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We calculate the partial width for the decay vl ~vr+ vr vr' in a linear U(3) SU(3),„„„Lagrangian, using a model
discussed previously in the literature by Haymaker and Carruthers. We find I'(vl~ vr+vv vro) = 58 eV which is
consistent with a recent calculation of Weinberg using a nonlinear U(3) SU(3),„;„,Lagrangian modified so as
to incorporate the new mechanism proposed by Kogut and Susskind. However, the result is quite below the
latest experimental result of 204 + 22 eV. In addition, we briefly discuss the history behind the decay

g —im+m no, emphasizing those points leading to the present understanding of the problem.

INTRODUCTION

The second-order electromagnetic decay of
g-m'm m' is a long-standing problem of current
algebra, partial conservation of axial-vector cur-
rent (PCAC), and the "standard"' model of strong
interactions. Prom 1966 when Sutherland' proved
a theorem forbidding the decay until recently when
Kogut and Susskind' (KS) proposed a way out of
this dilemma the problem had reached several
plateaus of partial understanding.

Most recently Weinberg' has recalculated the
decay using a nonlinear U(3)SU(3),h„a La-
grangian, modified so as to incorporate the new
mechanism proposed by KS.' He obtains a decay
rate I"(tl- n'ri ri') = 54 eV, e much smaller than the
latest experimental result of 204+ 22 eV.' Wein-
berg then suggests improving the calculation by
including the leading edge of the e(700 MeV) en-
hancement of m-m scattering. This paper takes
the first step in that direction. We calculate the
decay rate I'(rl - rr'ri ri') in the tree approximation
in a linear U(3)SU(3),h,@ Lagrangian, using a
model discussed previously in the literature by
Carruthers and Haymaker. ' We find the amplitude
is dominated by the e pole (which lies outside the
physical region). However, this affects a sub-
sequent increase in the decay rate to only 58 eV,
thus suggesting the model independence of the
result. We also find that the usually assumed
linear behavior of the amplitude on the m' energy
(E,) is only valid within the physical region. The
amplitude rises sharply as E,-O. However, this
is clearly due to the close proximity of the & to
the point E,= 0 (only -56 MeV away) and the fail-
ure of the tree approximation to properly account
for its very large experimental and theoretical
decay width -579 MeV. We thus expect that the
over-all picture of the amplitude would be signif-
icantly improved by going to the next order in the
loop expansion, i.e., the one-loop approximation.

However, the value of the amplitude in the physical
region which is -194 MeV from the & pole may not
be significantly changed. If the result is indeed
model-independent then the puzzle of the decay
q-~'m m' is still a puzzle since the theoretical
prediction is clearly quite below the latest experi-
mental value.

This paper is organized as follows: In Sec. I
we briefly review the history behind the decay
g-m'm m'. We try to give the main points leading
up to the present understanding of the problem.
In Sec. II we present the model and our results.
Sec. II is divided into four sections. In subsec-
tions A and 8 we discuss the strong-interaction
and electromagnetic-interaction parts respectively
of the Lagrangian, explaining how the parameters
in the theory were fitted. In subsection C the
results of the calculation are given and also checks
for possible calculational errors. Finally in sub-
section D we discuss our results and present our
conclusions.

I. REVIEW

The amplitude for the decay is experimentally
known to have the form9

T(tl-n'ir m') = n+PE„
where E, is the energy of the neutral pion and
P/n ——2/mn. Sutherland' showed that the ampli-
tude should vanish when any one of the three pions'
4-momentum is taken to zero. In particular when
either charged pions' 4-momentum vanishes
E,= m „/2 and the extrapolated experimental re-
sult upholds this prediction. However, if one
extrapolates the experimental amplitude, assum-
ing it behaves linearly in E, even to the point
(E„q,) = 0, then one evidently predicts
T(ri tr'rr )=t—ro0.

Soon after this result Bell and Sutherland" re-
moved the restriction of the linear dependence of
the amplitude, allowing for a quadratic dependence
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on the pion momenta as well. As a result the
decay was no longer forbidden but still required
to be exceedingly suppressed.

There is evidently a problem with the Suther-
land theorem at the neutral-soft-pion point. In
order to facilitate discussion of the problem we
will calculate the amplitude explicitly in this
limit. The invariant amplitude for q- 3m' to second
order in electromagnetism is given by"

(2)

where

)'..(0)= —~' f d ) T''():.(V)(: (0))D., ()'). (3)

8,j,"(x)= m, 'f, (((),o(x),

we obtain

(4)

j, is the electromagnetic current and D ~ is the
free photon propagator. Using the standard re-
duction technique and the PCAC relation

T(q-»)= —e', ' d'xd'y e' '"D, (()y)(m' 7)~ T(B„j,"(x)j, (y)j~ (0))~ l)7.
, (-K'+ m, ')

Pulling out the derivative from inside the time-ordering we have

T(q-3m)=ie', ' ' /d'xd'ye' '"(w'w ~T(j (x)j, (y)j', (0))~q)D„(y)
. , (-Z'+ m, ')If,

+e', ' t d'xd'ye' '"(n'w iZ '(x, y)i7l)D~()(y),

where

&. (x, y) -=1~(x.)8(y.)j; (y)b", (x),j'. (o)]+ ~(x.)8(-y.)bl'(x), j.' (0)b." (y)

+ 6( .—y, )8(y.)b ( ),j; (y)]j,' (o) + 6( .-y.)8(-y.)j.' (o)b,"( ),j; (y)]

+ 6(x )8(x —y )8(y )j,'(x)j, (y)j, (0)+6(x —y )8(x )8(—y )j '(x)j, (0)j, (y)

—6(x, -y, )8(y,)8(-x,)j™(y)j'. (0)j", (x) 6(x,)8( y, )8(y, -x,)j', (0)j: (y)j", (x)}. (6)

At the neutral-soft-pion point K, - 0 the amplitude
naively speaking vanishes. The first part vanishes
since it is proportional to K~ and there are no
massless poles in the theory to cancel this zero."
In the second part I ~ contains eight terms. The
first four terms vanish identically as a result of
current algebra. " They are all proportional to
the matrix elements of the operator

foal(y. ),j. (y)1 =-o.

It is the last four terms which have been a source
of confusion for many years. It was originally
thought that they also vanish [because of the pro-
duct of 8 functions 8(xo)8(-xo)], thus obtaining
Sutherland's neutral-soft-pion zero and the con-
sequent suppression of g- 3m.'

It was at this point that some people suggested
another electromagnetic interaction, i.e., the so-
called "u, tadpole" of Coleman and Glashow. " As
is well known the K'-K' and p-n mass differences
are not explained by a second-order electromag-
netic mass shift. The correction obtained in this
way always has the wrong sign. " Coleman and
Glashow showed that the u, tadpole, belonging to
a nonet of scalar densities u„g = 0, ... , 8, in
addition to the second-order electromagnetic
interaction, was sufficient to fit the measured

hadronic SU(2)-breaking mass differences. In
addition, the u, member of the multiplet fits the
SV(3)-breaking mass differences. Thus the effec-
tive phenomenological interaction Lagrangian was
assumed to have the form

Z„,(0)= L, (0) —m,u, (0). (8)

With this extra term it was shown in some models
that the amplitude for the decay g- 3m no longer
vanishes at the neutral-soft-pion point. "

Later Wilson" realized that the u, tadpole arises
naturally in the "standard" model of strong inter-
actions. The "standard" model is a model in
which quarks and gluons are the only elementary
strongly interacting fields. The quarks transform
as the fundamental representation of an
SU(3)SSU(3)„„,and the gluons form a multiplet
of Yang-Mills gauge bosons coupled to the color
degrees of freedom. The "standard" model has
many desirable features. It explains the quark-
model spectrum of low-lying states, "and is a
basis for current algebra. " It has the proper
short-distance behavior, given by asymptotic
freedom, "to explain deep-inelastic electron-
proton and neutron scattering. " Combined with
the necessary large-distance behavior (infrared
slavery) it can explain quark confinement. "
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Finally, theories of this type are the natural
"effective field theories" which arise in unified
gauge theories of the weak, electromagnetic, and
strong interactions. "

Wilson noted that included in the short-distance
expansion of the operator product j, (y)j z (0) is
the SU(2)-symmetry-breaking operator C z(y)u, (0),
where u, —= T()X,P/2 is the tadpole of Coleman and
Glashow and C ~ is a singular c-number function
of y with canonical dimensions of (mass)'. This
term is responsible for the electromagnetic mass
splitting of the p and x quarks.

Let us now reanalyze the last four terms of Eq.
(6) which were previously thought to vanish. The
first term is proportional to the matrix element
of the operator expression

lim d'y0-/0+AD ~pp C D gg QgEQ3

Suppose the produce CD has the form

(10)

C '(y )D„()(y)c( ,f(m'y'), —
which is dimensionally correct and reflects the
fact that a mass renormalization is always pro-
portional to the bare mass, m. Integrating over
space we obtain

lim lim m 'g(my, )Qs, (e)u,(0),
A~co 6~0 (12)

where we have cut off the divergent integral at
short distances and

m (ms)/ese' f d'e s e(e)lee(y)",
Integrating once more we have

lim (mg(0) Ink)Q ,'(0)u, (0).
)t~ oo

(13)

Finally combining all four terms which are eval-
uated similarly, we obtain

lim (mg' (0)Ink)[Q ,'(0),u, (0)], (15)
)t~ (so

where g' is the sum of g plus a similar term ob-
tained from the operator product j8 (0)j, (y)8(-y, )."
This expression is equivalent to what we would

Xp+& 3'0 @3 ~ jem S jem &ng 3' ~

(8)

where we have taken the limit K, - 0 and used the
identity

6(x,) = lim 6(x, —e).

Now replacing j,~~ at short distances by the term
C ~u3 we have

have obtained as a result of the effective Lagran-
gian of E(I. (8) with ms=+ lim~ „(mg'(0)ink). In
unified theories of weak and electromagnetic in-
teractions there are additional terms of order n
which contribute to the p-e quark mass difference
and to the decay q- 3m. These terms effectively
cutoff the ink divergence at the masses of the
heavy bosons in the theory, resulting in a finite
value of m3."

To summarize our results of the preceding dis-
cussion we write the amplitude for the decay
q- 3m as it now stands in the neutral-soft-pion
limit:

T(zi-37z) „= (r'7T
~

[Q'(0), u (0)]
~
)I). (16)

The chiral charge Q', is just one generator of
the group U(3)(3)U(3),„,.„,. The vector charges

Q, = d'xj, a=0, .. . , 8

where j~ = gy~X p/2 together with the chiral
charges

Thus we can evaluate the commutator in Eq. (16)
and we obtain

[Q (0),u (0)]= —z (
—)' v (0)+

&
v (0) .1

V3 ' (18)

It is only now that we confront the last problem
for the decay q- 3m. It turns out that the right-
hand side of Eq. (18) is proportional to the total
divergence of the 0 and 8 axial-vector currents.
Thus if we recall E(I. (16) we see that the ampli-
tude for the decay g-3m at the neutral-soft-pion
point vanishes anyway (unless for some reason the
0 and/or 8 axial-current creates a massless par-
ticle). Therefore, to verify the above statement

q.'-=JS'e/", e=s " S

where j,"'= py"y'X, g/2 satisfy the well-known
equal-time commutation relations of current al-
gebra (see Ref. 13, p.28). Similarly u, is a mem-
ber of the (3, E)8 (3, 3) representation of
U(3)(3)U(3),„,.„,. The nonet of scalar densities
u, =T()A.,f/2, a= 0, . .. , 8, along with the nonet of
pseudoscalar densities v, = —iT()y5Xag/2, a= 0, .. ., 8,
satisfy the equal-time commutation relations

[Q., u, ]= zf.,~„
a~ Vb = Z abcVc~

[Qg e us] = —zdgg„v, e

[Q, vz ]= zd z u
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let us calculate the current divergence.
We write the strong-interaction Lagrangian in

the form suggested by Gell-Mann, Oakes, and
Renner,

st ym ™00™88~ (19)

a, j,"(0)= z[@,'(0), N„(0)], (20)

and the transformation relations of the u's and
v's [Ezl. (17)], we find

&,j,"= —(-')'/'m, v, —(-')'/'m, v„
(21)

where 2,„ is U(3)(8)U(3),„,„,-symmetric and the
terms m, and m, break this symmetry. We re-
call that in the limit m„nz, 0, the symmetry is
realized by the Nambu-Goldstone" mechanism
and a nonet of massless pseudoscalar bosons.
However, the real world is closer to the special
case m, /m, = —)t2 with U(3)N) U(3),„,.„,broken
leaving SU(2)(8)SU(2),„,.„,invariant and a triplet of
massless bosons. Moreover, we should emphasize
that although an octet of low-mass pseudoscalar
states is found in nature —the m, K, and q mesons
—the ninth pseudoscalar meson which should by
symmetry arguments have a mass comparable to
or lower than that of the pions (see e.g. Wein-
berg, Ref. 4) can only be identified with the q'(958).
The problem of the ninth Goldstone boson is as
old as that of g- 3m and as we shall see is solved
by the same mechanism. Now using the expres-
sion for L„[E zl(19)], the standard relation

no known massless particles in the physical space
of states with these quantum numbers the ampli-
tude once again apparently vanishes at the neutral
soft-pion point.

Recently KS proposed a solution to this puzzle.
The solution focuses on the following point. All
the operators j~', a = 1, ... , 8 are invariant under
the color gauge group; however
jo~'= Q'r—'l(,P/2 is not. In order to construct a
gauge invariant operator one must take the limit
& - 0 of the point split and explicitly gauge-invari-
ant operator

( X+6j (x, e) —= T()(x+ «)Z~Z' ' l e—xp i d1'B,(x')
~x

where B&= &p B"„.

p, a=1, . .. , 8,

are the generators of the group SU(3)„)„in the
fundamental representation, B is the octet of
colored gluons, and L symbolizes a line-ordered
product. (We use the Greek indices o. , P, y to de-
note the color degrees of freedom and the caret
over an operator denotes a gauge-invariant opera-
tor. ) In the limit e - 0 Adler, Bell, and Jackiwz7
have shown that the operator j0~'(x, e) has the
limiting form

j,"(x)—= lim j,"'(x, &)

2
=j (x)+—a„(x)G.*'"(x), (24)

2m()
where G*„~"=—&'""G„is the dual of the gluon field
strength G„and

1 —1/z. ) /zv +
m, (l+ m, /v 2m, )

(22)

Thus

zm, /m,
x,- o + (1+m8/~mo)f

x x'x 9 j,"'(0)+8 j„"(0)) rj)8

m, /m,"~-' (1+m, /~2m, )f,

K m m js +jo

(23)

vanishes unless there is a pole at K'= 0 in the
amplitude ()z')z

~
(1/M2)j, '+ j,"'~)7) . As there are

Since jo~' is not gauge-invariant it can create
states in the nonphysical negative metric sector
of the Hilbert space." Thus Goldstone's theorem
(which implies that jo~' creates a massless parti-
cle in the symmetry limit m„m, -0) can be sat-
isfied by an unphysical, negative metric, ghost
state.

KS demonstrate in a relativistic quantum field
theory —two-dimensional, massless, Abelian
@ED—that the same long-range forces which
confine quarks create a "dipole" pair of mass-
less pseudoscalar mesons, one with positive
metric and the other with negative metric. The
dipole pair cancel identically in all matrix ele-
ments of gauge-invariant operators so that as
required there are no physical states of zero
mass, which by analogy would correspond to a
ninth Goldstone boson. However, in matrix ele-
ments of nongauge-invariant operators only the
ghost state contributes. They also show that when
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m, /m,'» "' (1+m,/~2m, )f,
x If.&~ ~-~j,"(O)~ q) (25)

the symmetry is broken by a small bare mass
term the dipole pair remains massless, and thus
again by analogy there is a pole at %2= 0 to save
g- 3m. Finally, they propose this mechanism to
operate in the "standard" model of strong inter-
actions where similar long-range forces have been
been shown to confine color."

Thus for our purposes the proposed mechanism
has the following two features.

The massless ghost state contributes to the
matrix element ())'m

~

jG"' )7) so that at the neutral
soft-pion point

where the operator 5, (to be discussed in the next
section) plays the role of the Adler-Bell-Jackiw
anomaly with its accompanying ghost pole contri-
bution. The model contains no explicit ghost
states. We work in the physical gauge-invariant
space of states with the ninth pseudoscalar meson
identified with the )7&(958)."

II. MODEL AND RESULTS

A. Tl~e strong-interaction Lagrangian

The model consists of a nonet of pseudoscalar
mesons Q„a= 0, . . . , 8 and a nonet of scalar
mesons a„a= 0, . .. , 8 which together transform
a,s the (3, S)6 (3, 3) representation of the group
U(3)(8) U(3),„„„.Explicitly we have

is not zero. Equivalently

BZ 3/m pT()7- 37) )»,„=G —i
( /~ )

2
x rr'rr G'„(0)G ",""(0) 0) (66)

[Q„(t)(,] =if b p

[QG V0]=ifG0GOG

[Q,', @~]= id, 0,o'„

[@G&o'0]= idG)G@G&

(27)

is proportional to the matrix element of the Adler-
Bell- Jackiw anomaly which likewise by virtue of
the ghost does not vanish. "

Secondly, the symmetry limit m„ms-0 is real-
ized by an octet of massless pseudoscalar mesons
identified with the w, K, g octet and the massless
dipole pair. The dipole pair cancels in all matrix
elements of gauge-invariant operators, so that
there is no ninth Goldstone boson in the gauge-
invariant space of states. Equivalently and self-
consistently, the ghost contributes in matrix
elements of nongauge-invariant operators so that
in the symmetry limit m„m, - 0 the U(3)(8) U(3),„,.„,
symmetry is effectively broken down to
SU(3)SSU (3) hg y

We have

2
g5 g QlX Q ggv

tI jo 4+ PV e

where the anomaly behaves as if it were not a
total divergence, thus invalidating Goldstone's
theorem.

Weinberg' in a recent paper incorporated the
dipole pair in a nonlinear U(3)(IU(3),„,.„,Lagran-
gian. The dipole pair transformed as the ninth
component of a nonet of pseudoscalar mesons.

In this paper we work with a linear
U(3)(SU(3),„„„Lagrangiar. with a, nonet of scalar
and pseudoscalar mesons. In the symmetry limit
U(3)SU(3) is broken down to SU(3)(8)SU(3) by an
explicit symmetry-breaking interaction. Thus
the ninth axial-vector current is not conserved.
We have

8 jo5=3g5„

with d~~ = (—,)'15ab, a, b, = 0, . .. , 8 and Q„Q,',
~, = 0, ... , 8 the ordinary U(3) and chiral genera-
tors respectively of the group. We also define
the 3 && 3 matrices

+f,TrM'MM'M+g(detM+ detM')

—& oa'o —& so's ~ (28)

In the symmetry limit eo, &s —0 the Lagrangian
is invariant under the group SU(3)SSU(3),„,. „„with
the U(3)(SU(3),„„„symmetry broken only by the
term g5 (5—= detM+detM'). The operator 5 along
with 5, —= —i(detM —detM') transform into each
other under the action of the ninth axial charge.
We have

[q,', 5] = —3id„,5„

[q'„5]= 3id„,5.
(29)

Together 5 and 55 effectively do the work of the
massless ghost and the Adler, Bell, Jackiw
anomaly discussed in Sec. I.

The symmetry-breaking part of Z„, on the
other hand, transforms in the way suggested by
Gell-Mann, Oakes, and Renner. " The tadpoles
vG and o, explicitly break the SU(3)SU(3), „„„

A. A,
o = v, ', and M = o + i/,' v'2 ' v'2

with AG —= (-, )'~'I.
Using this notation the strong-interaction Lagran-
gian has the form

2„=& Tr B„M'O'M+ f,(T re&I'M)'
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symmetry down to SU(3) and SU(2), respectively,
with the special case a=a, /v 2 &, = —v 2 leaving
Z„ invariant under the group SU(2)&SSU(2),„„„.
In fact, after fitting all the parameters of the
theory in a way we will soon specify, we find
a= —0.919 as compared to a (Gell-Mann, Oakes,
and Renner) = —0.89. The difference between our
result and that of Gell-Mann, Oakes, and Henner
lies in the fact that we calculate in the tree ap-
proximation whereas they calculate to first order
in &,. The two approximations are not equivalent
as will increasingly become evident as we con-
tinue.

When calculating the effective potential" for
this theory, which in the tree approximation is
the negative sum of all nonderivative terms in the
Lagrangian, we find the minimum, in the sym-
metry limit Eo c8 0, to be at the point

g, =—(o,) 10. Thus although the Lagrangian is sym-
metric under SU(3)&3SU(3),„,.„„the vacuum is
spontaneously broken down to SU(3) resulting via
Goldstone's theorem (see Goldstone, Ref. 26) in
an octet of massless pseudoscalar mesons. When
the symmetry-breaking tadpoles are then turned
on (&„e,c0) the minimum of the potential moves
still further to the point g, =—(g,),WO, a= 0, 8. In
order to expand in a perturbation series of small
oscillations about the true vacuum we define the
shifted fields

and pseudoscalar particles. In Table I, the mass-
es are listed in terms of the parameters in the
Lagrangian. For the unmixed fields Q„v„
a= 1, ... , 7 the mass is identified by the relation
e.g. Z„= —&I,'Q, '. However, for the mixed
fields, Q„Q, and g„o, which appear in g„as
e.g.

t ~2( 00 40 88 48 Os 4048)

the mass matrix is diagonalized by the rotated
fields, e.g. ,

q= Q, cos8~ —Q, sin8~,

rl'= y, sine„+y, cose~,

with the corresponding eigenvalues identified as
the masses. As apparent from Table I, there are
four independent parameters which are chosen to
be f,$,', f,g, ', yg„and b The. se are fitted using
the well-known masses for the pseudoscalar par-
ticles m, K, q, and q' (or X,) as input. '4 Thus we
take as input m, '= 0.01906 GeV', m~'= 0.2450 GeV',
m„'= 0.3003 GeV', and m„,'= 0.9178 GeV'. Deter-
mining the four independent parameters then fixes
the values of the eight dependent parameters

to/ ~0& 9 68/W2to& pÃ'6& tBs& tÃs & me&& tan8p

and tangs.

0-o+Z,
where

a 0 0)
Z=O n 0

( ~ &)

" (I+b),
v' 3

In Table II is the solution obtained to these fits
by Haymaker and Carruthers (Ref. 8). The values
of the masses obtained for the scalar particles
should be compared with the experimental results
listed in Ref. 34. The 5 is identified with the

P = P (1 —2b), and b
—= $,/M2$, .

g, and $, are defined by the condition that the co-
efficients of the linear terms in Z„vanish. We
have as a result of this condition the relations

TABLE I. Masses in terms of parameters in the
Lagrangian. Mass is identified by the relation
= —

& m Q for the unmixed fields, and is given by m
=-2f)(0 A( —2f 2(0 A2 'j/(0A3. For the mixed fields,

00 II 0 ™88II 8 ™08 @0@8)'

, (.G(b)+ ~(-1 —b')],

e,/v 2 = $,'b[4$+(b) —y(1+ b)],

where

G(b) = 3f,(1+2b')+f, (1+6b' —2b'),

H(b) =f,(1+2b')+f,(1 —b+ b'),

y
-=2g/M3.

(30)

~00

~08

2(1+2b2)

2(1+2b')

2(1+2b2)

2(1+2b2)

2(l + 2b 2)

2(1 + 2b2)

-'(b+ 1)'
~~ (7b2 b + 1)

2(b+1)

2(b2 —b+ 1)

3(1+2b )

3 (» —2b+1)

—,&3b (b-2)

A3

1 —2b

-(1-2b)

—(1+b)

—2

1+2b

Fitting the parameters in the shifted strong-
interaction Lagrangian proceeds as follows. The
terms quadratic in the fields determine the mass-
es, in the tree approximation, of the 18 scalar

~00

+88

~08

2 (3+ 2b')

2(l+ 6b')

4bvY

2(1+2b2)

2(3b'- 2b+ 1)

~2b(2 —b)

-(1+2b)
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5(970), I~ = 1 with a dominant decay mode to q«.
The fitted mass is 911 MeV. The x is the broad
bump in the Em channel I= z with the phase shift
slowly going through 90' near 1300 MeV. The fit-
ted mass is -903 MeV. The & is the broad en-
hancement in m-m phase shifts with I = 0', a mass
«700 MeV, and a width ~600 MeV. The fitted mass
is -604 MeV. Lastly, the &' is identified with the
S*(993), Io = 0' with a fitted mass 1094 MeV. All
the fitted masses, except for the &, are within
approximately 10%%uo of the experimental results.
However, improved results can be obtained for
the masses of the scalar mesons if one includes
a mass term in C„." We will come back to this
point again when we discuss the results of the cal-
culation. Two other notable features of the fit are
the mixing angles e~ and Os which agree well with
quark-model expectations. The p is found to be
almost pure octet ((I),) with sin8~-0. 04. The e, on
the other hand, is very nearly the nonstrange com-
bination of 0, and 0, with

—e-(-', )'~'o, + = v„i.e. , -cos8«=0.61-1/v 30 q3 8y

sin8~ = 0.79- (3)'~'.

One parameter of S„which has not been fitted
thus far is the value of g,. As we will see the over-
all amplitude for q - 3v is proportional to 1/to'.
We determine $, using operator PCAC satisfied
to each order in the loop expansion. "

As a result we have f, —= (—',)'~'$, (1+b) Us.ing the
experimental value f, = 0.095 Gev we obtain g,
= 0.147 Gev.

Additional tests of the accuracy of the param-
eters in Z„other than those already discussed
include decay rates, scattering lengths, and other
experimental parameters uniquely predicted by

Two such parameters which we have calcula-
ted and present now for later reference are the
decay rate 1, -2w and the ratio f,/f«. The cal-
culation of I', makes use of the fitted values of

f,g,', f,g,', b, and g, found in Table II. We find

I; -579 MeV, which is consistent with the very
large width of the g. The ratio f,/f» is determined
by operator PCAC and the fitted value of b. We
have f,/f»= (1+b)/(1 ——b/2)-0. 72, which agrees
well with the experimental value 0.78."

TABLE II. Solution I of Haymaker and Carruthers
(Ref. 8). (Dimensional quantities are in GeV units. )

B. The electromagnetic tadpole

tane~

mK

mgi

tangos

A&p

f 2&p'

Vip

ep/(p

0.040 66

0.9110

0.9025

1.0940

0.6035

—1.283

-0.075 75

-0.056 92

0.2522

-0.2102

-0.1861

-0.9189

b =—(,/ 2(p

a =—e 8/~2ep

The effective second-order electromagnetic in-
teraction Lagrangian has the form

2, (0)= -e' fd'sr(j; (y)j, (0))a~())—ra(0),
(31)

where 0, is the Coleman-Glashow tadpole. " As
discussed in Sec. I, only the tadpole contributes
directly to the decay p-3m. However, the first
term does contribute in the usual way to electro-
magnetic mass corrections of the scalar and pseu-
doscalar mesons. In particular there is a correc-
tion to the charged pion and kaon masses. We de-
note by

(bp,' 0), -=(m,+'-m, o'),

(by, «+ «o) -=(m« ' —m«0'),

The mixing angles are defined by

g = j 8cos0& —Ppsine&

g'= $8s inc&+ Q pcose&

~ =o8cos&s —opsin8s

~' =o 8sin0s+opcoses

the contribution to the mass differences resulting
from the first term in 2, .

The tadpole also contributes to electromagnetic
mass differences. To obtain the mass difference
resulting from the tadpole and also to evaluate E,
we shift the field a', -o, + t„where t, is defined
by the condition that the term in Z —=Z„+Z linear
in 0, vanishes. This condition implies the relation

(p = 0.1470

I', = 0.5794

1+bf /fE —=
b/

=0.7147
&, = ct', [4f,),'(1+ 2b')+ 4f, (0'(1+ b)' —yg, (1 —2b)]

+0(c ), (32)
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(54'-»o) tad = 26 &45

= C[-4(—)'5~2f )o2(1+4b)+ zygo].
(33)

Finally we have the identity

mE m» (6t K -E )tad+ (64 K+ K )am' (34)

Thus in order to evaluate c and consequently z3
we need to know the value of (bent» ~), . This we
obtain in the following manner. First we know
from the model that (5p24,6)t~—= 0. Therefore,

where c =- $5/go and since we wish to calculate the
decay 7}-3»only to first order in 65 (and not in
the tree approximation) we have neglected all
terms of order $52 which appear in the shifted La-
grangian. " The contribution of the tadpole to the
K'-E' mass difference is then denoted by
(6p»+ ~)„d. It is identified in the shifted Lagran-
gian by the relation

t 45445445 i 67467~G7 &

where

6~2 5 2 ya 6 b+id
45 671 ab

C. Results and checks

We can now proceed to calculate the amplitude
for the decay q -m'n m . We calculate to first
order in e3 and in the tree approximation for the
strong interactions. The amplitude includes the
20 Feynman diagrams depicted in Fig. 1. In Tables
III and IV we list the strong-interaction and elec-
tromagnetic vertices, respectively. The vertices
are listed in terms of the unmixed fields, i.e. ,

and o,. For the case of the g, g'and e, e'we use
the mixing angles given in Table II to calculate
the vertices entering in the Feynman diagrams of
Fig. 1. In Fig. 2 we present our results. We plot
the amplitude T(7}-3t7) as a function of the neutral-
pion energy Ep. The charged-pion energies are
fixed at the value E„4 =E„-=(m„—Eo)/2. Thus we
plot the value of the amplitude which lies on a line
running down the center of the Dalitz plot. We
note that the amplitude is symmetric about this
line and relatively constant as a function of the
distance away from it.

As we see the amplitude rises sharply as Ep -0,
passing through the value T(71 - 3p) = 0.6912 at
Ep 0 In th e phys ical region which runs from
Eo = m, to (m„' —3m, ')/2m„ the amplitude is to a
good approximation a linear function of Ep of the
form

2 ) — 2 2
U &~+~proem ™r+ (35) T(71 3m} =tK+PEG, (40)

(&t » ~)..= (f,/f»)'(6u, '. .6), . (36)

We note that Dashen takes f,/f» = 1 in the original
sum rule. However, since the derivation is to
first order in 2, (without the tadpole) and to all
orders in the strong interactions (or to any given
order in the loop expansion) we must take f,/f» as
given in the tree approximation (see Table II) for
the calculation to be self -consistent.

To summarize we then have

(6u' o) = (f,lf»)'(m —m )

and thus

(6l K+-K )tad (mK mE

It has been known since the work of Das et al. in
1967 (see Ref. 39) that the first term of 2, is suf-
ficient to describe the entire m'-n' mass differ-
ence. The second step uses the modified Dashen sum
rule"

with P/tK = —1/0. 255= -2/m„and a =0.4053 [see
Eq. (1)]. We note that a «T(71 -3»)(EG =0}. It is
clear that the amplitude calculated in the tree ap-
proximation with a linear chiral Lagrangian does
not extrapolate linearly in Ep from the physical
region to the neutral-soft-pion point at K„=O.
The amplitude is instead dominated by the e pole
which lies only -56 MeV to the left of the neutral-
soft-pion point.

To calculate the partial width of g -m'm n' we
need to integrate

~
T(7}-3t7) ~' [ given in Eq. (40)]

over the area of the Dalitz plot. Using the rela-
tivistic phase-space formula calculated previously
in the literature" we have

I (7}-77't7 t7 ) =489 ~»~'(1 +0.02y+0. 02y ) eV,
(41)

where

(f,lf»)'(m —m, o'-).

Solving for c, we find

c = -0.007133

and thus

6:5/6:o = -0.031829.

(37)

(38)

(39)

and

-3 ~

m„+ 3(n/P}

As a result we obtain

I'(7i-t7't7 t76) =58 eV . (42)
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FIG. 1. The 20 Feynman diagrams included in the amplitude for the decay q 7t'+7r 7r . The circles and crosses denote
electromagnetic vertices.
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TABLE III. Strong-interaction vertices. The vertices
are identified by the relation e.g. ~,t =hQ, Pb 0, , where
h= (1/(pn)(Afgpp +Bf2~0 + Cygp).

TABLE IV. Electromagnetic vertices. The vertices
are identified by the relation e.g. &,m =h(I|),(dt} &0~, where
h=(c/)on)(Af&$0 +hf2$0 + C&$0), and c—= $3/$0.

vertex vertex

@843~3

@0@3~3

@8(0+&ei2+H c )

&0(&i2(7~2+ H c )

& 8'~0

~8 +82

@8@0+0

484008

@0 0'0

@0 8

& 8'Oi24~2

~ 8@o~i2jt 12

~0 @i2@S2

1 4v 2b

1 0

1 4

4~2

4W2(1+ b) —v 2

—,'(1+b) 1

-4~442 (1+b) ~2
—,'(1+b) 1

4(1-b)
3 2

2 (1 —3b) 1/W2

-,'v"2b 0

8(1 —b) 1

4 —1

~4 0

4&2

4808&3

48004 3

(I"'0 ~s+ 3

@0 0@3

(ri+2Qi2+ H.c.)@3

+3'I| 12@i2

4843

~8~3

1 0

1 0

4
3

4'
~42
3

8
3

1 8

0 0

0 0

0 8

12

&4~2(1+b)

—,'(1+b)

8(1+b)

0 8~2 4v 2 (1+b)

08&i2@i~

~04 &2@i~

084'3

00@3
2

y
=-«"~2 etc12

1 8~2 4'(1+b)
8(] +b)

-2,vY(1+ b)

4, (1+b)

To see how sensitive the partial width is to the
slope of the amplitude we fix n at the value ob-
tained and change P/n to -2/m „. We find

I"(q -m+n mo) = 80 eV. However, in order to obtain
the experimentally measured partial width of
-204 eV with an amplitude linear in Eo of the form
T(q-3m) =o. +pEO and p/a. =-2/m„we need a value
of z =0.648 or about 1.6 times greater than the
value we have obtained.

In order to check our results for possible cal-
culational errors we first note that the amplitude
satisfies the Sutherland charged-pion zeros. This
is apparent in Fig. 2, where the amplitude van-
ishes at Eo - m„/2. In addition we can,

,
calculate the

amplitude at the neutral-soft-pion point using
PCAC and compare the value obtained with Fig. 2.
We have

T(q-3m)((EO, K) =0) = lim (n'g n'(K}I g(0~ Iq)
Kp ~0

= lim -e,(n'n m'(K}Io,(0)Ig)
K~ ~0

= ./f. ( ' I[Ql(0), .(0)] ln&

.~E' + 2 ~(2 0

Using the identities

&„j,"'=-(s)'"~ (I —~)y. —(3)'"e,y, ,

& j"'=-(-')' '~ p - (-')'"~ p +(-')' '3g&

o =— es/~ &0

and
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where 5, is defined not to have any linear terms in the fields, we obtain

i—e,/e, , 3yb„'(0)
[(1+a) - t (b)]f,

where

(46)

I. (b) =- ~ 3y(, (1 —b') 1— 1 —2a) .

The piece of 5, which contributes to the amplitude is as follows:

'=- (3)' '4'84'i24ia+ 4oKa4i~- 4( +~b)48o'8- ~(3)' '4bds&0

$6b 40+8 3 504 0+0 $0( b)(4 12+12 qb12 12)
2 y/g 2 ~ - -+

(4V)

The Feynman diagrams included in the calcula-
tion are given in Fig. 3. As a result of the calcu-
lation we have T(q-3v)((E„K)=0)=0.69, which
equals the value of the amplitude at the neutral-
soft-pion point obtained previously.

D. Discussion and conclusion

We have calculated the amplitude for the decay

q -n'n n in the tree approximation for the strong
interactions and to first order in the electromag-
netic interaction with a linear U(3) S U(3),„,,~
Lagrangian. We have obtained a result for the
partial width I'(rl -w'v w') =58 eV. This is much
smaller than the experimentally observed width of
204+ 22 eV.' The strong-interaction part of the
chiral Lagrangian has fitted the masses of the
scalar mesons with an accuracy of about 10%.
We noted previously that some improvement can
be obtained if we introduce an additional mass
term in the Lagrangian. However, it is apparent
that such a correction is irrelevant at present.

By far the greatest source of uncertainty in the
present calculation is the close proximity of the e

pole to the physical region. Its large width as cal-
culated in the tree approximation indicates that in

one-loop approximation the e pole would move far
off the real axis. As a result it is likely that the
amplitude at the neutral-soft-pion point would be
greatly decreased. However, it is difficult to say
a Priori what would be the effect in the physical
region. Perhaps, since the physical region is
-194 MeV from the e pole, there would be no sig-
nificant change. It is reasonable to believe though
that in the one-loop approximation the amplitude
would now extrapolate linearly from the physical
region to the neutral-soft-pion point. In this case
one would only need to calculate the amplitude at
the point (Eo, K) =0 to evaluate I'(q-w'm w'). This
then seems like the first step toward a better cal-
culation within the present framework.

In conclusion, we recall that our result is con-

.6- $(~ ~+sr-m 0)

4.

.05 . i'O m~ .i'S

Eo (Gev)

.P.O .25

FIG. 2. A plot of the amplitude T(g-3m) as seen down
the center of the Dalitz plot, i.e. , E~+ = E~- = (mq-Ep)/2,
as a function of the neutral pion energy Ep.

FIG. 3. The Feynman diagrams included in the ampli-
tude T(&j r+~ m ) evaluated at the neutral soft-pion
point && 0. The circles and crosses denote 65 vertices.
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sistent with the result obtained by %einberg' using
a nonlinear U(3) U(3), „.„Lagrangian, thus sug-
gesting the model independence of the calculation.
However, a reliable confirmation of this hypothe-
sis, we feel, would require a similar calculation
in the one-loop approximation. Finally, if the re-
sult is indeed model-independent and consequently
also true in the "standard" model of strong inter-

actions, then we are once again at an impasse for
the decay q -n'n n' since the result is clearly
still quite below the experimental value.
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