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New closed forms of the inelastic form factors and structure functions W;(v,Q2), Wy(v,Q? as a function of
two variables have been obtained in an infinite-multiplet model in order to study the onset of scaling.
Summations over intermediate states have been carried out before going to the scaling limit. Assumptions of
the phenomenological models of scaling about form factors are explicitly derived in the present theory.

I. INTRODUCTION

This work is a further development of the cal-
culation of the electromagnetic structure functions
of the proton from the infinite -multiplet model of
the proton. The new features and results are as
follows:

(i) Spin is taken care of whereas previously, for
simplicity, a spinless infinite-component proton
was considered.

(ii) New closed exact forms of inelastic form
factors are given.

(iii) The summation over intermediate states is
done before taking the scaling limit so that we have
actually closed expressions for W, (v, @*) and
vW,(v, @*)asafunction of vand @ valid inall regions
(averaged over the resonances, because we do not
attach widths to the resonances); hence no approxi-
mations are involved. As a result much simpler
formulas are obtained than previously. One can
therefore study explicitly the possible onset of
scaling.

(iv) All terms in the infinite-component wave
equations are considered.

Our result confirms most of the successful phe-
nomenological assumptions made in the resonance
models of scaling concerning the behavior of in-
elastic form factors, that they are essentially of
the dipole form as the ground state with slight
variations which we give. Further, the dominance
of magnetic form factors in the structure functions
is established. We also derive the correct thresh-
old behavior, the Drell-Yan-West condition, and
the Callan-Gross relation exactly.

II. KINEMATICS, SCALING, AND THE MODEL

In inelastic electron-proton scattering' an ener-
getic incoming electron scatters off a proton tar-
get of mass M and four -momentum p, and con-
sequently a jet of particles characterized by the
over-all mass M, and four-momentum p, is pro-
duced, such that M,2=M?+2Mv -Q% (Q 2= -¢?),
where the momentum ¢ is assumed to be trans-
ferred through one spacelike photon (¢ <0) during

13

the electromagnetic interactions. The quantities
q4*=(p, —p)? and Mv=p q* are Lorentz-invariants.
In terms of the Bloom-Gilman scaling parameter

& the kinematical region in which the above in-
clusive reation takes place is restricted by 0< &
=1, where £=Q%(2Mv+ M?)"t. The total cross sec-
tion corresponding to the hadronic part is pro-
vided in terms of locally conserved current by the
covariant tensor

1 1
W, (b, 61)=§ e IZ; ((p+q)F -M,?)

X{plju|mnli,|p), (2.1)

where the states are covariantly normalized by
(p|p") = 21120, 6°@ ).
According to the nature of the intermediate states
|n), W,, may be cluster-decomposed into the sum
of the contributions due to connected, semidiscon-
nected, and pair diagrams. But the kinematical
constraint 0<£=1 (or ¢*<0, M,2=0) precludes
the contributions from the latter two types of dia-
grams and allows only the contribution from the
connected diagram as relevant to the inelastic
scattering. This means that the intermediate states
|n) in Eq. (2.1) are all timelike states (discrete
as well as continuum). Furthermore, W,, as given
by Eq. (2.1) is essentially the absorptive part of
the spin-averaged virtual forward Compton scat-
tering amplitude.

The tensor W,, is usually expressed (Gehlen-
Gourdin-Bjorken theorem), taking into account
the conservation of electromagnetic current, in
terms of the two invariant functions, called struc-
ture functions W,(v, ¢%) and W,(v, ¢%), as

1
Wy, = (‘guv'*' ?quqv> W, (v, q°)

1 . .
+ —ME (Pu -%q;) (pv _%—qq» W2(V, qz)-
(2.2)

We now introduce two other invariant functions
Wi and p*p*W,, and invert Eq. (2.2) as
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W, (v, Q%) =—=—5 2M2 <1+—giz>-1

Jor(s ) weepw] oo

In the laboratory frame, which is especially con-
venient for the kinematical analysis, the four-mo-
menta take the value p, = (p,, 0,0, 0) and the four-
momentum transfer ¢, = (v, 0,0, ¢,), and therefore
Egs. (2.3) become (using the gauge condition ¢* W,

and o -2 =0=¢"W,,)
W,(v, Q%)= <1+ Qz) W, (v, Q%) =W, (p,q), (2.42)
v W, @)= (1+ 25) W (p, @)
x |:_M2 (1+ ?> Wﬁ + 3pupVWuv} . (2_3b) 2\¥» s Q2 11 bsq
Q2 V2 -1
These four invariant functions satisfy the following + ——VT<I+ ?) Wee( P, q),
conditions? (with & fixed):
(i) They are odd with respect to v. _ <1+_1i> -1W 5,)
(ii) They depend only on v and @ (radially sym - Q* ulpd
metric). P2\ -2
(iii) They vanish in the domain £ >1 (spectrality + (1+ 62—) Wyo(p, q). (2.41)
condition).
(iv) They are positive-definite for ¢®<O0. Substituting Eq. (2.1) in the above we obtain
2 1 E 2 2 2 2y12
w,(v,Q )—?m = 8((p+q) -M2n G, @], (2.5a)
n
1 1 [Go(@)]? (G, (@)
2y 2 2 2 1
Wz(V’Q ) 2 4r%a § 5((1"" q) ){ho (1 Vz/Qz)z h (1+ VZ/QZ) ’ (2-5b)

where we have defined the proton inelastic form
factors G,(Q?%) and G,(Q?) as

n|5(0)|p)=1,G,(@),
(1]7(0) | p) = 1eGo(@7)

One may also introduce “universal” excitation form

(2.5¢)

factor
2)]2 2 [G (Q )] 2 [GI(QZ)]z
[G(Q )] - {ho (1 VZ/QZ)T +h (1+ VZ/QZ)}’
(2.5d)
so that ‘
W.0,@9=5 gz 2 ol(p+a) =34,
x[GR]. (2.5€)

The functions %, and &, we have introduced in Egs.
(2.5¢) depend on the nature of the initial and final
states (for example, the boost angle, mass, etc.)
and also include coefficients related to the normal
and abnormal parity transitions. If the final state
has also spin 3 (say proton) then hy and &, can be
explicitly evaluated using the Dirac current. But,
in general, for final states with any intrinsic semi-
integer spin, determination® of these quantities is
a matter of convention and definition of G’s and is
nontrivial. The situation would be more complica-
ted if the final states were infinite -component
states with unlimited semi-integer spins, as we

will see later. However, the general expresssions
for the excitation form factors we have derived in
the next section seem to suggest that 7, and #,
might assume a value either cosh37 or sinh%n,
where 7 is the boost angle, depending on the parity
and the nature (odd or even) of the quantum num-
bers of the state !n). In the elastic case one ob-
tains?

2\ 1/2 2 \1/2
he' = coshzn = <1+ %> = <l+gw—2> ,

. . . 2 1/2 Qz 1/2
ki =sinhzn = (@7) =<mr> ’

and hence the elastic “excitation” form factor be-
comes!

(6@ = (1+2m)

(2.6a)

([GE(Q o+ (6, (@ ¥),  (26n)

where Gz and G, are the usual Sachs form factors.
Experimentally, up to the largest momentum
transfer so far studied, the form factors G, and

G are monotonically decreasing functions of @2
and it appears that G,(Q?), normalized to G,(0)=1,
is reasonably approximated by the dipole formula®

Gu(Q%)= <1+?2>-2, 2.7)
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where the proton dipole mass #,~0.71 GeV®. Fur-
thermore, for large @2, if G (Q?) ~G,(Q?) then
according to Eq. (2.6b) the magnetic form factor
gives the dominant contribution to the elastic exci-
tation form factor G, (Q%).

Bjorken predicted that in the scaling limit (v, @*
- and £ fixed), the structure functions MW,(Q?, v)
and vW,(Q%, v) given by Egs. (2.5a) and (2.5b) cease
to be functions of the two variables v and @2 but
instead become nontrivial functions of the ratio &,
i.e.,

MW, (v, Q%) =F,(£),
VWz(V; Qz) =F2(£)~

Such a “universal” dependence of the structure
functions on only the dimensionless variable &
has also been observed experimentally.® Callan
and Gross” related the scaling behavior of the
structure functions to the constitution of the elec-
tromagnetic current. They found that

F,(£)=0 (for spin-0 fields),

(2.8)

and
F,(£)=2¢F (&) (for semi-integer spin fields).

This may be seen very naively from Eqs. (2.5a),
(2.5d), and (2.5e). If one assumes that in the scal-
ing limit the factors %,* and %,® (presumably they
are known exactly) become some constants and
Go(@%) ~G,(Q%) then [G(Q?)]? of Eq. (2.5d) is con-
tributed only by the “magnetic” part [second term
of Eq. (2.5d)], and consequently from Eqgs. (2.5a)
and (2.5e) one obtains the Callan-Gross condition
[Eq. (2.92)]. For the spin-0 case the “magnetic”
form factor vanishes as 1/v [also G,(Q?)=0]. This
means that the Callan-Gross condition would be
exactly satisfied only if only the “magnetic” part
[W,, term of Eq. (2.4b)] contributes to the struc-
ture functions. This conclusion seems to be true
in many resonance models® and Regge -pole-model
analysis due to Moffat and Snell.® In the sealing
region this conclusion is consistent with the exper-
imental result that the ratio R=0,/0, is very small
(almost equal to zero). Here 0y, is the virtual
longitudinal (transverse) photoabsorption cross
section. Furthermore, Drell and Yan and West'*°
correlated the threshold behavior of the function
F,(£) near £=1 with the rate of decrease of the
elastic form factor [Eq. (2.5d)] for large momen-
tum transfer. Their argument goes as follows:
Let, for large @2, the form factor fall off as some
power, say, G(Q?%) - (1/Q%)%/2, If one identifies the
intermediate states |z) as nonexotic s-channel
resonances, then it is clear from Eq. (2.5e) that
the nth resonance peaks around (p+¢)*=M,? or
1/¢=1+M,2/Q% As Q2— the nth resonance
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moves toward the region £—-1. Since in this re-
gion each and every resonance has the same power
of falloff in @* (i.e., all resonances lie on the same
scaling -limit curve) and since the structure func -
tion F,(£) is regarded as the average of the squares
of all resonance form factors, it is possible to re-
late, at the region £ -1, the behavior of F,(£) to
the falloff in @2 of the form factors. It is found! '©
that

Fz(g):1 constant X (1 — &)1, (2.9p)
Thus the dipole behavior (d=4) of form factor
G(Q?) will give a threshold behavior (near & —1) of
(1 — £)® to F,(£). Various analytic fits'' to the ex-
perimental data for e-p scattering seem to suggest
that in the scaling limit F,(£) is given by (prefer-
ably in the region 0+ 1<£<0- 8)

Fo()= 2 ci(1 - 8, (2.10)

5=0.6453, c,=1.902, c,=-2.343

and as £—~1, F,(£)~0.6453(1 - £)*>. Thus the experi-
mental data seem to satisfy the conclusions of
Drell, Yan, and West. This means that all reson-
ance form factors (including the elastic one) must
have the same power of falloff in @2 for large Q2
in order that the resonances satisfy scaling. It is
also observed from the experimental data that the
function vW,(v, Q®) attains its limit F,(£) even at
the small value @2~ 1 (GeV)? (usually referred to
as precocious scaling). This means that even at
this energy the resonances seem to start over-
lapping each other and hence the continuum might
already be replacing the discrete resonances.

The algebraic model**'** we use to explain the
above experimental observations is based on the
assumption that the intermediate states [n) are
all one-particle resonance states with varying
mass and arbitrary semi-integer spin (with iso-
spin 3). These states are timelike parity eigen-
states |nj*m) transforming according to the most
degenerate irreducible representation of the dy -
namical group' 0(4,2). One can go to continuum
if it is required by making a simple analytic con-
tinuation with respect to the quantum number »

(n® ~ -\*, 0=2)*= ) within the timelike region.*

If we consider O(4, 2) X T, as the dynamical group
(T, is translation) then a simple locally conserved
electromagnetic current j,(g), linear in the gener-
ators of SO(4, 2) and T,, may be constructed as

Ju@=9"(p' T, + a,P, + @ ,P,S+a,L,,q")i(p),

(2.11)
where I' ,=L,., S=L, (L,p are the generators of
0(4,2), A,B=1,2,3,4,5=0, 6), P, = (pfl+p”), and
q,=(ph-p,). The physical tilted states in the rest
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frame $(0) (= |#j *m)) are obtained from the group
states |nj*m) through “scale” (or tilt) transforma-
tion. Thus if the particle is boosted in the third
direction then the physical states become
I;t] tm,p> = ﬁlj e~inL35,10n' Lys ln] *m>’ (2.12)
n
where 1 and 6, are the boost and tilt angles, re-
spectively, L, is the tilt (or “dilatation”) opera-
tor in the SO(4,2) algebra, and N,s is some nor-

malization factor that is to be determined. The
]

quantum numbers take the following values: zn=1,
2,...,%, j=3,3,...0—-3), 5 =m=j, and n’
=n+3. The group states satisfy the usual ortho-
normality and completeness conditions, i.e.,

(nllj u:m”l nj m)y = O 0m ;0
> i tm¥ni*m| =1,

Ny jym

m” ms

whereas the inner products of the physical states
are made only with respect to the metric'® of
jol@®=0), i.e.,

(r’;"j*”m", b’ I f daxj o(x) |;‘] *m, P) = 21’055"551'"16".",,,53(5' —5)(2”)3,

njm

Furthermore, in Eq. (2.11), the anomalous term
a,L,.q" of the current is all by itself conserved,
but the conservation of the remaining part is im-
posed by the infinite-component wave equation,

[(@,T, + ap, + ap,s)p* —bs —c]|@j*m, p)=0.
(2.14)

In the rest frame, using Eq. (2.12), one can derive
the mass spectrum'

n'Z = (azjwn'2 - 0)2[a12Mn'2 - (b - a3Mn'Z)2]-1’

=l (2.15)
with
_(b-ayM,.?)
tanllenl —_a—lﬁ4n'__’
’
coshe,,, :%, (2.16)
o
. b -a,M,*)m
sinhf,, = ———3_.1 .
A P uM,")
Fn-1)+3

bni*m) = (= )" 1[5(25 + D2

gl \ Sy —ny+m ) +5 sy =ny+m ) —(m_+3)

£i(=1)"t

2 [t o(pup® ~M6(p0) (754, 5)G5*m, i ola” = 0= (21,

s =1)+5

(2.13)

r

One can go from the discrete energy levels to con-
tinuum by analytically continuing the discrete bas -
is |nj*m) to the continuous basis I)\j*m) (==
= ) through the substitutions #’?= -2 and cosh?6
= —sinh®¢(1). However, initially we restrict our-
selves only to positive discrete values of n’. Fur-
thermore, the normalization factor N, of Eq.
(2.12) can be explicitly evaluated using the ortho-
normality condition (2.13). One obtains*

n

N, *(2M,.)=a,n’ coshb, +2M, a, +2a;M,m’' sinhf,,

([, +20,0b - a;M, )] - a,M,?)
) [alen’z - (b - asMn’z)z]

+2a, l

)

(2.17)

Finally, in order to evaluate the matrix ele-
ments of Eq. (2.5¢) one conveniently expresses
the normalized fermion basis |nj*m> in terms of
the parabolic representation basis as¢:'¢

2N,.%=

1 .
z(n-1) j ng+m_+1,my,n, +m_,n,
ny+l,my=m_,ny,n, —m_

b -1) J

Yy —nytm ) +5 s, —ny+tm ) —(m_+3)

X

nytm_ynyny+m_+1,n,

) (2.183.)

Moy My =M _y 1y + 1,0y =m0 _

where the upper states are for m _(=m —3) = 0 and the lower ones for m _<0. For proton with n = 1,5t =%"

m=% we get

[13*3)= ~;— (/1000) + £/0010)) .

)

(2.18Db)
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Thus, by substituting Eqs. (2.18), (2.12), and (2.11) in (2.4) and (2.5¢) we evaluate general expressions
for the proton inelastic form factors and structure functions.
III. ELECTROMAGNETIC FORM FACTORS

The proton electromagnetic transition amplitude may be easily evaluated using the current (2.11) and
the physical states (2.12). Explicitly we obtain [N/, =(2M,.)Y2N,]

NN (Rj*5, pliol15*5) = (0j*5|G[ (@ coshd, +a, P, sinh8,) Ly, +(as P, coshd, +a, sinh,)L,,

+0,q,coshé, Ly, +0a,q,sinh6,L,, +a,P ]| 13*%), (3.1a)
NLN{ (7343, 213y 1575 = (n5*3]G (@) Lyg + 0149, cOShO, Ly, + 0 ,q, SInh6, Ly, — 0,q5L15)|155), (3.1p)
NLN{ (7= %, 2l 1375 = (nj* = 5|G[@y Ly +@,q, cOShO, Lys +@,q, Sinh6, Ly, - ,q,L,5)|1575), (3.1¢)

where we have used the Lie commutation relations

[Lags Lep)=i(€apLoc —8ac Lop +&scLap —8spLac),
and the operator identity

2

- 6
eBe ™ =B +6[A, B]+5;

(A, [A:B]]"" ° e

We have taken
P, =(M, coshn +M,0,0,M, sinhn), q,=(M, coshn-M,0,0,M, sinhn),
G =g~ 'Lasginl 35,104l 45

Also, for convenience we define

Iap(m)=mj*m|GL,5|1573),

e (3.1d)
Loo(m) = mj*m|G|15*5
Using these definitions in Egs. (3.1a), (3.1b), and (3.1c) we obtain
NLNL(Rj*%, plio|155) = (@, coshd, +ag P, sinh6, ) 44(3) + (@4 P, coshé, +o, sinh6, )] 4(3)
+0,q,cosh6,] oo (3) + g, Sinh8, 14, (3) + Pyl oo(3), (3.2a)
NyN3 G35, bliy 1575) = oy Ig(3) + 49, cOShO, [1(3) + @40 inh6, I1,(3) - @4ds I15(3) (3.2b)
NN GG*, = 5 013y 15°5) = 0y Lig(= 3) + 01,0, cOShO, Iy g(= 3) +00,q, Sinh6, Iy(~ 3) = @y Iyg(=3) - (3.2¢)

The matrix elements (3.1d) can be evaluated as follows'*''%: We substitute the group states (2.18a) and
(2.18b) in (3.1d) and explicitly evaluate the actions of the generators L, on the parabolic basis states.
In terms of the usual ladder operators {a,, a,} and {b,, b,} the relevant generators are expressed as follows:

Log =3 (akay +ata, +biby +bib, +2), Lyg=3ilaja, - asa, +b3b, — b3b,),
Lo =5 (@bl — aib} +ayb, — asby), Liy=—3(ata, +asa, —bjb, — b3by), (3.2d)
L,, = - 3(aia, — asa, — biby +b3b,), Lys=3(ajbi —asb} +arby — ash,),
Ly = — 5(aib} +a3b} +a1by +ashy), Lyg=3i(aiby — azby —ashy +ash,) .
Then the matrix elements of G alone can be obtained from the relation
(G191 65 941G §102000,) =e™HOH* /2 V(192088 1y aBle OO

ia(py+ay+1)/ 217 (|dy =dy+1)/2 3,1 V(d1+Bgt1)/2
Xe 1774 14 ¢nl ¢u+l)/2 (by+ 0, +l)/2( 3)6 ’

where V* (3) are Bargmann functions for D{’ representations of SO(2, 1) and @, 8, and y are Eulerian
angles and they are related to the angles 6,, 6,,, and n as follows [ =5(0, - 6,+), 0=3(0, +6,), and the
arrow indicates the limit when n =1]:
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coshzB cos <9‘_§+_7_’ = coshzn coshd— coshsn,

R

sinhif cos —2—Z> = —cosh37 sinh6—~ 0 (or a =7 +y),

a-y
2

sinh3B sin < > = sinh}7 cosho —~ sinh3n coshé, ,

g
2

cosh3B sin <oz > = — sinh37 sinho - — sinh37nsinhé, ,
sinhB cosa =(coshé, sinhé,, coshn - sinh, coshd,)
= 2(cosh6, sinh,, sinh?;7 — sinhd coshd)

~ 2 sinh6, coshé, sinh?5n,

sinhB cosy =(coshé, sinhf,, - sinhf, coshd,, coshn) (3.32)
= - 2(sinh#, coshé, sinh?;7 + sinhd coshd)
-~ —2sinh#, coshé, sinh?37,
sinhB sina = coshé, sinhn— coshé, sinhn,
sinhB siny = - coshé, sinhn - - coshé, sinhn,
2 cosh?38 = (coshd, coéhe » coshn - sinhé, sinh#,, +1)
=2[cosh?5 +(cosh®s +sinh?6)sinh?3n)]
- 2(1 +cosh?6, sinh?37),
2 sinh?38 = (cosh®, coshd,, coshn — sinh6, sinhg,: — 1)
= 2[sinh?6 +(cosh®o + sinh?5)sinh?37)
- 2 cosh®9, sinh?yn .
The Bargmann functions are well known and are given as
VB = o 1—n)! [(7&:2))!!({:::::))!! ]Vz(tanh%ﬁ)"""(cosh%@)"z"zF, k-n1 —’:L —2kl’ , m=n
1+m —n, - sinh®38
- [((fn __kzg)% ko 11)” (tanh38)™"(cosh}3) P71 - 2 tanh?38) ,
where (3.3b)
o [PHBN/PH+V\ 1\ € [x+1)P-¢
P (")) ()
Piv(x)=1

Then we express the product of the two Bargmann V functions in terms of one V function by using the rela-
tions'® (n=n,+n,+ || +1)

| + + 414

V(P‘-r(*l“)tlj)/z,nﬁ( MI+1)lz(ﬁ)vr(lg’ll(lil)flz)/u%lu lyng+ (I A1+1) /2410 I(_ﬁ) = E Cn" n'l'.‘rcs,nl, Vl)'t’*l-lh I‘fnflu I(B)!

| + F1U
Vg O ot mpr i ton 201wt B VINEND) 2, mpacintony r2(=6)= ZD,." wty D Vs T o1 (8),

where the SO(2, 1) Clebsch-Gordan coefficients are
. _l: 3 =1)+ 3(u+ | 1)) -1 +3(|p| - p) Ik|+u+7:|
nyny, T
200, =y + [N+ 20k [0 ]) 300, —np+ X))+ 3 = 1)) (A]+w)

. _[ T -1)+3(|n| - -1+ 3(|p] + ) A+ p+T
BT St -+ X))+ 5 = 1)) 3oy =g [N+ Eur [B]) (0] 4 w)
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and p=1+%. The range of 7 is

0=7=Min{n - |A| =1+ |p| = p,n” = | x| =14 || - p}
Thus we have introduced one more summation, over 7, but it is harmless in our case since for the initial
proton state it takes only two values, 0 and 1. We are then left with only one summation and that is over
the parabolic quantum numbers (n,,%,). Essentially this summation is built into the SO(4) rotation functions
defined as (the angle a here is —a in Ref.16)
37

pli+-] a) Z % v e J ei&(ml-mz),

Dylim
m \m, m, m m, m, m

where j,=j,+j, and j_=j, —j,. For our purpose, we need only some special cases of the above functions,
i.e.,

DY n/2)(g) = (=Y ™a(j,, j, m)(sina) ™ z(j , +j + 1)e***/ 231 (cosa) % (j, —j + 1)e™*/*C] 22 (cos 0)],

where

(3.4a)

N ojel/apys . L Tm+ D)T(4, —m+1)T(j, —j+ 1)T(j+m+1)] /2
a(j.rj, m)=2" l-\('“-Z)[l"(é)l"(m-!-jg)l“(j,,+j+2)1‘(]'—m+1)1"(]‘,,+m+ 2) ]

and the identity

2(m+ 1) 1’2( .d 1 (j,+1)
[ 4,x1/2 = _ =M [i4,1/2)
Diiniim (@) [(m+%)(j++m+ 2)(j, -m ] tda *2 (m+ 1) mm (@). (3.4b)

In Eq. (3.4a) C¥(¢) are the Gegenbauer polynomials. Some of the special cases are

Ci(t)=1, Cil(t)=2vt, Ci(t)=2v(r+1) (tz - —2-;{—2) R
(3.4c)

diac‘,’,(cosa)= -2y sina/'CY i (cosar).

Thus we can explicitly evaluate the matrix elements (3.1d) in terms of Bargmann functions and SO(4) rota-
tion functions. We below quote the relevant results [the exponentials are indeed special cases of SO(4)
functions]:

Ioo(2) =3l DF 25 (@Rl e, 5 p(B)e 22 cc ],
56('2')= ?[Dﬁ?}‘/’fl‘/’zﬂ(a)Vﬂu/z 3/2(3)6 Hzic-c-]a

> 1 N=- -
= 36(%)=I35(%): [ij['1}/2?’11/2?‘](0:)Vﬁ112/2’5/2(3)(3"’3/2 -ze "/2)¢C-C~}

[ 76 Dy @ValE 5 2 (B) ™2 1 7 /2) 5 c.c.] ,

-1
Le(z)= [ml""}‘/’zzi‘/ﬁ’(a) miir2,512(8)(e 2 + 37 /%) 2 0-0-]

1
+ [227’6 DY @ Vall o,s p(B) (622 - e“’/z)ic.c.} ,

Ly(3)= =3 (DT @Vl 0 (B P 7 c ], (3.5)
, 1 -

"dxs(%) =115(%) = W[DJ[:IS%?:QI//ZZJ(O‘) +1/2 5/2(3)8‘7 2% C-C-] N
. 1 - :

—il 5(~3)=1,5(~3)= [mDﬁf'I‘/zfi/‘zm(a)Viﬂ/z s/2(B)e" /2% c.c.]

1
- [27 = D157 @)Vl 5 5(B)e 2 % c.c.] ,

114(‘%) = %[D}',"l}/f '171/2](0‘)V3n+/12/2 3/2(B)e"'”2 Fc.c.] ’

L(=3) = HIDEE @) VLR 5 B P2 e ],
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and I,,(3) and I,,(~ 3) vanish [obvious from Egs. (3.2d), (3.1d), and (2.18b)]. We then substitute these matrix
elements in Egs. (3.2a)—(3.2c) and obtain the following transition amplitudes:

NI, N} Gj*3, pljo| 132) = [3(@, coshd, + a,P, sinhé,) + 30, P, DY 5232 ) VEL2 , o p(Ble™ £c.c.]

- $a,q,sinhg, [DSL/2A 2 @) VL2, L (Ble™2F c.c.]

1 . . i -

- 575 (@sPgcoshé, + a, sinh@,)[Di% /202 @) VR, o (B) (e 732+ 3 e ) 2 c.c.]
1 . y

e 0,0, oSO DAV AP o) 5]

1 . _ . iy
+ 575 (@ Pocoshd, +a, sinh6 )[Dim 1452 @) V32, © 1 (B) (e /2 e ™) 2 c.c.]

n+1/2,
1 . .
- 575 s cosh, [Dim 122 o) V32, H(B)e* 2+ e ) Fc.c.], (3.6a)
1 . . .
NN G 2,1’|_71I 2'2)= E\/—'z:(- ia, +@,q,coshd )[D[na}é,z'a}z/ﬂ(a)Vnu/z,s/z(B)eMz; c.c.], (3.6b)

. 1 )
Ny N{ G, - 5, plid| 155) =7 (i + 0,4, coshO DYV L o s n(B)e 25 o]

1 _ .
-57% (- i, + a,q, coshd ) [DE 11202 @)V EE , | n(Be™?F c.c.]
+1 @,q,sinhd, [Dim 1212 )V 32, L (B)e 2 F c.c.]

+110,q,[ DA P )V 3L, s pB)e 22 cc ] (3.6¢)

From Egs. (3.6a)—(3.6c) one can compute all proton form factors. However, we evaluate below the form
factors for the special case when j*=(n - 3)*, where # is an odd integer, due to the following reasons:

(i) Mathematically it is comparatively simpler in this case since the Gegenbauer polynomials in Egs.
(3.4a) and (3.4b) take simple values [Eq. (3.4c)]. (ii) From the final results we can easily deduct the cor-
responding expression for the elastic form factors (z=1) for which standard expressions derived using
this O(4,2) dynamical group framework are available.'” This provides a neat test of our general expres-
sions [Egs. (3.6a)-(3.6c)]. (iii) From the final expressions we can see how they factorize according to
Eq. (2.5¢) and formally ascertain (although it may not be exactly) what values the factors %, and &, might
take for inelastic transitions. (iv) Finally if the final results show leading dipole behavior, then we can
see how the dipole mass ¢, [Eq. (2.7)] varies with »’ and possibly test the conclusion with experimental
observations. Having these motivations in mind we proceed to compute this special case. For this we
need the following special values of Bargmann and SO(4)-rotation functions [Egs. (3.3b) and (3.4a)-(3.4c)]:

V3L, s2(8) = (n 1)[n(n + 1) }/2(tanh38)"%(cosh3g)~5 — (-1)%m % [n(n+1)]*/?(tanh3g)*(cosh3p)~2,
V3l 52(8) = [ﬂ(n+1)]1/2(tanh25)"-1(005h [ (3.6d)
V32, 52(8) = 7'2—1T— [(n - D)m(n+1)(n+2)]"/*(tanh3B)™*(coshzB)"°

T 1)r 1 1/2 .
Dy () = iy [ e L [ o e(inays,

m-1)T'm+1)I'(+1)
n+2)n+1)I'2r+1)
1/2
Dimyatizd, (@) =(~d)m2n [%w—%] et*/2(gina)"?
[j+,1/2]*(a) (- 1)j'mD”+"‘1/23(0t).

j,m m Jomym

1/2
DE 2312 o) = (22 | | T2t/ 2(stnay= - siei/2(sinay-],

(3.6e)

Substituting the above special values in Egs. (3.6a)-(3.6¢) and using Eqgs. (3.3a) for the angles « and ¥ we
obtain, after a laborious but quite straightforward algebra,
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T,A coshy _coshzn

= __ L iy (2nlln 2

(filn ! 2;1"]0' 3'3) (N{N,',v> cosh?13

sinhd

m— (% COSh25 Rn’)

few= (0%

2
- 2:;:2273 [B, - sinh?$n(cosh?o + sinh?8) B//]
1 sinhd
- (- 1)( sinh?18 [D"' ~ cosh’3 (s cosh?oR,)
- cs::)nsiz‘ln (D}: - sinh?37(cosh®c + sinh?6 )D'G)])} (3.7a)
where
L= {nl’(n+ DI (n+ 1)]”2
n T'(2n+1) ?
A= i coshg, sinhn\"™*
" cosh?3p ’

(N2/P =a,n’ coshf, +2a,M 1 +2a,n'M , Sinh@,. ,
e,r=[3a, coshd, +a,(M ,» +M )+ 3a,(M ,» +M ) sinh§,] coshd,
R, =0a, sinhg, + a;(M,, +M) coshé, ,
B,»=—eyrcosh®6 — 1,/(3 cosh?5 + 4 sinh®o)
+ ia M, cosh6[2 sinh?c - sinh#@, sinho cosh + (—1)3n1 coshd, cosho coshd
+cosh?5 — (-1)%m2 coshg, sinho sinhf]
+coshd sinh(20)(R,, — @, sinho) + sinh§ {R,/[2 cosh?5 — 3(cosh?c + sinh?6)]+ 3a, M, coshg, cosh?5},

e}r=3a, cosho +2a,M, + 3a,M, sinhg, ,

(3.0)
L, =(-3a, cosho+ ia,M, ) coshd,
Blr=ehrcoshd +3u,.— (—1)*mda M, sinho — @, M, sinhd coshg, — 2(-1)°ma M, sinhd coshg,
+ g0, M,/[(~1)®n1(2 sinho sinh, — 2 coshd ~ coshg, cosho) + sinhg, sinho — 3 coshs],
D, =4sinhoR,, <3 + LS“;’;-) + ia, M, cosh’s
1
D!+ =3coshf,sR,(2 sinho + sinh6) — 2a,M,+ cosh?5 sinh?5 sinho
- 24a,M,: coshd(cosh?s +sinh?6) + ia, M, cosh®5(cosh?c — sinh?6),
D} =-3M,/[2 sinh6,(a, coshs + ia, sinho) + (o, sinhe — i, coshd)],
1 (T,Ap cosh3n coshb
(Filn - 3)* zapl]1| % 3) =E < N{N/, )(n2 1)1/2 'Tasﬁ'é_l‘”’[(a1 + i, coshf, (M +=M))
+sinh?3n(2a,M, coshg,)],
- . T,A
Giln=H*, - b4 18 5)= (F5)
x )= (=1)8mi(- i@, + @,q, cosho,) csr’)la;l;‘z% [‘2’ sin[(a - 7)/2]}
2 cos[(a -v)/2]
. 1 ~2isin[(a +y)/2 . 1 2 cos[(a+y)/2]
+%0,9,8inhé, PRy [ [ ] +5i0,q, Gosh’lg )
2 2 cos[(a +v)/2] -2isinf(a +y)/2]

- (n— 1)zi(-ia, + a,q, coshs,)

1 [2 cos[ (o +'y)/2]:]}.

- 3L
coshg, sinhn cosh®38 2isin[(a +y)/2]
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If the final states have positive parity, then the above expression becomes, after some manipulations,

- s I',A,\ sinh3n
(n(n— %).Fy_%apI]lIl%-F% = (N,’,;N;) COShz‘i’zl“}g

X %u;,— (n-1)

where

cosd
2 cosh#, sinh®

7 [(a, +ic,coshd (M, - M))

+ sinh®5n (26 M, cosh@l)]} , (3.7c)

e =(=1)®m 1 cosho +ia M, coshd + (=1)®m M, sinh®sn coshd, cosho

+ia,s(M,, - M)[sinh, sinho + (-1)°" cosh6, cosho].

From the above expressions we conclude that the transition amplitudes behave as

-1 1
coshzn
41
cosh*38’

- s sinhp \ "
=" p7/15 = (ot

although, strictly speaking, they are affected by
the term sinh*}7n/cosh®;3. The dipole behavior is
always built into the term 1/cosh*;8, which actual-
ly originates from the 0(2,1) representation func-
tions. From Eq. (3.3a)

cosh®; 8=3(coshé, coshd,, coshn

— sinh#, sinh6,, + 1),

where the boost angle 1 is given by

1
sinh®4n = [, —M)?+@3
e %l
(3.7e)
1
cosh?in=——[(M,, + M)* +Q%].
=g, ]
Therefore,
2 \2
cosh?;B=g,° (1 +?— > s
ﬂ'
where
— 1 2 2
gn=1 +2M,,,M(M"' +1%) coshé, coshb,,
- sinh@, sinh6,,
and the dipole mass [after using Eqgs. (2.16)]
2 2
ty =M " 1+—Ma;tanh6,
1
_%_Ai. 2 2 2)271/2
- alCOShel[al M"I - (b - Q3M"l ) ]
., 2
+( M7 -—Mbtanhs, ). (3.8)
1

-1 il D

sinhn >"“ sinhin (3.74)

cosh®;3 coshp’

r

Hence for an increasing mass spectrum such as
the one given by Eq. (2.15) the dipole resonance
mass t,, increases with »’. This means that the
dipole curve of the form factor of any nth reso-
nance should lie above the corresponding one of the
(n - 1)th resonance. The experimental data seem
to support this conclusion'® (at least for the first
four prominent nucleon resonances). The maxi-
mum value of ¢,, may be obtained from the largest
nucleon resonance mass M, (n' =~ ). From the
mass spectrum given by Eq. (2.15) we get the lar-
gest mass

1
Mmas "5y 2 s(a,®+2ba,) —*——2312(&12 +4bag)/?
3 3

~21.91 (GeV)?,

Mg~ 4.68 GeV

where we have used the values of the constants
given in Ref. 17, They are a,=-0.909, a,=1.66,
@,=0.166, 5=-~0.618, ¢=0.891, sinhf, =2,
cosh6,=v5, M=0.94 GeV. Using this largest mass
we get the largest dipole mass £y~ 14.92 (GeV).
This means that /,, is bound by the limit

0.71< ¢,, < 14.92 (GeV)’., From Eq. (3.8) one can
predict the dipole mass of all the nuclear reso-
nances that fit into the 0(4,2) hadron spectrum,'®
Furthermore, if we take ¢,,=constant XM ,,* (for
simplicity) in the scaling limit (Q%— o, ¢ fixed) we
find ¢,, = constant x@?(1/£)(1 - £). This shows that
each and every nth resonance form factor remains
finite in the scaling limit. Or, in other words, the
structure function vW, of Eq. (2.5e) should remain
finite in the scaling region. Also, in (3.7d) the
presence of the term [ sinhn/ cosh?38]" ~! is quite
harmless, since, with respect to their large Q°
behavior, cosh®;8~sinhn. However, the existence
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of the terms sinhin, cosh3n in (3.7d) is extremely
crucial. If we compare (3.7d) with Eqgs. (2.5¢),
then these terms may be appropriately absorbed
by the factors %, and %,. Therefore, from this cal-
culation we suppose, at least for those normal
parity transitions (withj=n-3), 3* -3*,3%, ...,
that &, =cosh3n and %, =sinh3n. The factors %, 4,
connecting the vertex function to the form factors

1 sinh®q

n__ 1 "2 _ — 2y pr
Gzlg®) = (N{)z coshlp {(Nl) COShZ%B[Bl sinh“37 cosh 9131]} s

where
(N)?=3a, coshf, +2a, M +3a, M sinhé,,

B,=— (N)? - 1,(3+ 4 sinh?9,)
+4Ma,sinhf, cosh?d (3.9b)
U, =—%5a,coshf, +ia M,
B!=(N")?+3u, - 4a, M sinhf,

and

Gig® =0,
-2y _ 2y _ My
Gilg )‘Gu(q )_(Ni)z cosh"%B’

where from Egs. (3.7e) and (3.8)

2 4M2
h2lg = QN , M
cosh*;f 2<1+t1)’t1 cosh®8,’
and
2
sinh®4n = 4%42 .

The above results exactly agree with those of the
previous calculations,'” and thus support the valid-
ity of our most general expressions [Eqs. (3.6a)—

are in principle fixed from the spinor character of
the wave function, but involve the generalization

of the invariant forms (Jy JF, +¥0,,¢"F,) to high-
er spins.

Next, we want to deduce the elastic transition
form factors from our general expressions [Egs.
(8.7a)-(8.7c)]. For this we take n=1,6=0, ¢=6,
and obtain

(3.92)

(3.6¢c)] for the nucleon inelastic excitation form
factors.

As a final remark in this section we want to show
how the leading 1/ cosh* 8 behavior in Eqgs.
(3.7a)—(3.7c) arises. For this we have already
given an intermediate step before we reached Eq.
(3.7c). From Eq. (3.3b) we notice that each Barg-
mann function V,’f,,,,(ﬁ) introduces a term
1/(cosh}ip)®*, In Eq. (3.6c) the corresponding func-
tion with the smallest & is, say, V34’ /s,3/2(8) and
this term gives 1/ cosh®;8. Then, when we take the
complex conjugate in Eq. (3.6¢), because the Barg-
mann functions are all real, only the angles o and
v get coupled together according to the parity as-
signment and we get terms such as cos[(a +y/2],
cos[(a —v)/2], i sin[(a+y)/2], and i sin[(a -y)/2].
According to Eq. (3.3a) each of the latter terms
behaves as sinhin/ coshiB or coshin/coship. The
term sinhjn or coshin comes outside and it is ab-
sorbed by k, or &, of Eq. (2.5¢c) and 1/ cosh3p gets
multiplied with the previous 1/ cosh®.8, giving the
leading behavior of 1/ cosh*}B. The important
point to note is that the parity superposition is
quite essential to get the right behavior.

IV. ELECTROMAGNETIC STRUCTURE FUNCTIONS

In order to calculate the structure functions MW, and vW,, we have to evaluate first the tensor com-

ponents W, and W, (or W) from Eq. (2.1), i.e.,

1 i i (0)|1
W= grg 2o 0Up+aP =M AH m, pliy (01551

and

W33: m Z 5((p+q)2_Mn’z)l<hjim’p1]3(0)li

n,J,m

(4.1a)

|2 (4.1b)

We now substitute explicitly the current (2.11) and the physical states (2.12) in the equation given above
and obtain in terms of the notation given in (3.1d) [for every cross term it is understood that its complex
conjugate should also be added with it, for example, I,,(3)I%,(3) means I,,(5)1 %(3) +I%(z) 1 4(3)]
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1 1
W= §a &4 NN, 8((p+qF =My a?[116(DT $6(3) +116(= 3)1 1o(- 2))

+a,2q.2 cosh®0, [T 5(3)1 15(3) +1 5(~ 2) It5(~ 3)]
+a2q sinh?6,[1,,(3)1 1,(3) +1 4(- 3) [£(-2)]
+@,2q 21531 15(3) +1 5(= 2) If5(~ 2)
+@,0,9,c08h?0, [ 1,(3) 1 £(3) +1 5(- 2)1 %5(— 2))
+@,0,g,8I0h6, [ 1,6(3) 1 $4(2) +1 15(— 2) 1 T4(=3)]

= @, 0 q5[ 163 5(3) +1 5(= 2) T 5(= 3))

+0,2q.2 coshd, sinh8, [I (I %,(3) +1 (= 3)1 %(-3)]

- @,2qog; coshb, [I,,(3)1 %(3) +1,5(- 2)I (- 3))

- @,2qoqy sinh6,[ 1, (DI 5(3) +1 (- DI (- 2))}, (4.2a)

2 5((1’ +q)2 "Mn’z)[ a]_zlgs(%)I ;(6(%)
+0,2P2 cosh?6,1 ,,(3)1 %(3) + ¢32P,2 sinh?0,1 . (3) 1 %,(3)
+@,2q.2 cosh?0,] . (3)] %,(3) + @,2q,2 sinh?0,1 ., (3) 1 £,(3) + a2 P2  (3)1 %,(3)
+0,0,P, cosh, 1, (3)1 %(3) + 0,0, Py sinh 6,1 5o (3) 1 %,(3)
+0,0,g,c08h0,1,(3)] %(3) + @,a,q,sinh6,1 ;. (3)] %,(3)
+0, 0, Pl (3)] %,(3)
+a2P.? coshd, sinh8,1 ,(3)1 %,(3) + @;0,P,q, cosh?6, I,.(3)I ()
+0a,0,P,q,coshd, sinh8,] ,(3)1 §,(3) + ¢;0, P2 cosh8,] . (3)1 %,(3)
+a,a,P,q,cosho, sinh8,] . (3)] %,(3) + @;0,P,q,sinh?6,I . (3)I %,(3)
+a,0,P2sinh6,1,,(3)1 %,(3) + @,2q.2 coshb, sinh8,J ., (3) I%,(3)
+@,,Pyq,coshd,1,.(3)] 5(3) +a,a,Pq,sinhé,1,,(3)] %,(3)]. (4.2b)
In the above expressions for W, and W,,;, the summation over j* of the product of two matrix elements
can be easily done using Eqs. (3.5) and the following orthonormality condition of the SO(4) rotation func-
tions, because each matrix element can be, as detailed in the preceding section, expressed in terms of
Bargmann and SO(4) functions and the final-state spin-parity j* are involved only with the latter, i.e.,
Z:D[u.l Ha) DEJ;-;,;’][( @)=8;.n. (4.3)
We below give all the relevant final results:
1 .
2136(%)1 63 =5 V?uizl/z ,5/2 (B) V?uﬁ/z s/a(B)+ $sin%y V3+1/2 5/(B) Vf,{["l/z 5/2(B) + $cos?y V5+1/2 5/2(B) Vf,{?l/zﬁ/z(ﬁ),
2146(3)1 46( )= 12 V?rﬂ/z 5/2(B) V?l'{zl/z 5/2(8) + fcosy V +1/2 52B)Y, +1/2 seB)+3 2 sin®y Vn+1/2 ,5/2(3)V3{21/2,5/2(B),

Zz w53 =3V32 4 o n OV 0 B)
ZI s 353) = 5 V3B 1o seBVVI2 o s 1o(B) + 2 8iny VEZ o (BYV Y25 /() + 2 cOS? YV 1osraBVEE (B),
2B 33 =4V 3 4 5 n(BV 3 4 0 B)
le(z)z V32 1 s nBYV 32 1o 3 12(B),

jztl 36(%)1 ﬁs(%) =$sin(2y) V::izl /o.5/2(B) Vn f1hsreB)—3 $sin(2y)V +1/2 5/2(B)V:~<21 fo.5/2(B),
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;Igs(%)l 5(z2)= - 3‘2@ siny V32 1, 5BV 1 512(B),

Z LB %(3) = = V3 siny V32 4y s n(BYV3LE 1y 5 (B),

a1 3= = 5 cosr VI sV i )

21 a1 53) = =8 cosy Vi on BV ik 5nd), (4.4)

2156(2)1 (2) 3 Viﬂ/z .3/2(5) V?uﬁ 2 .3/2(3),

1
;Iss(%)l §4(%) == 373 cosy V?H/rzL/z ,5/2(B)V?1{-21/2 3(8),

2L 1B =5V
J
2 131

+1/2.5/2(B)Vn+1/2 ,5/2(3)

’{‘5(%) =3 V?fl /2 .5/2(3) Vr5u£21 /2,572 (8),

jz;ll.s(— %)Ifs(' %) : V3+1/z ,5/2(B)Vn+1/z 5/2(3)“*‘ Vn+1/2 5/2(B)Vn+1/z s/2(B),

2115(" 2)1 15(" 2) =12 n+1/2 5/2(B)Vn+1/2,5/2(3) +% Vn+1/z.5/2(B) n+1/2.5/2(ﬁ)’

vy +1/2 .3/2(B)Vn+1/2 3/2(3)

2114(_ 2)1 14( %)

2= DI D=1V 4 oAV .04 (6),
1
Z:Ils('% (=2)=- o3 cos?’V?xﬁzl/z.s/z(ﬁ)viﬁlz 3/(8),
1 .
2115(‘% (-3)= V3 Slm’Vﬁﬁ/z is/2(B) V?xizx f2.3/a(B).

The angles ¥ and B can be expressed in terms
of invariant quantities v, ¢?, and M,.? using Eqgs.
(3.3a) and Egs. (2.16) as follows:

n b-—a,M F)
= 27530t
cosy Sinhp [cosh61<c o, M2
v+M
—alsinh(}l(——————)]
c-a,M,2? |’
p 27n (4.5)
. _ -n' al(yz _ q2)1 z:l
S Sinhp [ c-a,M,*? |
and
cosh?s B=3(xn' +1), sinh®3B8=3(xn' - 1),
21, (X0 =1
tanh®z8 = <xn’ + 1) ’
where
v+ M

xX=a, coshel(

)

2
cC—a,M,

- 2
— sinhé (”—"‘3%—> (4.6)

1 2
Cc—-0,M,

It is important to emphasize that the present
theory does not take into account the widths of
the intermediate states ln). These are treated
as one-particle states. However, they decay
strongly, and a further vertex representing the
decay of the state | #) into all possible decay pro-
ducts must be included in order to calculate more
accurately the experimentally measured cross
sections. However, we shall evaluate first the
structure functions in the zero-width approxima-
tion. Note that in most of the phenomenological
direct-channel-resonance models®'*® mass form-
ulas and appropriate factors taking into account
the widths of the resonances are introduced phe-
nomenologically in order to obtain scaling [ equiv-
alently, the requirement of the finite-energy sum
rule

1

(t/a-ul2) 1 2
; I W, (v, @®)dv= j Fy(&)dE, t= Z

2M

a =fixed number, can be used]. Clearly the widths
of the resonances will be important, especially
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in the region of overlapping resonances, i.e., With this remark in mind we substitute Eqs. (4.4)-
for large #»’ (and for continuum), and we assume (4.6) and (3.6d) into (4.2a) and (4.2b) and after
a factor 1/M,/% as in the phenomenological models. some simplications obtain

1 1 2 2 <xn’—1 "
V= gra Z: N_2N,? SU(p+af = MwI 5y

nn+1) (n-1) 4(n—l)(n+1)]

1 2 2 2 2 -
X{:z(ax +a,’ cosh®9,v%) (xn’ +1)? [3 4 ' =1) " TG — 1

M
+-§-a4z[a1 cosh91( (v? - %)+, sinh?6, coshb, (J'i'—i> ve

v
c-azMn,2> c—0a, M,

2 ’ -
—coshzelsinhel(b 2 My )uzJ wnn+l) [— 3+2 (1) ]

c—-a,M,? (xn’ +1)%(xn’ - 1) (xn’ = 1)
+ 2 sinh26, 12 + (V2 = ¢%)) ﬁ%} , 4.7)

_ 1 1 2 oy fxn =1\ "
Was = 8172az,;N12N,,,2 o(p+af - My )(xn'+1>
n(n+1)

x{ [ @,? +a,2 cosh?6,(v? - ¢?) + a2 cosh?6,v?] ——5| 9 - 12
9 1 3 1 4 1

(n=1) (n—l)z]

Gen’ +1) G’ =1) T G = 1)

] of 1\ _ 2g (D=3 My? i _v+M NP e e
+9([oz1 (c—azM,,,2> a, cosh el(c—azM,,,z +a,0, sinh6, coshé,; o, M, (v2=-¢%)

V@ \ A\ n%n+l) m=1) , (n=1p
€= azM,,,z)2> v ) G 217G’ = 1) [9 BRIy Rl 1)2]

+ a’al cosh291<

b-a,M,? v+M vi-g® \)°
8 —32 ) o ?si o M2 S\ eam ?
+3 ([oz1 cosh91<c “a, Mn,2> a,?sinh6, (c -, M,,:2>+ala3 cosh6, <c —a, M,,'2>]

b—a, M, v+M 2 n'nm=-1)n+1)(n+2)
l 2g (2=%aPnr | L i L 2
+| @, cosh 61< 2M,,,2) a1a4cosh01s1nh01< zM,.'2> V) G 1 = 17

2 3 . 2 1 2y (D=3 M, 2
+ 5| 8(a, + 3 a5 8inhf,)| @, c—a,M,? — @3 cosh”f, c—a,M,?
n n

M
+0a,0, coshb, sinh6, <-—-—V-+——2>jl (v¥-¢%)

c—=a, M,
b-a,M,? v+M
—| a2 cosh?6, sinhé <——-—3--—1'—-> —-a,0,2coshé, sinh?0 <———-)J v?
l: 4 1 N\c-o,M,? 1%4 1 \ec-a,M,?

n'n(n+1) (n—1):l

% (wn” +1¥3(xn’ = 1) [— 3+2 (xn’ —1)
. . nr+1

+[ @2 sinh?0, 1% + 4(a, + 3 @5 sinh6, )2 (v? — ¢?)] G T 1P = D) l()z(xn)’ — 1)} . (4.8)

Equations (4.7) and (4.8) are the exact expressions for the tensor components W,, and W,;, respectively.
Since the mass M, is a function of 7’ we explicitly substitute # =7’ —3 and sum over #’. The quantum
number 7’ takes only discrete positive values. If g(n')=W =M, 2, W=(p+q)?, then

6(g(n')) = m o(n' = N), (4.9)

where
2[ ¢ 2W ~ (b — a W )?]¥? |
a,(a® +2a,0) - 2a2c]+[ c(a,® + 2a,0) — 2b%a, ]|

- (0[2W—C)
T [afW - (b-a,W)2]V2"

lg'(nl)ln’=N= ! W[

N
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Using Eq. (4.9) the summation over #’ can be trivially done. We finally obtain from Eqs. (2.4a), (2.4b),
and (2.8) and the remarks given below Eq. (4.6)

1 M 1 1
MW, )= 555 NaNg W T2 ()] f_‘, b (v, @, Wig P, W), (4.10a)
- 1 1 1 v ( (
vWol €)= g NENy W g ) [(1+u2/Q2)§: b, @, Wl W)
—"“u(1+u2/Q'T> 2”33’(” & WP, w)), (4.10)
where
_ (a,W =)
T [a W = (b -a,W)2]V?’
[a2+2a.(6 = a,W)](c—a,W)
Ny = 2{ i [ W= (b o, 7] +20,0,

NZ2= ﬁ (3o, coshd, +2a, M +3a, M sinhé,),

2[ @,*W = (b — o, W)?]¥?
l Wl a,(a,® +2a,b) - 2a2c]+[ c(a,? + 2a,b) — 2b%a, ]|’

b{(v, @2) = 3(a,? + @ 2 cosh?6, v?),

lg'WV)| =

(2) _2 2 v+M 2 _ o, (0—a,W jl
b (v, @) = 3o, [a sinh?6, coshé (c_azw>v sinh6, cosh 61<—--——3—c_a2w v?+a, coshb, )(u + @)
b3 (v, @) =a 2[sinh?6, v2 +(v? + @),

b (v, @) =3[ @,® + a2 cosh?6, (v? + Q%) + @2 cosh?6, v?],

(2) _8 of 1 \_ 2, [0 =W . _v+M_ ]
b2 (v, @) {[al (c—a2W> a, cosh el(c—aZW +,a, sinhé, coshé, (——— (v2+@?)

v+ QP
+a’a? cosh201<m> vz},

@) 2y _ 8 b—a, W\ _ 5 . v+M ,,2+Q2>]z
bgs’ (v, @) = {[:alcoshﬂ(—a—c_azw a,?sinh6, —a +a,a,cosho, T

-a,W 2,
+ {a‘, cosh291<-?;:%1w)- a,a,sinh6, cosh61<;%>] Vz} ,

b(e)(y Q)= = {6(0:2 + 203 sinh@ )[ (C—_-La—ﬁ> -a, cosh291<g—:%3—;v7)
2 2

+@,a, coshé, sinh91(£M—>] (v2+@)

+ {alaf coshf, sinhzel( %) - a2 cosh?®0, sinh6 <u;%> 2}
b (v, Q%) = a2 sinh?6, 12 + 4(a, + 30, sinh6, )2 (V2 + Q?),

_(xN=1\"V2 (N?-1) (N=-3) (N=3)(N+3)
gﬁ)(N’W)_(xN+1} (xN+1)3[3-4(xN—1) N1y ]

XN-1\¥"¥2  N(N%-3%) -3
gy’ (N, W) = ( xN + 1) (*N+1P(xN=-1) [— 3+2 (*N - 1)]’

o o (AN=1\FVE iod)
gf{)(v, Q2)~<xN+ 1) (*N+1*(xN=1)"’
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g)(y Qz)_

g’ (v, QZ)‘(§N+1> o ((ivzxzuf)l [9 12 ((Zjv 1) 4(ng - }
83, @) (§N+ )Nﬂ/z (xzxjrvff;:;zvé) 1){9‘12 X 21)) 4(%-51);21’
g (v, @) = <§IXT+ )N-vz ng(v{znﬂ;f\]rv-zl)s g
853/, @) = <§N+ )N-I/Z (xNJZ(INz(;l\?) 1)[ 3’“2%\7‘2')7}’

(5

1) aee
(*N+1)2(xN-1)’

M b—aW
x=a, coshd, <ci+T2W> - sinh91<cT;!-‘3V—~>,

and the kinematical quantities

. @&
T oM

Equations (4.10a) and (4.10b) give the exact final
results for the structure functions MW, and vW,.
In the next section we will consider a special
case and will evaluate the structure functions in
the scaling limit (v, @* -, & fixed).

-iM, 0<isl, W=Q2%(1—§).

V. SPECIAL CASE

In this section we consider a special case in
which the resonances satisfy an indefinitely in-
creasing mass trajectory. We achieve this by
taking explicitly the “saturation” constant a;=0
in Eq. (2.11). We obtain the mass formula

(M, * = ¢)?
T (5.1)

In the scaling limit, n’?~(a,/a,)’M,.* or
~(a,/@,)M,,. We give below all the relevant
expressions in the scaling limit:

-
N ~Wa 5+ (const),

o0l mw2 (),

a, coshf,

e 2mM(IoEy

_ cosho,
w 2M(1 -ty
{9 (v, Q%) ~v*3a,” cosh?d,,

2 a cosh®g
P, @)~ -z ety
611 (V)Q ) v ‘: 3 a, @4 2M(1 E)]

53 (v,Q% ~vPa 2 cosh®s,,

bz(sé)(V, Q% ~v*4a,’cosh®6,,

" _coshf,
(2) () @%)~p2=
bgg (V?Q) 9[ ay 2M(1 5)}
§{ @, Sinhf, cosha]
9 b

b4 (v, Q) ~v SMI=F)

2 @,a,% coshf, sinh®6 ]
(4) 2y~ 2| 1%4 1 1
b33 (V,Q) 14 [ 3 az 2M(1—£) >

b$3) (v, Q%) ~v*(a 2 sinh?6, + 4a,?),
-la
g (N, W) ~"/W(—1':‘Ba(3 +4B +4B%),

_a2M(1-§)
“a, coshé,

&2, W)~‘/W——*B4(3+ZB)
DWW~ T,

gL (N, w) e%%:BS(g +12B+4B?),

£, W) ~;—ﬁ71%135(9 +12B+4BY),

&9 (N, W)~ =t a‘ L5,

LW, w)~ ‘/W-—LB"(3+2B),

&3 (N, W)~ W—*B“

Substituting the above limits explicitly in Eqgs.
(4.10a) and (4.10b) we obtain after some trivial
simplifica.tions

Fy(§)=

1 a2 <2Maz ¢ 1 (1= £)°
121r aN?|a,|\ @, / cosh®,

"o <%> (5.2)

Fy(£)=2¢F, (€).
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Thus we find that the structure functions
MW (v,Q% and vW,(v,Q?) satisfy Bjorken scaling,
the Callan-Gross relation, and the Drell-Yan-West
condition. We also find that in the scaling limit the
contribution from W, [or the second term of Eq.
(4.10b)] vanishes always like 1/v. This means
that, as explained in Sec. II, the magnetic part of
the inelastic excitation form factors G(Q® [Eq.
(2.5d)] dominates, in the scaling limit, over its
electric counterpart. This situation is true in
many direct-channel-resonance models,?:9:13:18720
Also a close scrutiny of the calculation reveals
that any resonance model based on this O(4, 2) in-
finite-component field framework, if it scales,
will scale like v*(1/W?)(1 - £)°. Here v® comes
from the kinematics and (1/W?)(1 - £)° comes from
the dynamics, and in the scaling limit one is re-
lated to the other by W =2 Mv(1 - £).

VI. CONCLUSIONS

We have succeeded in evaluating the most gen-
eral expressions in closed form for proton inelas-
tic transition form factors [Eqs. (3.6a)-(3.6c)] and
structure functions [Eqs. (4.10a) and (4.10b)] within
the framework of O(4,2) infinite-component fields.
The transition form factors all have leading dipole
behavior in @ (although there are small devia-
tions for the electric form factors) as conjectured
in various dynamical and phenomenological res-
onance models. The elastic magnetic form factor
[G,(@?)] has exact dipole form in @® and there is
no immediate way that this behavior would be bro-

ken for large @°. If the experimental evidence on
the deviation of G, from the dipole behavior is in-
deed accurately established, then perhaps, to ex-
lain such deviation, one may have to incorporate
new features into the theory such as inclusion of

a higher-order term in the electromagnetic cur-
rent, etc. The calculation also gives an expression
for the dipole mass (Z,) of the nth resonance and
its direct variation with M,.* seems to be in agree-
ment with the experimental data (at least for prom-
inent nucleon resonances). Our final expressions
for structure functions are indeed quite general,
We have used them to a special case with an in-
definitely increasing mass (Regge) trajectory. The
model does indeed scale and satisfies the Callan-
Gross relation and the Drell-Yan-West condition
exactly. From the general expressions for vW,
[Eqg. (4.10b)] one could determine the value of Q2

at which the scaling might start (precocious
scaling) by making various plots of vW, versus the
scaling parameter ¢ (0< & < 1) at definite values

of @2,
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