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Infinite-component fields. II. The electromagnetic structure of bosons

A. O. Barut and Raj Wilson*
Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80309

(Received 6 October 1975)

New closed forms of the inelastic form factors and structure functions R', (v, Q ), 8',(v, Q ) as a function of
two variables have been obtained in an infinite-multiplet model. The relativistic H atom and a model of the
pion are special cases. The nonrelativistic limit in the former case agrees with the result of Massey and Mohr.
For the latter case a special situation which leads to scaling is discussed in detail.

I. INTRODUCTION

This paper is a continuation of part I' and, in
the same spirit, gives new results for infinite-
multiplet towers with ground-state spin equal to
zero, such as the pion, and the relativistic spin-
less H atom. We refer to part I for a general
discussion of the background, motivation, and
purpose of the paper.

II. ELECTROMAGNETIC FORM FACTORS

The most general electromagnetic current linear
in the group generators of SO(4, 2) and T, (space-
time translation group) may be written as'

j.(q}= Ft(p') (n,T.+ nP. + n&.S+ n,L.Z")4(p),

(2,1)

yg. = 1,2, ... , ~, 3 = 0, 1, ... ,n —1, and —l —zn ~ l.
The canonical states Inlm) form the discrete basis
of the spin-0 representations of SO(4, 2).
normalization factor N„can be evaluated using
the orthonormality condition

(n'l'm', p' j,(x)d'x
I
«m, p)

= 2p.~s-.~r ib ~ ~'(p'-p), (2 2')

and one obtains

N„' = (2M„) '(n, n cosh8„+ 2n,nM„sinh8„+ 2n~„).
(2.3)

The mass spectrum can be obtained from the
infinite-component wave equation

[(n,l, + nP, + n,P,S)P, —bS —c]Inlm, P) =0

where I' = L„„S= L«, P = (P,'+P~), and

q = (p I -p }. lf the particle is boosted in the
third direction with rapidity g such that

P =(M„cosh' +M, O, O, M„sinhq),

q, = (M„cosh' -M, O, O, M„sinhq),

then the boosted physical states in terms of the
SO(4, 2) group states are

by going to the rest frame, and one obtains

n' = (n PI '- c)'/[n 'M ' —(b —n PS ')']

with

tanh8„= (b —nPI„')/n, M„,
cosh8„= n,M~/(c nPS„'), -
sinh8„= (b nPS„')m/(c ——n~M„').

(2.4)

(2.5)

I
tllmp) = 8 358 "

I «m),-inI i& I (2.2)

where 8„ is the tilt angle and N„ is a normalization
factor that is to be determined. The quantum num-
bers n, l, rn take the following values:

ln the O(4, 2) boson ladder' the pion, say, is the
ground state of the tower 3nd hence it takes
v=1, 1=0, m=0. Using the electromagnetic cur-
rent (2.1) explicitly we evaluate the three inelastic
transition amplitudes for the ground state
(N'„= ~2M+„)

N'„N', (nlo, P II,(0)
I
Too) = (n, cosh8, + n, P, sinh8, + ng, )I»( )0

+ (n+, cosh8, + n, sinh8, )I«(0)+ n,q, cosh8, I»(0),
N„'N,'(nil, p I I,(0) I

Too) = n,I„(1)+ n,q, cosh8, I»(1),

Ngl(« —1 p Iq~(0) I
F00& = n,I„(-1)+n,qo cosh8, I~,(-1),

where

I» (m) —= («m
I
GL»

I
100), A, B= 1, 2, 3, 4, 5 = 0, 6

(2.6b}

(2.6c)
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s„(m) -=&&1m
I
G

I
loo&,

g 8 j 8„I45ei nL ps~ f', 8~I 45

The actions of the SO(4, 2) generators I.» on the canonical basis are explicitly evaluated elsewhere.
We give the relevant expressions as followers:

2OO&,
2

(2.V)

s.„ loo& = ——.
I
»»+-.

I
» - »,

s.„ 1oo& = - -'. l
l
»»+-'l

l
» - 1&.

Then as in ref. 1, we use the following result'to evaluate the matrix elements I»(m) and I„(m) of Eq. (2.6):

Mi (n iml- -i}

Di', im i+a, Imi( n)Vn', n (P) i ~ imi+v, Iml ( (2.8)

where the D functions are the self-conjugate SO(4)-rotation functions which can be explicitly expressed in
terms of Gegenbauer polynomials C as4

Di:i, Oi( n) ( f)i 2i(2i-+ 1)i/21 (l 1)
(m+ )F(1+ m+ ) (l+ + 1)~(™1)

(sinn) g + (cosn)I'(-,')I'(l, + m+ 2)I"(l.+ l+ 2)&(l- m+ 1)1'(m+ 1)

oi )
. (2m+ 3) d ii ]

(l.+ m+ 2)(l.—m) dn
(2.9)

where l, =n —l. The Bargmann functions in Eq. (2.8) can be conveniently expressed in terms of Jacobi
polynomials, normalized to P,"'(x) =1, as

V' (p)= ' '' '
(tanh-,'p)" "(cosh—'p) "P""'~ '(1-2tanir"-,'p). (2.10)

Furthermore, the Euler's angles n, p, and y in Eq. (2.8) are related to the angles e„e„, and ii as given
in Eqs. (3.3a) of part L' Note that

6=-,'(e, -e„), ~= .'(e, +e„)- (2.11)

Now it is quite straightforward to compute the matrix elements I„s and I„of Eqs. (2.6) using Eqs. (2.V)

and (2.8). We give below the final results:

I„(o)=Dgo™g""(-n)v'. ,(p),

S„(0)= [cosyDiio, '"(-n) V„',(p) —i sinyD'„",""(—n) V„',(p)],

S„(0)=— b»WDI.",-" i(-n)V„,(p) cosyDI„-" i( n)V„.(p)],
M2

(2.12)

-fS,.(1)=I„(1)= --.D',"„-""(-n) V„',(p), —az„(-1)=S„(-1)=-.'D,'," "(-n) V„',(p),

where we have used Eq. (2.9) to evaluate the SO(4) functions involving the angle y. Substituting the above
expressions in Eq. (2.6) we obtain
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NQ'(nlO, pago TOO) =(n, cosh8, + n j',sinh8, + n+, )DI", ""(-n)V'„, (p)

+ (n j', cosh8, + n, sinh8, )cosyD,'»""(—n)V„',(p)
2

(neo cosh8, + n, sinh8, ) sinyDI", o""(-n) V„',(P)
2

n,q,cosh8, sinyD[»""(- n)V'„,(P)+ n,q,cosh, cosy ', ",,""(-n)V„',(P),

N„'N', (nl1, P
~ j, ~

TOO) = 2(—in—,+ n,q,cosh8, )D~P»""(- n)V„',(P),

N'jV', (nl 1,p lg, I
T-Oo) = z (- in, + n,q,cosh8, )D,'»""(-n)V„',(p).

(2.13a)

(2.13b)

(2.13c)

The above expressions are the exact transition amplitudes and using them one can compute all form factors
of spin-0 particles (say, pion). We will simplify the above for the special case where i=n 1, becau—se in
this case the Gegenbauer polynomial in (2.9) becomes unity [Co(x) = 1] and the task is much simpler and
furthermore from the final result we can easily deduce the appropriate elastic amplitudes. In order to
evaluate this special case we need the following special values of SO(4) representation and Bargmann func-
tions [Eqs. (2.9) and (2.10)]:

.,„,„,(2n-1)r(n)I'(n) '~'

.)„„,3(n- 1)(2n- 1)I'(n)1'(n) '~'
n-a~x. o n(n+ l)I'(2n) sin Q cosQ

y

V, (p) ~ (ap),
cosh'(o P)

cosh ,P cosh' —.

tl 2 I

V„,'(P) = [(n- 1)n(n+ I)]'~'
cosh ~~P

(2.14)

Substituting the above in Eqs. (2.13) and after some straightforward manipulations we obtain

(n, n- 1,0,p ~ jo ~

TOO) =, ", —, ie„+,, R„—,, [B,—sinh'q(cosh'n+ sinh'5)B, ]
I"+„1 sinh6 cosh' sinh' —,'rl
N', N„' cosh'-,' p

" cosh'-,' p
" cosh'-,' p

2 cosh' —,'P sinh —,
'

(D, sinlr"-,'q(D', ——sinlr 2qD", )) . ,slnh2PcoshgP J

(2.15)
where

e„=n, cosh8, + n, (M„+M)sinh8, + n, (M„+M),

R„=n, (M„+M)cosh8, + n, sinh8„

B,= —2n p&„cosh'(sinh8, cosh'+ cosh8 sinh5)+ (—I)ooz2in M„(cosha&z y sinhag)

—2M„n,cosh'6 —(- 1)'~&R„cosh8„sinh8„

B,=2M(n, (-I)'o'in, )+(1—-&„,)4npI„sinh8„

Do= -R„sinh5 cosh',

D,' = 2n Pl„cosh8, sinh5 cosh5+ R „sinh8, cosh8„—2in, M„cosh 8,cosh 8„,

D,"= —2n PI„sinh8, cosh8, cosh8„+ 2in,M„cosh8 cosh8„,

D, = »nh& cosh&(R„cosh8„/cosh8, + 2in,M„sinh5 cosh'),
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ancl

D', = —2n PI„cosh8„sinh6 cosh6+8 „cosh8„sinh8„—4in,M„sinh26 cosh25,

D", = —2n,M„coshe, cosh L9„sinh8„—2i0.4M„sinh8, sinhe„coshe, cosh8„,

„,(2n-1)I'(n)I" (n) 'I' cosh8, sinhq
I'(2n) &

' " cosh'-,'P

(n, n-1, 1~j, ~TOO) = — ",",' ~, (c.,+in, cosh8, (M„-M)+ 2in, M„cosh8, sinh'&q),r„~„, [~(n-1)]'"
(2.16)

(n, n-1, —1~y, ~TOO)=,",',—, (n, +ic.,cosh8, (M„-M)+ 2in, M„cos h8, sinh'~q)
2iV,'KI cosh4 —,

'
p

For elastic transitions we get (n = 1, 5 = 0, o'= 8,)
~ 21

A", cosh' —,'p ' cosh' —,'P

where (M, =M)

e, = n, cosh8, + 2c.PIsinh8, + 2n, M,

B,=e, sinh'8, —2M(c. ,+in, )cosh'8„

(2.17)

(2.18)

Ii, = 2M (n, + io,),
and the other two amplitudes [Eqs. (2.16) and (2.17)] vanish. The spin-0 form factor G(Q') is conventionally
defined' as

{Klm,p j ~TOO)
—= G(Q )P„/2M„, Q2—:-q',

and hence correspondingly the elastic electric form factor becomes

GE(Q') = cosh '2q(100, piI, TOO)

„1+,cosh'8, 2M(n, +in, ) —[e, —2M(n, +iu, )] 1+,cosh'8,
1

(2.18')

(2.18")

where we have substituted

2

cosh' P =(1s, cosh'8 ).
Equations (2.15) and (2.18) show that the pion form
factor has a leading single pole at Q' = -4M, ' and
explicitly it is independent of the parameter n3.
One could also expect from Eq. (2.13a) the similar
leading single-pole behavior for the inelastic form
factors. The above expression seems to suggest
that the convective term nP in the electromagne-
tic current [Eq. (2.1)] is extremely crucial and it
is this term which, in the absence of a„gives a
linearly increasing mass spectrum for bosons.
Furthermore, if we take @4=0 then

cosh28

1

cosh28
x 2nPI+ 1+,' Q' (e, —2c.@1).

(2.18 )

Also, the above expressions show that the presence

of the saturation term n+~ in the current (2.1) is
not essential to obtain a single-pole behavior for
the pion form factor, and it seems that the cur-
rent with 0.3= n4= 0 would be much suitable for
pions . More experimental evidence is needed to
establish this conclusion. As in the case of the
hydrogen atom the choice of n, = 0 (n, is the anom-
alous magnetic moment term) for mesons seems
to be quite reasonable. But the vanishing of n3
depends on whether mesons satisfy a nonsaturating
mass spectrum or not. When c.,= 0 (n, need not be
zero) the pion form factor has exact dipole behav-
ior. [Remember the definition (2.18'). The
form factors G(Q') are related by different factors
to the matrix element of j~ for spin-0 and spin-&
cases).]

In the case of the hydrogen atom one knows ex-
actly the values of the constants n, ~ ~ 0,4 andthe
constants b and c appearing in the infinite-com-
ponent wave equation [Eq. (2.4).] They are n, = 1,
a, =-n/2m~, o.,= 1/2m~, n, =0, b=(m, ' —m~')/2m~,
and c = -(o./2m~)(m~'+ m, '), where n is the fine-
structure constant and ~ and m, are the masses of
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the proton and the electron, respectively. The
mass spectrum from Eq. (2.4) becomes

~2 1/2
M„2 = mp'+ m~2+ 2mpm, 1- n'+ n'

2

cosh8„= (m~+m, ) 1+,
~

1- ' ', +O(n'),

Q
sinh8„= (mp+ m, ) 1+, + O(n'),n nm, P e — 2n2 mp+m

mm
n' (m~+m, )'

Also, from Eqs. (2.5) and (2.3)

(2.19)
n' 1 a' m' m a'

nm, ~ ' 2 n' (m~+m, )' m~

After substituting the above values in Eq. (2.13a)
we obtain

nmeN
Pg ( iO

~ ~

TQ ) 1 0
~ I mmmm 1 I o

~~D ]( ) ( )

~g (mmg( (m~+m, )' m~+m, )( 2m~)

m

x cosyD'„""(-n)V„', (p) isi-nyD„",""(-n)V„',(p) (2.20)

In the nonrelativistic limit [n —0, or essentially 8„=ln(n), 8, = 0, and Po= 2(m~+m, )) the above relation
will reduce to the following expression:

(nlO, p
~ j, ~

TOO) = —D, ",,""(-n)V'„,(p) — cosyD', ,",""(-n)V„',(p)+ sinyD, ',",'"(-n)V„', (p)) . (2.21)
1

This is precisely the same classical nonrelativistic expression derived by Massey and Mohr. Therefore,
in Eq. (2.20) the coefficients of n, are indeed the first-order (n ) relativistic corrections to the Massey-
Mohr formula. Furthermore, the elastic transition form factor for the hydrogen atom can be obtained
from Eq. (2.18")with n'= -n/2m~. For large Q' the form factor shows a single-pole behavior. However,
when u, = 0 the form factor shows an exact dipole behavior.

III. ELECTROMAGNETIC STRUCTURE FUNCTIONS

In order to calculate the usual electromagnetic structure functions' MQ y and pQ 2 we have to evaluate
first the tensor components S'» and gi» defined in the zero-width approximation as

W„=g 5((p+q)'-M„')~(nlm, p~j (0) TOO) ', (ala)

nl'm
((p+ q)'-M. ')1(nlm* p Ij.(') (3.1b)

We substitute the current (2.1) and do the summation over m explicitly and obtain in terms of the matrix
elements I„~(m) and I~(m) of Eq. (2.6) [cross terms include complex conjugates also, for example,
I„(1)I,*,(1) is I„(1)If,(1)+ I»(1)I,*,(1)J

+ ' M'
W»= g» " In, '[I»(l)l,*,(1)+I„(—l)I,*,(- 1)]+n, 'q, 'cosh'8, [I»(1)I~»(1)+I»(-1)I,*,(—1)]ll ~ 2' 2 j. » 16

+ ,n,nqocohs[8I„(1)I,*,(1) I+,6(- 1)I,*,(- 1)]I, (3.2a)



~ C((P+q)'-M„2)
nl 1 n

+(n j', + ng, sinh8, )'I»(0)I„(0)+n, 'q, 'cosh'8, I»(0)I,*,(0)

+ n, ng, cosh8I„(0)I,*6(0)+(n,n+, + n, aQ, sinh 8~)I„(0)I,*,(0)

+ n, n,q,cosh8,I„(0)I,*,(0)+a+,cosh8, (a j', + ag, sinh8, )I«(0)I,*,(0)

+ n, n,P,q,cosh'8, I«(0)I,*,(0)+ n,q, cosh8, (n+, + ng, sinh8, )I»(0)I,*,(0)]. (3.2b)

In the above two equations, the summation over
l can be done by using the orthonormality condi-
tion of the SO(4)-rotation functions, since each
matrix element is expressed [Eq. (2.12)] in terms
of SO(4) and Bargmann functions, and f is built
only into the former. Therefore, using

D[l+, l ](~)D[l+, l ]( ~)il™ Ll "m l'l"

we obtain exactly

g I„(0)I,*,(0)= —,'sin'y[V„', (P)]'

-'-"y[V:.(P)j',

g I»(0)I,*,(O) =2sin'y[V.'„(P)]'
E

+ icos'y[V„'„(P)]',

I«(0)I46(0) =2cos'y[V!, 2(p)j'
l

+ icos'y[V„', (P)j',

g I„(0)I,*,(0)= [V'„„(P)]',
l

g I,(0)I,*,(0)= —.'sin2y([V„', (P)]'-[V„',{P)]'),

Q I„(0)I,*,(0) = v 2 cosy V„',(p)V„', ,(P),

I16 1 Ii+6 1 =g V„,. 2

g I„(1)I,*,(1)= —,'[V'„,(P)]',
l

Q I„(-1),*,(-1)= '[V!-,~(P)j'
l

Q I„(-1)I,*,(-1)=-,'[V'„„(P)]'.
l

We then substitute Eqs. (3.3) in Eqs. (3.2a) and

(3.2b).
Then in order to compute vV11 and %33 complete-

ly we have to do only the summation over n and
this can be done using the identity

'(n-n, .)5(g(n))= Q ~~( ) ~*

g(n)=0, i=1,2, .. .

If we take into account only the positive root of n
from Eq. (2.4) then

5(n-N)

g I„(0)If,(0) = v 2 sinyV'„, (P)V„',(P), (3 3) where

(~,W c)-
(A+I) . fl ~

"
[ 2W (g W)2]l/2& W (I'+I)

1
—

3

2[n, 'W-(b n, W)']'~'-
W[n, (n, '+2m, b)-2n, 'c]+ [c(n,'+ 2n, b)-2b'n, ]

(3.5)

Thus once the tensor components 8'» and 8'33 are explicitly evaluated, then the electromagnetic structure
functions may be obtained by using the relations'

MW, (Q2, p) =MW„(p, Q),

2 Q2
@ '-(1+"Xq) ~ (~ "v(1+vIq) -(~ ~'

Substituting 8'1y and W33 we get
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(I+p2/ 2) ll~ll p(I+ 2/ 2) b33833

where N and g'(N) have been given in Eq. (3.5) and

(3.6)

[c(,2+ 2().3(b- (23W)](c- n2W)
2[n,2W- (b- n3W)']

b'"(v, Q') = —(n, '+ c(,'cosh'8, v'),

—0
b(33'(v, Q'}=4 ' + n3cosh28, ' —n, c(3cosh8, sinh8, (v2+Q')+ 4n, 2(2,2cosh'8, ,C- @2'' ' C- @2'' 'C- 0.26' ' jc-n,S'2 '

V2+ 2 2

' C- n2m' ' C-n2W ' C-e2W' b--.
3 Q4 cosh 81 cosh 81 Q 1 s&nh 81 v' C- @2%' ' c-a'. W2

Q 2

h', ~i(s, () )=8(o si) )
' s a,cosh'S, ' —a,a,coshh niche, ) (n, so, siohc ),C- at28' ' c-n 5"

2
'c-a W2

b(33'(v, Q'}= 4(v2+ Q2)(a2+ n3sinh8, )',

(,) N
. I(N 1"N—(N-1)(N+1)

m+1 (m+1)2(xN-1)''

(,) N W
~- I " N' " 2(N-1) (N-1)'
2N+ I (1(N+ I)'(((N-1) (1(N2 1)lf2

(2) 1(N 1"N'(N-1)(N+ 1)-
2N+ 1 (1(N+ 1)3(l(N- 1)' '

(3) M-1
¹ N-1

((N+ 1 (1(N+ 1) ()(N- 1) l:((( N - 1)l

( ) . IcX-1 N
~+1 (mr+1)(~-1)
V+M . b- @3%'K- 0.1coshel —slmel 3' C-n2$' ' C-@2'' '

and the kinematical quantities

v= —2M Q'= $(M2+ 2Mv) 0& g
~ 1

2M)

W= Q'(1 —$)/f

Equations (3.6a} and (3.6b) give the exact final
results for the structure functions M%1 and vW2.
In the next section we will consider a special case
for the pion and will evaluate the structure func-
tions in the scaling limit (v, Q2- ~, $ fixed).

IV. A SPECIAL CASE

In this section we confine ourself to a specific
model in which the mesons (I= 1) lie on a linear
mass trajectory. ' We choose @4=@3=0 in the
electromagnetic current (2.1) and the correspond-
ing mass spectrum from Eq. (2.4) will be

n2-(el@I 2-c)2/(n 'M '- b') (4.1)

OI
2

N 8'
Ql

iso*- n, /2 s 0(—),

i
g'(N)

i
—h( W ' + 0—2~1 1

cosh8,
2M(1 ~)

'

b(l)(+ Q2) 2c 2

In the scaling limit (M„' ~), 332= (a22/(3, 2)W, or
n =((22/(2, )MW. We give below all the relevant
quantities needed to calculate the structure func-
tions [Eqs. (3.6a) and (3.6b)] in the scaling limit:
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n'
gtl)( Q2) 1 /M2(1 g)2

2

1@4
b,",'(v, Q') —— ', sinh 8,/M'(1 —$)',

2

b,",'(v, Q') - 4v n, ',

+(1)(~ W) W 1/2 1 B4
11 Q 2

o., 2M(1- $)
Q~ cosh~~

g,",'(N, W)- W '/' ' B'(1-B)',
2

" (N W)- W"' ' ', B'
2

g'"(N W)-W' ' ' B'(B-1),
2

+(4)(iV W) W-1/2 1 B2
33

2

Substituting the above asymptotic limits in Eqs.
(3.6b) we obtain

MW, (Q2, v) = O(1/v), (4.2a)

W.(Q' ) = '; 5'(I - $).
Ni Q i cosh Hi

(4.2b)

Thus we find, in this specific case, that the
structure function MÃy vanishes but vS', remains
finite in the scaling limit. The vanishing MW, is
characteristic of a boson target' (pion). The
threshold behavior of vW, =(l- $) is consistent
with the general prediction' that if the spin-0 form
factor G(Q')-(Q') ", as Q'- ~, then more precise-
ly vW, —(1- g) with P = 2m —2, m ~ 2;p = m, m ~ 2.
In our model (with o.,= n, = 0) the pion form factor
has a, leading single-pole behavior [Eq. (2.19)] and
hence m=1. This means that the threshold behav-
ior of vW, -(1-$), in agreement with our result.

V. CONCLUSIONS AND COMMENTS

Our model for the determination of the pion
form factors and structure functions is, in
principle, very simple: We have used the sim-
plest boson representation of O(4, 2) suitable to
the hydrogen atom and consequently the multiplet
structure of mesons (say for I= 1) is that of the
hydrogen atom. Therefore, the spin parity assign-
ments are ( 0 )", o, (0, 1')",:,'„, (0, 1",2 )",:o„,„... .
Hence, 1 vector mesons lie in a different tower
of multiplets. However, within the framework

of such an assignment we have succeeded in ob-
taining a closed expression for the inelastic tran-
sition form factors and structure functions by using
the most general conserved electromagnetic cur-
rent [Eq. (2.1)]. Perhaps such a current might be
too general for mesons and only through experi-
mental inputs can one determine which terms in
the current should be retained and which ones
should be deleted. But unfortunately only very
little and uncertain experimental evidence is
available now regarding the electromagnetic struc-
ture of the pion and it is insufficient to determine
anything conclusively concerning the current.
Nevertheless, the specific model [n, = o.,= 0 in the
current (2.1)] we have considered shows that the
inelastic transition form factors have a leading
single-pole behavior (at Q'= —4M, '/cosh'8, ) and
this seems to be in agreement with many theo-
retical models and experimental fits. Further-
more, the structure function M, S', vanishes in
the scaling limit as 1/v just as predicted by Callan
and Gross and I andshoff, Polkinghorne and
Short' for spin-0 targets (more precisely for spin-
0 partons). Also, the structure function vW,
scales and its threshold behavior (g- I) is in
complete agreement with the predictions made by
Hughes' concerning the relation between the thresh-
old behavior of vW, and the power of falloff in Q'
of the excitation form factors. Hence we believe
that the present model'byitself might be a good
approximate model for pions or at least it would
give enough clues to construct a better model with-
in the framework of 0(4, 2) theory in the future
when more clear experimental evidence would be
available.
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