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Spectrum-generating SU(3) and SU(4) and the leptonic decays of p, co, $, and J (Q)
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SU(3) and SU(4) are considered as spectrum-generating groups and applied to the decays p~ ee, to~ ee, $~ ee,
and J (Q)—) ee. The results are compared with the experimental data, which leads to predictions of the form
of the electromagnetic transition operator (currents).

I. INTRODUCTION

In a series of recent works' that treated the
leptonic and semileptonic decays of hadrons in a
quantum-mechanical framework, it was suggested
to consider the particle classifying SU(3) not as
an approximate symmetry group but as a spec-
trum-generating group —denoted SU(3)a —whose
connection with the Poincar6 group is given by
the relation (Werle)

[P„,SU(3) ]=0, IL„„SU(3) ]=0. (1)

Here P& = P&M ', P& are the momentum opera-
tors, M = (P„P")t"is the mass operator, and

L» are the generators of the homogeneous Lo-
rentz group. In this approach the mass differences
are not only taken into account in the phase space
but also the form factors and coupling constants
are functions of the masses, and only in the sym-
metry limit of equal masses does one obtain the
usual SU(3) symmetric expressions.

In the present work we shall apply this method
to the leptonic decay of vector mesons, V- ee.
As the dependence upon the mass will be much
more pronounced for the new heavy mesons we
will extend this spectrum-generating-group ap-
proach to the SU(4) and calculate r(4 (g)- ee)
using otherwise the usual SU(4) a,ssumptions.

II. V~ee DECAYS IN THE SPECTRUM-GENERATING-

GROUP APPROACH

Following the same procedure that has been de-
scribed in detail in Sec. III of Ref. 1(a) one obtains
for the decay rate

1
r(V-ee)=3m

3Z
—'

3Z
-5'(p„-p+-p )3Z

I «e" f,f -I T lf., V» I'.
po

Here P, =(E„P,) are the momenta of e',
Pr= (E», Pr) is the momentum of the vector meson,
m„ its mass, and pr =Pr/m„. The factor I/mr'

0 denotes the vector with the hadron quantum num-
bers of the vacuum, i.e., the trivial representa-
tion of SU(3)z and of (Pf,„

According to the principles stated in Ref. 1, the
transition operator in the hadron space B„ is
connected with the octet of vector and axial-vector
operators V„,A.„, e = +1,+2, +3, 0, 8. For the
electromagnetic decays under consideration, it
should be given by the electromagnetic component
of the vector operator'

V~ =Vs +~=Vs43 (4)

Several connections between the transition oper-
ator H& and the octet operators V&, A.„have been
discussed in Ref. 1, which all had the property
that in the symmetry limit when the mass opera-
tor M is an SU(3) scalar they lead to the usual
expressions given by the hadronic currents. We
will consider here the ansatz'

H~ =g/Vq', M ] (5)

and will determine P from the fit of the decay
rates of p, cc, Q to the experimental data. The con-
stant g is a coupling constant of dimg= mass'

A completely equivalent way, which will lead to
the same result for V- ee is to assume that

H„=gV&' and (V„",M )=octet operator . (5')

The leptonic part L"(P„,P ) whic—h for the lep-
ton pair I v was given by' u( p„)y" (1 —ys)v( p,)—
should be obtained from this by replacing
u(P, )(1+y,) by the positron spinor u(P, ). Thus,

is a consequence of using generalized eigenvectors
of P& rather t a P&.

In analogy to (3.15) of Ref. 1(a) and in concord
with the usual lowest-order perturbation- theory
expression, the transition matrix element
((e'e p, p I

T
I pv, V)) is assumed to be the product

of a leptonic part L"(p, , p ) and a hadronic part
(&tr I rf, I

P"
v V»:

«e' f,p ITl-i„v&)=L"(p„f )(&~l~„li„v&&,

(3)
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1
L&.)(p„p ) =~(p, )r„v(p-)

Q'
(6')

The difference of (6) and (6') in the results for
V- ee will only be a factor of 1/m „', which can
also be obtained by choosing in (5) (P- 2) instead
of P. Thus, the distinction between (6) and (6')
is irrelevant for the decay rates and can always
be expressed by the appropriate choice for the
connection between the hadron transition operator
II„and the octet operators V„".' We will, there-
fore, fix the definition of the value of P by choos-
ing (6) for the leptonic part.

Inserting (3), with (5) and (6), into (2) gives

complete analogy to the weak decays would re-
quire one to choose for the leptonic part

L(",)(P„p ) =v(p, )r„v(p ).
Another possible choice for the leptonic part, in
complete analogy to the usual perturbation-theory
expression with the one-photon-exchange term,
would be

and

((o
~
V(r)

~
p»= 0, s = 1, s,&&

= C(1, 1, 0; s„r, 0)f',

where C(1, 1,0; s„r, 0) is an SO(3) Clebsch-
Gordan coefficient and f' is the reduced matrix
element of the SO(3} vector operator V(0) = V„
V(+I) =v(1/W2)(v, +iv, ). If one defines e&(p, s,)
by

fe„(P",s, ) = L„'~(P)((o ~
V

~
0, s = 1, s,&&, (13)

g e, (i, s,)e„(i,s,) = - (z,.—
my

S3

Thus

(14)

where f is a suitable normalization factor related
to the reduced matrix element f', one ean show—
using the properties of the boost L„"(p)and of the
SO(3) Clebsch-Gordan coefficients —that e„(P,s, )
has the properties of the vector-meson polariza-
tion vector, in particular

1(v-er)=2m ' 6'(p, -p, -p )2

x g [u(,p) rv( p)gm»
pol

« I V„IP, = I, ,» =f „(P, ,),
where f is a reduced matrix element.

Inserting (15) into (7)

(15)

« I
v IP„v» I'.

The matrix element of V„" can be written as

((o[ V„" (p», V»=C(v, el, o)((o( V„(p», s, s,)),
(8)

where

C(V, el, o ) = C(/8j, f8), (I); V, m', o')

x pl~(p, )r"v(p )e, (p, x)l'
PO1

2

gm»~f C(V, el, o)

and doing the usual integration gives

(16)

I'(V-ee) =2w ' 5'(p» —p, —p )

+ —C ((8),(8), (I); V, »i, o ) I"(V- ee) = ,v'~ gfC(v, el, -o)~'m„' (17)

are SU(3) Clebseh-Gordan coefficients.
((o

~ V„~p„,s, s,)) are SU(3)-invariant reduced ma-
trix elements, as a consequence of (1). As ex-
plained in detail in Ref. 1, this is the essential
distinction between the usual "broken SU(3) sym-
metry" and our use of SU(3) as a spectrum-gen-
erating group. In the usual approach one has
momentum and not velocity eigenvectors in ex-
pressions like (8), and ((o

~ V„~p», s, s, )& would
not be an SU(3)-invariant reduced matrix element
but would depend upon the SU(3} quantum numbers
through the masses.

The reduced matrix elements can be written

The above arguments obviously do not depend
upon the choice of SU(3) as the spectrum-generat-
ing group, and any other choice of a spectrum-
generating group, e.g., SU(4}, which fulfills (1)
will lead to the same result (17) with fC(V, el, o)
replaced by the appropriate matrix elements of
this group.

III. SU(3)~ PREDICTIONS

To determine the value of P and to compare
(17) with the experimental data,

I'(p'- ee) = 6.42 + 0.80 keV (world average)
= 6.11+0.53 keV (Orsay),

((ol V„Ip„,s= 1, s,»
= (& o

I U(L( p„)}V„tr(L-'( p»)) I p» = 0, s =1,s,»
=L„"(P»)((o~V, ~p»=0, s=1, s,)&, (10)

((cr
~ V, ~ P» = 0, s = 1, s,)&

= 0 as V, is SO(3) scalar,

I'(o)- ee) =0.76+0.17 keV (world average)
= 0.76 + 0.08 ke V (Or say),

I"(P- ee) =1.34+0.11 keV (world average)

=1.36+0.10 keV (Orsay),

(18)
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TABLE I. Connection between the value of P and the mixing angle of g.

2P —1

8 (deg) 44.4 + 3.5 40.7 + 3.3 37.0+ 3.1 33.4 + 3.0 30.0+ 2.9

we have to insert the Clebsch-Gordan coefficients
C(V, el, o').

We use

by calculating

const=-,'v'~gf ~'

F(V- ee}
~
C(V, el, o)~'m '~ ' (21)

f
P)=cos8f rg„)+sin8[cr„),

f
co&=-sine/vy, )+cos8[oy),

(19) from I'(p- ee) and F(~- ee) for the various ad-
mitted values of P:

and will admit for 8 only values which lie in the
vicinity of the "ideal" mixing angle 8=35.2', the
linear-mass-mixing value 8= 37.7', and the
quadratic-mass-mixing value 8= 40.2'. Subse-
quently, when we have convinced ourselves that
these differences are negligible at the present
state of experimental accuracy for the decay
rates, we will use the ideal mixing angle
cos8= (-,)'", sin8= (-,')"'. The values of the SU(3)
Clebsch-Gordan coefficients with V„" given by
(4) and

~
V) by (19) are [except for an irrelevant

normalization factor, (-I/v 8), that can be ab-
sorbed in f]

C( p', el, o ) = 1,

C(P, el, u) = —cos 8

(20)

1
C((u, el, v) = —sing

const =0.76 x 10 "keV ' + 14%

from F(&o- ee) or F(Q- ee);

2P —1, 8= (40.7 +3.3)'.
const=6. 34x 10 '~13% from 1"(p- ee),

const = 6.86 x 10 '+ 14%

from F(ru- ee) or F(Q- ee);
2P - 1 = 1, 8 = (37.0+3.1)':

const=6. 42 keV+13% from I'(p-ee),
const=6. $0 keV+ 14%

from F(&u- ee) or F(P- ee);
2P- 1=-1, 8= (33.4+ 3.0)':

(2$)

(24}

const = 4.94 x 10' keV ' + 13% from I'( p- ee),

2P-1=2, 8=(44.4+3.5)'.
const=1.08x 10 "keV '+13% from I"(p-ee),

(22)

1 1

W$ W$'
const=5. 89 x 10~ keV'+ 14%

from F(u& - ee) or F(Q - ee) .
(25)

From the experimental value (world average)
and (17),

0.567 a 0.132 = 1 (&o)

= tan'8

one obtains the connection between P and 8 as
given in Table I. Thus the values of (2P —1)
which will give mixing angles inside the admitted
range are between 2P —1=2 and 2P-1 =-1, i.e.,
P =

& and P= 0.
None of these values of P is really ruled out by

the experimental value of I'(po- ee), though the
values for 2P- 1=2 are slightly outside the ex-
perimental error bars. This is best demonstrated

Thus the values P= 1, —,', 0 [restricting oneself
only to integer (2P —1)] are chosen by the experi-
mental values of the leptonic decays of po, p, &u.

This is remarkable as these are the same values
that were also chosen by the leptonic and semi-
leptonic decay data of the pseudoscalar mesons'
in Ref. l.

The value P=O, i.e., (2P-1)=-1, gives in fact
the same results as are obtained from the vector-
meson pole approximation of the first SU(3)
spectral-function sum rule' and also from asymp-
totic SU(3).' The value P= 1, i.e., 2P-1=1, leads
to the sum rule

F(&u- ee) F(P- ee) 1 I'(p- ee)+ =0, 2$'
m QJ m$ 3 mp
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and the value P= &, i.e., 2P-1=0, leads to the
sum rule

I"(&o- ee) + I'(7I& - ee) ——I'( p - e e) = 0 . (24')

IV. SU(4)E PREDICTIONS

Though the assignment of the newly discovered
narrow resonance J(g) to an SU(4) representation
may still be considered too premature, we will
apply the results of Sec. II to calculate I'(J- ee)
making the standard assumptions for the SU(4)
properties of Ja' and the electromagnetic compo-
nent of the regular tensor operator. "'" As we
have seen in Sec. III that the present experimental
accuracy does not allow for distinguishing between
the various mixing angles and as the narrow
width of the J indicates that it is very close to the
ideally mixed

I cc) state, it is sufficient to con-
sider here only the ideal mixing:

where U„', U&, U„"' are the m» g, g, components of
the SU(4) regular tensor operator and V~ is an
SU(4) scalar operator (the factor I/v 3 is aconven-
tion). Thus, instead of the one reduced matrix
element f in (17) we have now two reduced matrix
elements f" and f'. The decay rate is given

1(V- ee) = —,'Hg'I (ol V"
I V) I'm, ' -', (17')

where (o I
V"

I V) are the SU(4) matrix elements,
which depend upon the two reduced matrix ele-
ments f" and f '.

If V~' is given by (27a), then the SU(4) matrix
elements (ol V"

I V) are given by

(ol V"
I
p') =f"

& Iv" Ie)= —f".—f',
&o I

V"
I ~& = (-')'"f'

In&=(-,) ln&+, ,, In.,&-;II~.&,

I
~& = -(7) I n.&+(7) In

IJ&=
2 In. ,&+ zlov&,

W3

Ip&=lsv&.

(28) &ol V"
I
p'&=f"

(.I

v"
I e) =- —f',

W3

(olV"
I

&-f" ('-&'"f'
(28b)

If V&' is given by (27b), then the SU(4) matrix
elements are given by

Here I &7„) denotes the SU(3)-octet state with
I, = Y=charm=0,

I q, „) denotes the SU(3}-singlet
state with I, = Y=charm=0, and Io„) denotes the
SU(4)-singlet state.

For the electromagnetic component of the SU(4)-
covariant transition operator we take the two
alternatives" "

vq' = v„' + v„"—
(n) (v~' ——v~), I27a&

&ol V"
I
~&=~~f" — 3f'.

(28a) as well as (28b) will lead to the following
relation for the decay rates of p, v, Q:

[2~ -(2P 1)F(y ee)] 1/2

—
I [

' "I'( ee)]'"
—[m

' ' I'(e- ee}]'"I . (29)

(29) is in excellent agreement with the experimen-
tal data for the case 2P —1=0. For the cases
2P —1 =1 and 2P- 1 = -1 the experimental data

TABLE II. Comparison of the right- and left-hand sides of Eq. (29) (w.a. indicates world
average) .

Case

2P —1 = -1 (w.a. )

2P —1 = -1 (Qrsay)

2P-1=0 (w. a.)

Left-hand side of (29)

(1.45 + 0.15) x 10 ke V

(1n40+ 0.11)x103 keV

1.66 keV»

Right-hand side of (29)

(1.65+ 0.06) x103 keV

(1 67+ 0 06) x103 keV

1.64 keV~2

2P —1 =+ 1 (w.a. )

2P —1 =+ 1 (Orsay)

2P —1 = 2(w.a. )

1.90+ 0.20

1.83~ 0.14

(2.18+ 0.22) x 10 6 keV

1.62 + 0.06

1.63+ 0.05

(1.61+ 0.06) x10 6 keV ~i2
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f' = 1.03 a 0.04 keV '"
W2 wg

f15
W2 wg

2.47 +0.11 keV"' (Orsay),

2.53 y0.32 keV'~' (world average),

barely fit (29); in fact, they do not really fit if
one takes the Orsay values and not the world
averages with their large errors. For all other
values of P (29) disagrees with the experimental
data.

To make this statement quantitative we list in
Table II the right- and left-hand sides of (29) for
the various cases.

One can now determine the two reduced matrix
elements f' and f"from the 3 experimental data
I'(p-ee), F(a&- ee},F(1}1-ee)for the cases
2P-1 =+ 1 and 2P —1 =0. With these values for
the reduced matrix elements one can calculate
the SU(4) matrix element (v

~

V"
~
J) from (28a)

[for the case that V„" is given by (27a}] and from
(28b) [for the case that V„" is given by (27b)],
and then calculate with (17') the rate F(J'- ee).
The results of the calculation are the following:

Case ZP —1=0. The reduced matrix elements
are

I"(J—ee) =5.88+1.96 keV. (33b)

Case ZP —1=+l'. The values for the predicted
decay rates are

F(J- ee) =23.3 keV + 30%%u11 for V„" given by (27a),

(34a)

1(J-ee) =21.2 keV+ 30%%u11 for V„" given by (27b) .
(34b)

The latest experimental value" for the decay
rate of J(3.1) is

I"""(J-ee) =4.8+0.6 keV.

(31a), obtained from (27a) (Ref. 10) for P= 2,
and (33b), obtained from (27b) (Ref. 11) for P =0,
are in agreement with this value.

Summarizing the results of this section, we
have seen that the SU(4) assumption (27a) with
P = —,

' gives an excellent fit of the experimental
data for the p- ee, e - ee, Q- ee, J-ee decays,
and the assumption (27b) with P= 0 cannot be
ruled out but gives a comparatively poor fit of
the experimental data. That (17') with P=-,' fits
the experimental data weQ has also been noted
by Yennie. '4

sign f'=-sign f". (30}
V. SUMMARY AND CONCLUSIONS

f' = (0.98 + 0.10) x 10' keV,
W3

2 7lg

f" =(2.22+0.14)x 10' keV,
2 vg

sign f' = -sign f".

(32)

The predicted decay rate for the case that V„" is
given by (27a) is

I'(J- ee) =1.47+0.49 keV (33a)

and the predicted decay rate for V„" given by
(27b) is

The predicted decay rate for the case that V„"
is given by (27a) is

I'(J ee}= 5.48+ 0.38 keV (using Orsay data)

F(J- ee) =5.63 +1.08 keV (using world averages) .

(31a)

The predicted decay rate for the case that V„" is
given by (27b) is

I'(J- ee) =22.73 a 4.34 keV (using world averages)

(31b)

Case 2P —1=-1. [Here we use only world-
average values as (29) is already incompatible
with the Orsay data. ]

The reduced matrix elements are

SU(3) is not a symmetry group and SU(4) will
be much less so if the newly discovered high-mass
resonances are classified by it. If these groups
are considered as spectrum-generating groups,
then the transition operators (currents) are un-
likely to be irreducible tensor operators and the
question is whether one can find functions of them
and the mass and momentum operators that
transform irreducibly (according to the regular
representation) with respect to the spectrum-
generating group. This idea, previously applied
to the leptonic and semileptonic decays of pseudo-
scalar mesons' has been applied here to the de-
cays V- ee. The ansatz (5) which gave agreement
with the semileptonic decay data for the values
P = 0, —,', 1 leads to acceptable fits of the p- ee,
&o- ee, P- ee data, for these three values of P
only; the best fit is obtained for P= —,', as was the
case for the semileptonic decays.

SU(4), if it should turn out to classify the had-
rons, will serve as a much more sensitive test
of this kind of symmetry-breaking effects; un-
fortunately in SU(4) the form of V~ is ambiguous.
With the original ansatz' for V&', (27a), P= —,

' is
the only possibility that will fit the experimental
data and this fit is excellent. With the ansatz
(27b) for V„", P= 0 is the only possibility that
cannot be excluded, though this gives already a
rather poor fit of the experimental data for p, &d, Q.



SPECTRUM-GENERATING SU(3) AND SU(4) AND THE. . . 2661

~(a) A. Bohm, Phys. Rev. D 13, 2110 (1976).
(b) A. Bohm and J.Aerie, Nucl. Phys. (to be published).
(c) A. Bohm, in Neutrino-75, proceedings of the Fifth
International Conference on Neutrino Science, Balaton,
Hungary, 1975, edited by A. Frenkel and G. Marx
(Budapest, Hungary, 1976).

We label here the components of the octet operator by
the corresponding particl. e in the pseudoscalar meson
octet. The connection with the notation in Ref. 1 is
given by V" = V V" = V .

P Pa

~This corresponds in the notation of Ref. 1 to the choice
Q(M) =M+. The choice P =2 gave the best fit to the ex-
perimental data for the weak semileptonic decays of
pseudoscalar mesons tRef. 1(a)l; P =0 and P =1 gave
still. reasonable values.
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