe" is valid only
when p cuts the EWL orthogonally. This restric-
tion of 0 is now shown to be related to the hypoth-
esis of mass renormalization.

Mass renormalization is possible in the usual
sense'' only when the second integral of formula
(31), defining the divergent term of P", vanishes.
That is when

dQ0 I „1+o ke I~~ke 0
4v y 2y ke 2y kg'

This is so because I" is orthogonal to v". This
condition is equivalent to
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where

M~"(y) y .=0,
y„v~

M""(y}=2 I( &"k" + h""
4 J J.+, 4

P" =mv" ef""-v,dr ', e v"-—

+e'y ., (J"" ,'J"„h'")-+-P.".,

where m is the observed electron mass. This ex-
pression depends on the shape of o in order c'
away from the EWL, through the second funda-
mental form p, „and on the tube 3 in order &

through the term J '"- J"„h'". Application of
hypothesis (2) implies that P" should be indepen-
dent of p, for some tube g if possible. This is
achieved only when J '" =0, which is a restriction
on Z given by f d00 (lny)k'k'k" = 0. y =y(r) is the
simplest candidate.

Now P" takes the form

The calculation of I" is done by use of Eqs. (29},
(Al), and the identity h"' = -k~k~ + (I/ke')keke
+ (I/k&')keek&. We notice that I" cannot vanish for
arbitrary p, because this would imply that
M"'(y) =0, which is not possible since n»M"" (y)
=fdQQ4vy&0. The inequality follows from the
fact that Z never touches the EWL. We therefore
conclude that mass renormalization is not possible
for an arbitrary hypersurface g, no matter what
5 may be. p „ is therefore chosen to be parallel
to v„and thus I" vanishes for any tube Z. Notice
that y defines Z in order &. We see that if 0 cuts
the EWL orthogonally mass renormalization is
automatically ensured.

Once mass renormalization is performed the
total four-momentum P" takes the form

P" =mv" e-f"'v„dr -',-e'v" +P,"„,

and is entirely independent of p as long as it cuts
the EWL orthogonally. The Lorentz-Dirac equa-
tion now follows, as indicated in the Introduction.
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APPENDIX A

Repeated use has been made of partial integra-
tion on a two-sphere for expressions of the form

where k~e and k~& are defined in Sec. II. I and «
are functions of 8 and y. Since k8 and )ps are
orthogonal to the electron four-velocity v" this
integral is best evaluated in the electron instanta-
neous rest frame. In this frame we easily see
that I'8k~9/ks'+ I'&+'k&' is just the gradient of I'
evaluated on a unit sphere. We can therefore write

ts 3
I" = 'ys" r = ys" r

4g . 2w

where the last integral is evaluated over the in-
terior of a unit sphere. After partial integration
and application of Stokes's theorem one gets

p —,"
dQoyu, 'Z'- i" dQop k'e. 4w |tee ~ '«~n,

(A1)

This result when applied to « = z &" k ~ gives

r
dQ "du

J. J. ey2 @k, 8
'k"z ~ ~ ~ k" I' e +I' ~ =-(s+2) ' 'k"x ~ ~ ~ k"~k"I'

4 J J.
e ~I

'k&~" k Z'-. ~ ~ g ".
I '4,"~ ~ ~ k, -~Z',

which in turn, when used for the case n =0, gives
the much used identity

i
diot' 1 k",rk, + —re, +2rq, -0. (A3)

l

""'k k'=--,'h'
4 J. J. 3 s (A4)

For completeness we give the following inte-
grals:

k'k kg=0,
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where k~ =k -v and h = q~~-v v .

APPENDIX B

For points on the two-surface S (Fig. 1) defined
by (10) and (11}one gets the following formulas
by series expansions:

z (fJ=s (T) e-~v +e (pv +2Pxv )+O(e ),

v (7}=v -Eo»v +E (pv +~catv )+O(f )»

k" (T, gy)=P+~Z(K v)k"

e'-[Pk v~+-'o,'(k ~ v}-n (k ~ v)']

once use of (27) and (28) is made. The bars indi-
cate that we evaluate the symbols at 7 =7.
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