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Relativistic isobar model: Spinless particles
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Three-body unitarity imposes constraints on isobar amplitudes when different resonance pairs interact. We
develop a set of relativistic integral equations which incorporate these constraints together with analyticity.
The subenergy dependence of the isobar amplitudes predicted by these equations could be an important
ingredient of phenomenological analyses using the isobar model. We point out possible applications and
discuss the danger of imposing unitarity without analyticity.

I. INTRODUCTION

Very little is understood about the structure of
many-particle final states and how two-body infor-
mation is distributed over these states. This prob-
lem is particularly acute when strong pairwise fi-
nal-state interactions overlap in the final-state
phase space. Yet there are a great deal of data on
such systems and the analysis of these data to ob-
tain information on the interaction of unstable par-
ticles or to study how the pair information reflects
reaction mechanisms is an important part of par-
ticle physics. In this paper we develop the sim-
plest relativistic theory of three-body final states
consistent with unitarity and analyticity. We show
how these principles can be used to establish the
domain of applicability of the usual phenomenology
and how a better phenomenology can be developed
which is more generally applicable. The better
phenomenology leads to a set of integral equations
which is nearly identical to those obtained earlier
using the techniques of Blankenbecler and Sugar. ' '

We shall be interested in three-body final states
in which the pair interactions are dominated by a
few, usually resonant, partial waves. The usual
method of analysis for such states is the isobar
model. ' In this model the amplitude for the re-
action a(P)+b(P') —c(P,)+d(P,)+e(P,) in the three-
body center of mass is written

cyc1 jc

where, for simplicity, we have suppressed inter-
nal quantum numbers and have assumed that each
pair is dominated by a single isobar. The quasi-
two-body amplitude (P

~ f~P, P') describes the pro
duction, from the initial state, of particle n and
the (P, y) isobar. G(PB,P„)describes the subse-

quent propagation of the isobar and its decay into
P~+P, . Up to kinematical and threshold factors,
G(P&,P„)is the (8, y) two-body i matrix in the iso-
bar partial wave. The decomposition of (I) is rep-
resented graphically in Fig. 1. In applications of
the isobar model, the amplitude (P~

~
f~P, P') is ex-

panded in terms of partial-wave amplitudes
f~ (W, o,&', I), where 4 is the total angular momen-
tum, / is the orbital angular momentum of the
initial system, and /' is the orbital angular mo-
mentum of the final-particle-isobar system. In
general there will also be labels for other inter-
nal quantum numbers. W is the total center-of-
mass energy, p+P'=P, P'= W', while o = (P-P )'
is the square of the (P, y) isobar mass. For fixed
W, Z, l, l', f can only depend on v . Theusualiso-
bar assumption is that f is a slowly varying func-
tion of 0 and hence can be approximated by a con-
stant. If the isobar resonances are very narrow,
only the value of f at the (well-defined) isobar
mass is relevant and f, = constant is a reasonable
choice. However, we shall show that if the isobar
resonance bands are wide and if they overlap, f
can be a rapidly varying function of 0 . It is the
purpose of this paper to develop a framework in
which these ideas can be quantified, and to pro-
vide a phenomenological scheme for obtaining the
variation of f

In Sec. II we show that unitarity forces f to have
a physical branch cut in 0 . It is then convenient
to decompose f according to

f (o, ) =Dispf (o )+i Absf (o ),
where we define Abs f (o ) as the discontinuity of
f required by unitarity across the physical o cut,
l.e. ~

The constraints imposed by unitarity appear as in-
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tegral equations of the form

Absf (v ) = Q K((r, (r, )f))(o,),
glc:

(4)

Pl P)
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-P~

P
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where the kernel K(o„oz)is made up of known ki-
nematical factors and two-body t matrices. 4 The
integral in (4) goes over the phase space allowed
to a~ for fixed W and o . (2) and (4) thus form a
set of integral constraints on the set of Absf, if
Disp f is known. Any choice of Disp f will gene-
rate a subenergy unitary f (o ) via (4) and (2).
For threshold enhancements, that is pairwise fi-
nal-state interactions that are important at suben-
ergy threshold, this procedure yields a useful phe-
nomenolgy. However, in the case of resonant fi-
nal-state interactions, when the resonances are in
the fina. l-state pha, se space, the use of (2) and (4)
above can be very misleading. In that case
Abs f (o ) acquires via (4) rapid variation that
comes from singularities on the second sheet of
a . They, therefore, show up in f (o —ie). If a
fully analytic decomposition of f is used, there
will be corresponding rapidly varying terms in
Disp f and the spurious rapid variation will cancel
in the physical amplitude f (o, + ie). However, if
a simple input guess, e.g. , constant, is used for
Disp f in (2) and (4), the spurious variation will
propagate into the physical amplitude. To avoid
this difficulty one must include analyticity as well
as unitarity as a constraint on the f 's. In Sec. III
we discuss implementation of the unitarity con-
straint; stressing the importance of including an-
alyticity and using a dispersion relation we derive
the "minimal" integral equations satisfied by the
f which are consistent with subenergy unitarity
and analyticity. In Sec. IV we discuss possible ap-
plications to particular physical systems and give
some conclusions. There are two technical appen-
dices: Appendix A gives an explicit demonstration
of the threshold behavior of the absorptive parts
and Appendix B gives details on the wrong" sheet
nature of the singularities of Abs f in the case of
resonant isobars and the connection of this to the
so- called Peierls mechanism. '

FIG. 1. Graphical representation of isobar production
and decay corresponding to Eq. {1).

II. UNITARITY CONSTRAINTS

A. Two-body unitarity

Since our basic tool is unitarity, we begin with a
discussion of our convention for it. In the succeed-
ing material we shall use the following expression
of unitarity:

( IT(w)le&-& IT'(w)lu&

=i n TW npn n T~W

=i Q. T~W npn n, TW

where

x 7 2n(2m. ) P'(q. ' —m. ')"~~ (2v)4 i i

is n-body phase space. E= 0 if particle i is a bo-
son and E = I if it is a fermion. The transition (T)
matrix is defined in terms of the S matrix by

Consider the elastic scattering of two spinless
particles of masses m, and m, (h= I) with internal
quantum numbers (isospin, etc. ) n„n,. If we as-
sume no coupling to inelastic states, unitarity be-
comes

y4pa geeIm(q„,n, n,
I
T(W)

I
q'„,n', n', &

= — Q (2 ),
' 5'(P» —P",,)5'(p',"—m, ')5'(p,"- m, ')

x (q„,n, n,
I
T (W)

I
q",„n,' n,")(q",,n", n,"

I
T(W)

I
q'„,n', n,'),

(8)

where

P,2 =P, +P„P,2' = W' 2q„=P,—P„etc.
In the above equation the momenta p» p„p'„andp,' are on their ma, ss shells, i.e. , (p, ), = (p, '+m, ')'~'.
However, in general, the amplitude in (8) is completely off the energy shell in the sense that q», q», and
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the center-of-mass energy W can be considered independent quantities. Changing variables to P",2 and q",»
which transformation has unit Jacobian, we obtain

4 II

Im&q„,n, n, I
T(W) lq'„,n', n', )=, g „"„5((q",,), + —,W- ~", )5(~; + &a,

"—W)
877 ~ii~n 4 ~ +2l 2

x&q„,n, n,
I
T'(W) lq",„n,n,'&&q- n. n. IT(W (10)

where

((+2+I 2)l/2 ~N (qll2 I 2)1/2

If we assume that there is no coupling between the
internal quantum numbers and the orbital motion,
we can make the following Lorentz-invariant de-
composition into partial- wave amplitudes which will
be useful in studying the three-body problem:

&qi2 nin2
I
T(w) lqi2 nin2

= g I *,„(M„)c.'. ~„(IM„I,IM'„I,w)
lmT

(12)

where M» is the unit sPecial vector. This special
vector M», a function of p, and p„is defined and
discussed in detail in Ref. 2, p. 2017. It is, in
fact, the relative three-momentum in the (1,2)
center-of-mass system expressed in terms of the
three-vectors p, and p, in an arbitrary Lorentz
frame. As shown in Ref. 2 we can therefore inter-
pret F,„(M»)a.s the angular-momentum factor
associated with vertices appearing in the three-
body problem. In (12), Cr is an element of a,

unitary transformation from the ~ representation
to the T representation in which the scattering
amplitude is diagonal. We shall call the diagonal
on-shell f-matrix element in this (I, T) state
w»(w). T can be thought of as the channel spin or
isospin, or both, etc. Substituting (12) in (10) and
evaluating it in the center-of-mass system using
the orthonormality of the F's and C's gives

(13)

For many purposes it is often convenient to write
& in the form

7', (M,2, M', 2, W) = N(M, 2, M',2, W) /D(w),

where we have suppressed the T label and where
M and M' are magnitudes of three momenta.
D(W) has a zero at the isobar mass, carries the
scattering phase, and has the unitarity cut. N has
the left-hand cuts and the threshold factors M»'
and M»'. To insure proper asymptotic behavior
we want

i,im N(M„,M'„,W) = 0.
Mg2 ~

Going on-shell and substituting (14) into (13) yields

,„D(w) —Iq. I&(l q. I I q- I, w) („)32 W

Assuming analyticity in the Mandelstam invariant
s = W', the function D(s) which satisfies the above
condition is

D( ) P( )
1 q dq ((d+(U2)

2(27/) 0 &d&C02 ((0&+ Q) 2) —S —I»

x Z(q, q, co, +(u, ), (17)

where P(s) is a polynomial in s and e, = (q'+ m, ')'/',
etc. By assuming analyticity in s rather than S' we
have insured certain known analytic properties
(e.g. , reflection symmetry in W). These additional
properties may not be important in the phenomeno-
logical applications that we consider, but since we
can include them with no additional effort, we do
so.

Finally, let us examine the case of identical
particles. No special care is needed with sums,
etc. if the states are defined with the appropriate
normalization. In particular, an rt-body state of
identical particles lnPy & is constructed accord-
ing to

1
I

ey" )= c. lay "&
~x

1=
(~t)~/2 4&e&»'''I0&~

where the (~ are the creation operators and they
obey the appropriate commutation or anticommu-
tation relations. In this case the states

I
nPy ~ )

will have the correct symmetry as well as nor-
malization. Using this fact, the unitarity relation
will still be (13). The only restriction is that in
the decomposition (12) we maintain the appropriate
symmetry. Since interchanging the particles sends
q to —q and since I",„(-q) = (- I)'I",„(q),we need to
take T's such that C = +C, the plus sign
going with even I for masons and odd I for fer-
mions, and the minus sign going with odd E for bo-
sons and even / for fermions.

B. Three body unitarity

Let us now turn to the three-particle case and,
in particular, to the pair- subenergy dependence
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of a three-body final-state amplitude required by
unitarity. We wish to exploit the fact that a three-
body amplitude is a function of many variables,
and we are interested in the subenergy dependence
for fixed total three-body energy. Each term in
unitarity has a threshold which signals the exis-
tence of a singularity at that threshold. What uni-
tarity yields is the discontinuity of the total am-
plitude across the singularity that begins at that
threshold and in the variable with that threshold. '
As we discuss Sec. III, a dispersion relation is
needed to obtain the full subenergy dependence im-
plied by that discontinuity. Here we are only in-
terested in obtaining the discontinuity in the sub-
energy. Consider an amplitude T» for "two par-
ticles goes to three" (breakup). Assuming that
only two- and three-body channels are open, uni-
tarity for T, , can be written

2ImT~ 3= T, ~.p ~, 3+ ~ 3.p 3. 3

+ T~3p 3 T3 3. (20)

The equation is represented diagrammatically in
Fig. 2. As we noted, each term in unitarity im-
plies a singularity at the threshold of that term
and in the variable with that threshold. Strictly
speaking, each term contributes the discontinuity
across the singularity beginning at that threshold. '
We are interested in exploiting (20) and the implied
analyticity to obtain the dependence of T» on the

2ImT» —— T».p 2 T,, 3 Q 3 p

(19)
where T», and T3 3 are the elastic two-body and
three-body amplitudes, respectively. T», can be
decomposed into a connected part T;,, and a sum
of disconnected parts T», which represents one
particle going by while the other two scatter.
These disconnected pieces of T3 3 are a correct
and necessary consequence of our definition of the
S and T matrices [Eq. (3)]. Hence Eq. (19) can be
rewritten

ym = + C +

FIG. 2, Graphical representation of the unitarity rela-
tion, Zq. (20).

pair subenergies for fixed total energy. We are
particularly interested in its physical region sin-
gularities since a singularity represents rapid
dependence. As we mentioned, only terms in uni-
tarity having pair-subenergy threshoMs will be
related to these subenergy singularities. Clearly
the T. ..T.. . term has a threshold in W, the total
energy, at W= W,

„

the minimum two-body energy.
Similarly, the T», T...term has a threshold in W
at W= W3 Q the minimum three-body energy. So
apparently does the T», T.. . (disc) term from (20),
but in fact, as is clear from Fig. 2 and as will be-
come clear in our development, the 5 function in
T3 3 coming from the fly- by partic le w ilI give it a
threshold in the subenergy of the interacting pair.
Hence this is the only term we need keep to study
the discontinuity across the subenergy singular-
ities. This point often causes confusion because
the other terms in unitarity have parts with singu-
lar subenergy dependence, but in fact the entire
discontinuity across this subenergy cut is given by
the third term. ' Keeping this term alone, we no
longer have ImT», but only the discontinuity of
TQ 3 across the subenergy cut. This shall be called
the absorptive part of T» (AbsT») to stress the
fact that we are no longer dividing the amplitude
into real and imaginary parts, but into absorptive
and dispersive parts, each of which can be com-
plex, while the absorptive part contains the ap-
propriate physical threshold. We now write

2AbsT»= »,p 3 T", ,

Let us apply (21) to three final spinless particles
of masses m„~„andm3. We use the kinematic
conventions previously developed. Working in the
three-body center-of-mass system, we have for
T, 3

(p,n„p,o.„p,n,
~
T,',,(W)

~

p', n'„p,'n,', p', ,') = Q (2w)'2&v, .5(p, —p', )5„, (M,.„,na,
~

(T)o) ',M.„',o')o.
ijA

cycli c

in terms of the two-body T matrix defined in Sec. IIA, with

&;=(&-Pg)'

(22)

(22)

For T» we take one of two forms of the isobar model (called the sequential decay model in nuclear phy-
sics). These forms are also suggested by the Faddeev equations and are represented schematically by Eq.
(1) and in Fig. 1. We take either
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&kp~ T, (W) ~p, a„p,o.'„p,n, ) =
i jkcycl ic

& jk, me Tjk

&kp
M.k

(24a)

or

&»l&...(W)lp. ~i p.~. pa~a&= g &»lf(W)lp;~; I;. ~ T;.)
ijkcyclic D, . r, (o,.)
l .k, ~ 2'jk ljkTjk

In Eq. (24) and in all subsequent equations, unless
stated otherwise, momentum labels refer to three-
momenta. In the above equation k is the relative
momentum of the particles in the initial state, and

p represents internal quantum numbers. r, M,
and D are the two-body quantities defined in (12)
and (14). E and f are defined by (24), but may be
thought of as the quasi —tvro-body amplitudes for
yielding the final state of particle i with momen-
tum P,. and internal quantum numbers n,-, and a
correlated j-k pair state with orbital angular mo-
mentum /jk and internal quantum numbers 7». The
factors

M,.k'jk

represent the subsequent decay of the correlated
pair. They are called G in Eq. (1). The factors
M'&~ are in (24) to give the correct threshold be-

jk
havior. If there are Coulomb forces present, or
if (24) is to be used far from the two-body thres-
holds, these factors should be replaced by the ap-
propriate penetrability factors. In most applica-
tions only one or a few (/, T)'s are important for
each pair. It is therefore convenient to use the
partial-wave expansion (12) for the two-body t
matrix in (22). Remember that the arguments of
the Y,„'s,wherever they appear, are always a
unit sPecial vector as defined earlier. %e shall
first work with (24a): Substituting (22) and (24a)
into (21) with this expansion, and equating coef-
ficients of CrP Y, „(M,.„)on both sides we obtainjnk ~ jkm

llpi i~ jk~ & jk~ i pr;, ~

I
d4p/d4pl 54(p p pI pt)5+(pz2 I 2)5+(pr2 2)

k
MJ„&~ (2 )3

rstcycl ic
l'st, m', T'st, 8's

&kp~E(W)~p„'P„,f'„,I', r,', )~, , „(o',)
&& Y, , (M', q)C8r 88~7*, r (v, )Yf (M','„).CB &~". , .

where we have used the fact that various 5 functions force o,. = o', On the left-hand side of (25) we use

Abs(E7) = (AbsF)r *+F Abs&,

= (AbsF) 7'* F1+m7',

which follows from the definition of Abs f as

AbsE(o ) = [E(v + ie) —E—(.o —ie)]
1

2i

and from the relation for the imaginary (or absorptive) part of a producti. e. ,,

2i ImAB = AB —A*B*

(25)

(26)

(27)

= AB —A*B+A*B—A*B*

= 2i(B ImA+A*1mB). (28)

In (26) we have also used Absv- Im~ because the only singular part of ~ comes from its one threshold and

that gives its imaginary part. There are two types of terms on the right hand side of (25). In the first
x=i, st=jk. In this term 7, integrals are easily done by orthonormality since they are of the same argu-
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ment, and the Cz~~, sums are similarly done. One then finds that the I' Im7 term on the left-hand side can-
cels exactly with an Fl T l' term on the right-hand side by two-body unitarity (13). This result that the F Imw

term must cancel with a corresponding term on the right-hand side by two-body unitarity is general in all
such calculations, identical particle or not, relativistic or not, and serves as a useful check on these cal-
culations. One is now left only with the (AbsF)7' term on the left-hand side and the term on the right-hand
side where x =i. Cancelling the w* in both of these one finally gets

F(W)lpi~i &» ~ &»&

M
1

2(2v)2

i))t i~t ittf i'itt&'ittA tt Q'blitt 3+(Pt2 I 2)lf+ (f(fit )QTJP I (Mt )
z Bk k l~k, j Spry l'gk gk t

t i~~k ik
l.

k T.km]

(29a)

If we start with (24b) for the breakup amplitude, a set of steps similar to the previous ones leads to

Abs(kplf(W)lp, .~„f,.„~,T,.„)
2(2v)'M

3 I M'. '~k

2; (kplf(II')l p,'P;, I,'k min, I"';k) D
*"

(, )
I'i;., ;.„(I'A)&.'.*,' '(Pa'2 ™~')~-i „(~la)g"

8jok,
l'~k~ ~km'jk

+(j-(t) . (29b)

Equation (29) is represented graphically in Fig. 3.
In (29) we see that unitarity alone forces the quasi-
two-body amplitude F or f to have a branch cut in
0. As is clear from Fig. 3 and as we make more
explicit in Appendix B, this is a two-body cut with
a square-root branch point. The strength of the
singularity in f or F is determined by the other
isobar groupings as we already indicated in the
schematic equations (4). It is clearly a manifesta-
tion of the coherence or interference required by
the quantum mechanics when there is more than
one isobar parentage for the final three-body state.

It is straightforward to include spin and fermions
in the discussion given here, but they only com-
plicate an already extremely complicated forma-
lism.

III. IMPLEMENTATION

nomenology if they are important. If we decom-
pose the f 's as in (2), Eq. (4) [which is the very
schematic form of (29)] becomes

Absf (a, ) =P j tt(a, , a)Dtspf (a)

(30)

From (29) we see that if we make a three-body
partial-wave decomposition, (30) will be a one-
variable set of Fredholm integral equations for
Absf„with Dispf required for input. [They are
Fredholm equations because the kernel E is finite
and the 5 function in (29) will confine the integral
in (30) to a finite domain of phase space. ] The
usual phenomenological assumption that f has no
absorptive part (that is, no branch cut in suben-

We have seen that unitarity alone forces the
quasi-two-body amplitudes F or f of Eq. (24) to
have important (singular) dependence on the iso-
bar mass —a dependence normally neglected in em-
pirical applications of the isobar formalism. The
next step is to know when these unitarity effects
are important, and how to implement them in phe-

Abs

Pa

FIG, 3. Graphical representation of Eq, (29).

Pg
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1 " dg'Abs 0', W
(32)

ergy) is easily checked in the context of (30). One
assumes that Absf «Dispf so that the second
integral in (30) may be neglected. If the integral
over the dispersive part (assumed known, e.g. , a
constant) does indeed maintain the inequality, the
assumption is consistent. If it does not, one must
find a way to implement (30).' Clearly, any choice
of Dispf in (30) will generate an Abs f that satis-
fies subenergy unitarity. In a sense, then, (30)
considered as an integral equation is the imple-
mentation one needs. The problem is that one must
give Disp f to use (30).

There are two cases of practical interest. The
first is final-state pairwise threshold enhance-
ments. These are final-state interactions that are
important at the pair thresholds. In this case we
need to know the f, (o, ) near the cr, scattering
threshold (m2+m, )'. It is precisely at that thres-
hold that unitarity imposes its singularity in f.
Furthermore, it is a square-root singularity and is
carried entirely in the absorptive part. For this
case (30) considered as an integral equation works
well for any simple input for the dispersive part
including a constant. There have been studies of
the nonrelativistic problem for this situation, and
the dominance of the square-root threshold in f as
well as the fact that subenergy unitarity can get the
shape but not the over-all magnitude of f has been
amply demonstrated. ' ' The most common case in
particle physics is one of resonant-final-state in-
teractions. In this case, the use of (30) with a sim-
ple Disp f can be disastrous. If the resonance
bands are in the phase space, one finds spurious
rapid va, riations in Abs f (v, ) generated by (30).
This variation can be traced to singularities in

f„(o) on the second sheet and hence affecting the
f(o', —ie) term in (3). If we had properly taken in-
to account that f (o' ) is an analytic function and
had written parallel to (3)

Dispf~ (o, ) = —,
'

[f~ (o, + is) +f~ (o'~ —ie)), (31)
similar rapid variation would also be present in
Disp f and would cancel in the physical amplitude
when it was constructed as in (2). (30) generates
a subenergy unitary f for any choice of Disp f, but
there is no guarantee that such a choice leads to
an analytic f as well. In Appendix B we expand
this point. Here we simply stress these difficul-
ties in order to motivate including analyticity in
our phenomenology.

Since (4) or (29) gives us the discontinuity of f
or E across its cut in 0, we can build in analyti-
city by writing a dispersion relation for f or E that
runs over the cut. Schematically we write

f (o, W)=R (v, W)

where o, is the threshold of the a cut, v, = (m2
+m„)', and R (o) is any function of o that does not
have the unitarity cut. Since (20) or (4) relate Abs
f back onto f, (32) is a set of linear integral equa-
tions for f . To study (32) in detail we note first
that f or E are functions of W, v, and P . Clear-
ly all these variables are not independent since

o =(P-p )'

W2 2W(p 2+m 2)1/2~m 2

M'-M' (M'), (34)

with the asymptotic condition M'v(M')- 0 as M- ~.
If we choose v so that

"q( 212)q=2N(q, q, W)

in terms of the N of Eq. (14), the unitarity con-
straint (29b) becomes considerably simpler. Ra-
ther than use the full (29b) in our fleshed-out form
of (32); let us take a less complex and hopefully
more transparent case. Consider the production of
three particles of equal mass nz and no internal
degrees of freedom and, in addition, the presence
of a single I-wave isobar in the expansion (12).
Under these conditions and with (34) and (35) we
obtain

There is, therefore, the question of which variable
to keep fixed while running over the o' cut in (32).
There is also the question of which isobar form to
use [(29a) or (29b)]. Any choice will, via (32),
lead to correct 0 analyticity and unitarity. How-
ever, as we have discussed in the nonrelativistic
case, some choices introduce extra singularities,
for example, in W through the integral (32). In
principle these can be compensated for by careful
choice of the inhomogeneous term R in (32) so that
they do not propagate into f, but (32) is only useful
for phenomenology if it works with simple choices
of B. This situation is reminiscent of our prob-
lems with choice of Disp f in using (2) and (30) to
implement unitarity. Hence we will follow the non-
relativistic case and make choices that do not re-
quire a sophisticated R to compensate spurious
singularities in W coming from the dispersion in-
tegral. This choice is to disperse in TV for fixed
p and to choose a somewhat altered form of (24b)
with its unitarity constraint (29b) for f. It will be
recalled that in discussing the threshold factors
M' in (24) we stressed that they should be replaced
by barrier factors if we are to use the equation far
from threshold. The integral in (32) will require
them far from threshold, hence we make the re-
placement in (24b)
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"d'' Q+ l2 2

Abs(k~f(W) ~p, , l, m) = "," g ~l,' (k~ f(W) ~p,
'. , l, m')~(M, '.;)M,'.,'I,„,(M',.„) ", y+ (M,'.,).

(36)

The content of this equation is shown schematically in Fig. 3. The choice of TV as the dispersion variable
is dictated by the structure of the 5' function in (36) which can be written

6'(p~' —m') = 5'((P —P,. —P,)'-m')= 5'((W —e,. —cu,.)' —(p, +p,.)' —m')= 5(W- e,. —e,.—&u, ,),"4
where

&u, , = [(p,.+ pj)'+ m']'~'. (38)

We then find for (32), with the absorptive part given by (36),

(k[f(W) [p, , l, m) =(k [R(W) (p, , l, m)

+, ' '
D

' [(k~ f(&u,. +~,.+~„)~p, , l, m ) —P(k, p, , W, l, m')],&'P, (p, , l, m'
~

B(W)
~ p;, l, m)

2' ~ 2(d .
k

where

M'2
(p, , l, m' ~B(W) ~p, , l, m) = v(M, ,')MI~I',„,(M,'. ~) ('

' "
), '~, M',.„'I',"„(M'.). (4o)

In obtaining (40) we have dispersed in s rather than in W as we did in (17). In (39) R and 5 are arbitrary
functions subject to the conditions that R's have no unitarity cuts in 0 and that

6'(k, p, (d ~ +(d +(d ~, l, m )= 0

so that the discontinuity of the integral in (39), which is the residue at the W= ~,.+ ~,. + &u, , pole, agrees
with unitarity, (36). We now make a, Particular choice for 6' that, of course, satisfies (41),

6:(k,p, , W, l, m')=(k~ f(W) ~p, , l, m') —(k~ f(&u, +co, +co,,) ~p, , l, m'). ,

and we finally obtain our working integral equation,

(41)

(42)

(kl f(W)
I

l ) =(klR(W)
I

. I )P» Pg~ ~ +(2 )4 D,(,)
~ ~

(43)

where B is defined in (40). We again stress that
any choice for F in (39) subject to (41) will lead to
an f that satisfies unitarity (36) and analyticity (32).
Our particular choice is motivated by a desire not
just to give an integral representation of f, but
actually to be able to obtain it via an integral equa-
tion.

Equation (43) is the "minimal" implementation of
subenergy unitarity and analyticity that provides
a useful (in the sense of solvable for f) phenomen-
ology without spurious R' singularities. The equa-
tion is essentially the three-body scattering inte-
gral equation which Aaron, Amado, and Young de-
rived exploiting the full content of unitarity (20).' "
It is perhaps not so remarkable that we obtained it
here stressing subenergy unitarity only, since we
also made a number of arbitrary choices, particu-
larly in (35), that were dictated by our knowledge
of W analyticity. The alert reader will realize that
(35) is a, very special assumption that is essentially

equivalent to separable interactions. While this
observation is correct, we are forced to such an
assumption if we wish to obtain from (32) a simple
integral equation for f without spurious W singu
larities.

With appropriate choice of driving term R, (43)
is the simplest form of the Blankenbecler-Sugar
three-body equations. ' Both (43) and the Blanken-
becler-Sugar equations can be enriched by com-
plicated choice of R and/or F, for example, to
give more left-hand cut structure. The complica-
tions are required if the equations are to generate
the correct (experimental) W dependence of f, but
the subenergy dependence seems to depend far less
on these dynamical details. Since it is only the
subenergy dependence that is needed for isobar
phenomenology, we hope that (43) can serve as a
basis for that phenomenology, but in fact our
choices made above yield an equation that also
satisfies the full content of unitarity. '
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IV. DISCUSSION

In the previous sections we have derived con-
straints imposed on isobar amplitudes by suben-
ergy unitarity and obtained Fredholm integral
equations for these amplitudes which incorporate
both this unitarity and analyticity. Experience we
have gained solving equations of this type in both
relativistic and nonrelativistic situations indicates
that approximate solutions will give a reasonable
picture of the subenergy dependence of the isobar
amplitudes, even though they do not describe very
well the total energy behavior. ' The nature of this
subenergy dependence is of current interest in
view of two recent final-state analyses in elemen-
tary-particle physics, i.e. , A, -3z (Ref. 11,12)
and n'N- wmN. " In the former case the existence
of the A, is in question and since it is predicted by
the quark model and is an important ingredient of
successful current algebra calculations, "its ex-
istence is a question of fundamental importance.
Recent theoretical advances have generated con-
siderable new interest in the latter process, pN
-mmN. In particular, a proposed connection be-
tween current and constituent quarks" can be test-
ed through magnitudes and signs of amplitudes for
pionic transitions between hadrons. " Equivalently,
modified versions of SU(6)~ classify resonances
and at the same time predict amplitudes for reac-
tions of the type gN- g&, mN- pN, gN- gN, etc."

The original analysis of the A, by Ascoli et al."
assumed constant isobar amplitudes f [Eq. (2)] at
fixed total energy O'. More recent analyses" have
attempted to implement subenergy unitarity with-
out including analyticity. In these studies it is as-
sumed that Disp f (o„)can be approximated by a
complex constant at fixed W and then (4) is substi-
tuted in (2) giving an inhomogeneous Fredholm in
tegral equation for f. The resulting "unitarity" so-
lutions are used to fit the data with the constant
dispersive parts as the fitting parameters. As
pointed out in Sec. III and Appendix B, this para-
metrization is disastrous when resonance bands
overlap in the Dalitz plot (as they do in the A, prob-
lem), for in this case Abs f„contains spurious
rapid variation which must be canceled by identical
variations in Disp f, . This cancellation, of course,
cannot occur if Disp f is constrained to be a con-
stant, and the resulting amplitudes grossly violate
required analyticity. " It is not surprising that in-
cluding unitarity in the manner just described gives
worse fits to the data" than neglecting unitarity al-
together and taking the f 's as constants. We are
presently using Eq. (43), which incorporates uni-
tarity and analyticity, to study the subenergy de-
pendence of the f 's in the A, problem.

We are also studying the behavior of the isobar
amplitudes in the mN-@AN problem. In Fig. 4 we
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present previous (unpublished) results for the iso-
bar amplitudes mX- m& and mN- pN proceeding
through the D13 mN channel. These were obtained
using a dynamical scheme based on Eq. (43), in-
corporating both total energy and subenergy uni-
tarity, and the results obtained for the elastic D13
amplitude were in reasonable agreement with ex-
periment for energies 1400 ~ W ~ 2000 MeV. "
Within our model the isobar amplitudes for mN- n'&

I

2
q' (m~)

FIG. 4. (a) Isobar amplitudes for production of xA

through the D13 ~N partial wave vs q~ (q is the three-
momentum in the b, c.m. system). The corresponding
isobar mass is given on the upper scale. The straight
lines are interpolations of the theoretical points shown
as black dots. The notation is as follows: 7t4(DS13)
means r4 produced in an 8 state from an initial ~N D13
state, etc. The corresponding Berkeley/SLAC ampli-
tudes (independent of q~) are ~D(DS 13) =0.26-0.120i and
~A(DD 13) =-0.042 —0.226i. (b} Isobar amplitudes for
production of p3N through the D13 nN partial wave vs
q~ (q is the three-momentum in the r-r c.m. system).
The subscript 3 on p refers to channel spin &. The
corresponding Berkeley/SLAC amplitude p3N(DS 13)
=0.114 +0.315i,
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and wN- pN (which can be produced in S waves)
were predicted and are shown in the figure at
W= 1520 MeV. (eN which is produced in a I' wave
was found to be relatively unimportant at this en-
ergy. ) In our model the amplitude for vN-vn, in
an S wave (DS 13) gives the major contribution to
the total inelastic cross section at W= 1.520 MeV.
Note that it is a rapidly varying function of sub-
energy, although the variation is not of the wild

type associated with the spurious behavior of ab-
sorptive parts. Finally, our isobar amplitudes
differ in both relative magnitude and phase from
the best Berkeley/SLAC solution (though there are
problems with comparing phase conventions). We
plan considerable further study of the mN system.

ACKNOWLEDGMENTS

The authors would like to thank their Canadian
hosts, Laval University (R.A. ) and the University

of British Columbia (R.D.A. ) for their hospitality
during the completion of this manuscript.

APPENDIX A: THRESHOLD BEHAVIOR

We wish to show that the subenergy singularity
required by unitarity (29) corresponds to a simple
two-body threshold, that is,

Abs (k
~
f(W)

~ p„I, m) ~q'„" (Al)

for small q», the relative momentum of the 1-2
pair in its center of mass. Any form of (29) will
yield (Al); we take (29a), and in order to cut down

the forest of indices assume no internal degrees of
freedom and that all isobars have the same l. (29a)
then becomes

Abs (k ~Z(W) ~p„f,m&

,' (k~s(W) ~p'„I,m ) ",", Y,„,(M,', )Y*,„(M'„)5'((~-P,'-P, )'- m, ')+1'

(A2)

Consider only the first term; the one with 1' and
2' interchanged gives precisely the same result for
the threshold mutatis mutamEis. We work in the
1-2 center of mass, where

~p ~p
P3 P1 P2 P 1 P2

12 q12 2 (pl p2 pit

I I 1g I tb I
12 q12 2 (Pl P2~ Pl'

The argument of the 6+ function then becomes

2W, (e, &u', ),

where

(u', = (q'„'+m, ') '~', W,' = (P —p, )'. ,

&u, = (q„+m,')'~'

= (W, +m, '-m, ')/2W, .

Noting that

P1 dP1 =P1GO1d401

= q12401d&1q

we then obtain for (A2)

(A5)

(A6)

Abs(k~Z(W) ~p„f,m)

3- m' 23
(A7)

We find it useful to introduce the representation

(k )E(W) )p'„I,m') = g (uXv ~Z(W) )q„o~,fm)
pEXp

&& Y~„(k)Y„(q'„). (A8)

As q„,=q„-0, 8'3 and all the various factors in

the angular integral of (A7) remain finite and in-
dependent of q», except Y,„(q».). Hence to lowest
order in q», the angular integral vanishes for
pe Alm in (A8). In fact, the integral is propor-
tional to q,', for small q». To see this, consider
the angular integral in (A7) as the (qlm

~

projection
of some amplitude A. , i.e.,
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q»lm elm elm A p„kr2dh, (A10)

where x is the Fourier-transform variable conju-
gate to q» and where (q„lm ~4 lm) = j,(q,p). Hence
for small q» we have

(q„lm~A ~p„k) q,', J '*'dq(qlm ~A ~p„k).
(All)

For reasonable analytic properties of the ampli-
tudes making up A. , the matrix element
(elm ~&

~
p„k)will fall off sufficiently rapidly (ex-

ponentially) in x so that the integral in (A9) con-
verges and (Al) is established.

It should be noted that for a three-body final
state at some total energy squared s, there are
two kinematic limits on a pair's subenergy squared
o. One corresponds to q =0 and is a genuine thres-
hold as we just demonstrated. The other is the
maximum permitted o for a given s. Although
three-body phase space vanishes at this point there
is no corresponding singularity in F since that
point does not correspond to a threshold in the
pair system. This fact is demonstrated explicitly
in the nonrelativistic case in Ref. 20.

APPENDIX B: SPURIOUS BEHAVIOR IN Abs F

We wish to show that the unitarity constraint (29)
leads to rapid dependence in Abs F if there are
resonant pair final-state interactions in the phase
space, but that this variation is spurious because
it is not on the physical sheet. This behavior will
occur in any of the forms of (29) but to keep the
algebra simple we concentrate on (A2) and only
on the term explicitly given there. For resonant
interactions, v, (o', ) in (A2) has a pole at o', =o„„
the resonance position. If that pole comes at a
value of P', such that the argument of the f)' in (A2)
is zero, Abs (0 ~E(W) ~P'„lm) will itself have a
pole. For fixed W this will occur at some value
of P,'. Of course there is no true pole in (A2) since
o„,is complex, but for a narrow width, the pole
is nearby and Abs E will be large (-E„,/I'„,).
Since in most isobar applications it is not
(0 ~&(W) ~P~, lm) that is studied but rather the
three body Jth partial-wave projection E~(W, cr„ll')
defined in the Introduction (note that the l's mean
something different in this case) the pole or quasi-
pole becomes a pair of logarithmic singularities

dnq'„(kiF(W) ip,', 1, )
~4 23

&& y, , (M,', )y*,„(q,', ) i, ,
= (q„lm~A ~p„k). (A9)

This can be written

in F . Let us now trace explicitly the analytic ori-
gin of the rapid dependence of Abs F.

As seen in Fig. 3, (A2) gives the singularity in
(0 ~&(W) ~P'„,lm) due to the propagation of particle
2 from the configuration-free particle 1 and (23)
isobar to the configuration-free particle 3 and (12)
isobar. The 5' in (A2) puts particle 2 on its mass
shell in this propagation while particles 1 and 3
are already on their mass shells. w, (o',) repre-
sents the propagation of the (23) isobar previous
to particle 2 going across. The singularity in Abs
F occurs because this propagation and the propa-
gation represented by the 6' can seemingly both
occur on shell. That is, the intermediate particle
2 in the exchange graph of Fig. 5 can propagate on-
shell because the resonant isobars are unstable
[i.e. , m»'&(m, +m, )']. This singularity was dis-
cussed by Peierls, "but it was subsequently pointed
out that the exchange graph of Fig. 5 does not, in
fact, have a pole on the physical sheet. ' Coleman
and Norton" proved that physical-region singulari-
ties occur in graphs that can be interpreted as
classical, real space-time processes. For Fig. 5
this would require that isobar (23) emit particle 2

backwards with enough speed to "catch" particle 1.
Simple kinematics shows that this cannot happen
and hence that the resonant pole of & and the propa-
gator pole for particle 2 [represented by the f)' in
(A2)] cannot coincide on the physical sheet. The
coincidence of these poles in (A2) must therefore
be occurring on an unphysical sheet and the singu-
larity in Abs F must be coming from the f(o —ie)
term in (3) and hence not be present in the physical
amplitude.

To illustrate this general argument, let us con-
sider a specific example. In order to be able to do
all integrals explicitly we take the particularly
simple nonrelativistic example of three identical
bosons (h = 2m = 1) interacting via S-wave resonant
isobars. Unitarity corresponding to (29a.), in this
case, takes the form [Ref. 20, Eq. (21)]

Abs (k
i
f(E)

i p)

"&(E--'P")~(E- 2P' 2P" 21 I ')--
while the dispersion form corresponding to (44)
(without the refinements needed to get the left-hand
E cut structure correct) is

(k
~
f(E) (p) = (k ~ll(E)

~
p)

d'&' (klf«) Ip'&«E- —:p")»
(277)4 E 2p 2p" 2p ~ p'

For the two-body t matrix we take a Breit-%igner
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form

16v'(2/ E,) 'i'I'
E E,+ —' il' (B8)

where E, is the resonance position and l the width,
which, for simplicity, we approximate by a con-
stant. Consider the S-wave projection of (B2) and
further assume that we need only consider the
first iterate of the equation and can take (& ~& (E) ~p)
to be a constant, R,. We get

FIG. 5. Graphical representation of the Peierls
mechanism.

(B4)

The integral can be evaluated to yield

(kif (E)~P)=R, 1+ (
—

) i~(p p )

where

P.'= 3(E- E, +2&l')

(B5)

(B8)

can either approximate f under the integral by
constant R, and do the S-wave projection or note
from (BV) that to get across the subenergy cut
associated with (E ——,p') we need only replace p„
by P„.Either way we get

Abs (u ~f, (E) ~P)

0+P~ —l PP+P' B8

P-=k+1 l2(E- lP')1'"}l
P'=+P, are the roots of the Breit-Wigner denomi-
nator (B4) while P' =P» are the roots of the argu-
ments of the logarithm. E —2P' is the subenergy
of the isobar associated with a free particle of mo-
mentum P. We see that (B5) has singula, rities at
only two of the possible four places where the
Breit-Wigner pole and the singularities of the de-
nominator can coincide. Recall that the logarithm
is the S-wave projection of the particle-exchange
propagator of (B2), (E 2P' —2P" —2p p') -'.

To evaluate (Bl) in the same approximation we

Simple inspection of the kinematics will show that
the arguments of the first logarithm never vanish
in the physical region even as I'-0, but p, +p,
and p, +p both can vanish. Hence the second term
in (B8), the term coming from the second sheet,
can and will generate rapid variation in Abs f that
is not in the physical amplitude (B5). Equation
(B5) does have subenergy dependence, but it is not
so rapid as that of (B8) and of course not spurious.
In fact, preliminaty investigation based on com-
parison of (B5) with a full calculation indicates that
(B5) may form a, useful base for a phenomenolog-
ical parametrization of the subenergy dependence.
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