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Highly specialized, N-component, scalar model quantum field theories invariant under O(N) transformations
are studied in the limit of large N. The models are expressed in n-dimensional Euclidean space-time and
differ from conventional covariant quantum models by the absence of all space-time gradients, a modification
that leads to nonrenormalizable O( N)-invariant interactions for each N > 1. These models are solved by
nonperturbative techniques, and the solutions exhibit two striking and unfamiliar properties: (1) For finite (or
infinite) N, the solutions of any interacting theory do not reduce to those of the free theory in the limit where
the coupling of the nonlinear interaction vanishes; and (2) the relevant (asymptotic) dependence of the
parameters of the interacting theories on N differs from the conventional choice, and the limit N— o does
not lead to a Hartree-type solution. It is proposed that similar unconventional behavior may characterize
certain O( N)-invariant, covariant nonrenormalizable quantum field theories, and in particular that the limit
N — » may not lead to a Hartree (or Hartree-Fock) type of solution.

I. INTRODUCTION

Fields with a large number of components have
led to 1/N expansion techniques that are finding
many applications in the study of quantum field
models.! Invariably, Hartree (or Hartree-Fock)
type solutions are used for N -« and deviations
from such solutions are studied in the 1/N expan-
sion. In view of the rather wide interest in these
techniques, we propose to survey briefly and to
investigate the large-N behavior of a model that
we have previously studied. This model is a sol-
uble nonrenormalizable model of an N-component
boson field that, as we shall show, possesses a
meaningful limit as N -, but a limit that is »zo¢
given by a Hartree-type solution contrary to pop-
ular belief.

The model we study is that of an N-component
boson field & (x) ={®,(x), #=1,2,..., N}, defined in
an n-dimensional Euclidean space-time, and
where x&R", n=2, The Euclidean-space action
functional for the model has O(N) symmetry and
is generically of the form

== f{a‘“m 282 (x) + \V[ &2 (0]} dx, 1)

where dx=d"x and °=3,®,2.> Evidently, this is a
highly artificial model physically since it lacks the
conventional (V®)3(x) term of a standard covariant
theory. Without the gradient term, there is no
spread of excitation from one point to another, the
field is statistically independent at each space-
time point, and as a consequence such models are
termed independent-value models.® It is also clear
that the absence of the gradient term makes such
models nonrenormalizable since the propagator is

13

(m®)"! rather than (p® +»*)™! and no high-momentum
damping takes place in a conventional perturba-
tion calculation. In spite of this fact we shall pre-
sent a solution for the independent-value models
that not only fails to become the Hartree solution
as N- o  as already mentioned, but even fails to
reduce to the free-field solution as A~ 0,

Prior to a discussion of these solutions it is
worthwhile to present several arguments that may
help motivate the study of such models besides
the pragmatic one that they can be solved and the
idealistic (and probably unrealistic) one that seeks
to restore the missing gradient terms by perturba-
tion theory.

One motivational argument stems from the obser-
vation that the propagator for a covariant massive
vector field has the general form

Sy +g!pl/m2 (2)
P +m? ’

and that any nonrenormalizable features associated
with Yukawa interactions (when coupled to a non-
conserved current) are attributable to the compon-
ent

Db/ ®)

p2+m2 ’

which looks rather like derivative coupling of a
scalar field (Stiickelberg decomposition®). Although
there is important kinematic angular dependence,
the large-momentum behavior of the propagator is
roughly (#?)™! and hence more like that in the in-
dependent-value model than in a standard covariant
scalar theory. While no pretense at equivalence is
intended, the similarity in the order of the large-
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momentum dependence of the propagators—so
relevant for general perturbation analyses—sug-
gests that the independent-value models may con-
tain useful clues to understand the nonrenormal-
izable part of interactions that involve massive
vector fields.

Another motivation stems from the following
argument. For a covariant neutral scalar field
&(x) the Euclidean-space functional integral ex-
pression for the time-ordered generating function-
al formally reads

S(h) = 8(h)

S(h) =N fexp(ifh&dx—f{é[(vﬂz+m2<I>2]

+avie]} dx>3)<l>. 4)

The independent-value models are related to the
covariant ones simply by discarding the (vV&)?
term in the exponent, but there is an alternative
viewpoint as well. Introduce the real field variable
¥ =m" (- +m?)"2$, or in momentum space as

¥ =m™1(p? + m®)/?%, and reexpress the functional
integral in terms of ¥. Then

sszfexp<ifiz\l/dx—f{%mz\llzwxv[m(—vz+m2)"/2'll]}dx>i)\lf, (5)

where 7= m(-V? + 72 Y2h. The Jacobian between
D¥ and DP is purely numerical and is absorbed
in the formal factor 9. In this description of a
covariant problem the free action describes an in-
dependent-value model, and thus one which is

6 correlated, and the proper correlations arise
both from the definition of # and the “nonlocal”
nature of the interaction terms. If AV=0 and we
deal with the free (F) model, then

Sp(h) = §p(il)

=91Jexp<ifi1¢dx—§m2f¢2dx> DY
—exp[—-— ?) =1 hz(x)dx}
=expl:—éf(p“rmz)"l;z(p)lzdp], (6)

which of course is the correct answer. In study-
ing the independent-value models, therefore, we
may say that we drop the (V®)? term in the free
action of the expression for S(k) of a covariant
theory; or in an alternative viewpoint, we qhange
the intevaction term of the expression for S (k) of
a covariant theory by removing the “ultraviolet
damping” represented by the “delocalizing” factor
m(=V? + m?) V2 thereby resulting in a “local” in-
teraction term. In the latter view one clearly
sees that the interaction term is effectively more
singular for independent-value theories than for
covariant theories, which ultimately leads to their
nonrenormalizability.

Some general remarks regarding such models
may be useful. From the structure of the formal
functional integral for N-component independent-
value models one deduces that

—

Sh) = exp{— f L[H(x)]dx} M

for some even function L[-ﬁ] invariant under O(N).
The general form for L follows from the fact that
S(h) is a positive-definite functional. Let h(x)
=8xalr), where y,(x) =1 [xa(x)=0] for x&A
[xA], and§ denotes an arbitrary x-independent
vector. Then

exp(-AL[8])= [ cos(-Bdu@ ®)

for some O(N)-invariant probability measure on
R¥. Consequently

L[§] = hmA" f [1-cos(S«0)]ldu,@), (9)
and the most general form for this limit is®

L[] = a8+ j [1- cos(-0)]do(d), (10)

lul>o

where ¢ = 0 and ¢ is an O(N)-invariant positive
measure subject only to the condition

J o /1 5 )o@ < . (1)

The case a# 0,0= 0 corresponds to free theories
of different mass, while a=0 and o0+ 0 covers all
interacting theories. The task then is to find a
suitable ¢ for each interacting theory, and this
topic is reviewed in Sec. II.

In case we deal with an infinite-component field,
we can even say more. The general structure is
the same, namely
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S(h)= exp}s - f L[h(x)]dx } (12)

for some even L[h] invariant under O(=). Again
let h(x) =8y, (x) so that

S’ (8) = exp(-AL[3])
= f cos(8+U)du, @)
= [( 0P an ), (13)

where in the last relation we have used the fact
that every characteristic function with O (=) invari-
ance such as S’(S) is a convex combination of
Gaussians.® Consequently,

L[3] = lima™ f (1= e~0/2553 gy (b) (14)
0

A—0

and the most general form for this limit is
L[E)=aB+ f (1-e"4/2552)45(p), (15)
4]

where a > 0 and ¢ is a positive measure on (0, x)
subject only to the condition

jm[b/(1+b)]dc(b)<w. (16)

Againa+ 0, ¢=0 corresponds to free theories of
different mass (and the Hartree solutions), while
a=0, g+ 0 covers all interacting theories. The
derivation of suitable ¢ is the subject of Sec. III.
Finally, we note the formal difference in our
analysis that permits an N = « limit different
from the Hartree solution. Consider as an exam-
ple the simple interaction V= (&?)2. Customarily,
one employs an N-dependence of the various terms
such that

- -f ;%ngz(xh Nl[i?(x)]Z%dx, 17

whereas we shall find it necessary to employ an
alternative N-dependent parametrization so that

1=y [P B0 (e, a9

N

which can be seen not to affect the formal equa-
tions of motion (such as they are). Thus from an
equation of motion point of view the standard and
nonstandard scalings are indistinguishable and thus
equally valid. The difference in the two approaches

can be regarded as alternative renormalizations
of the model parameters, which, after all, in non-
renormalizable theories are poorly defined to
begin with. While it is a common assumption,
there is no a priori reason that an infinite-com-
ponent field need be quasifree. More technically,
for the models at hand, the standard scaling in-
variably leads to fields described as Gaussian-
distributed random variables, while the nonstan-
dard scaling leads to fields described more accu-
rately as Poisson-distributed random variables
that are completely in accord with the character
of the required solution of these nonrenormalizable
models for finite N.2 Related to this remark is
the fact that the nonstandard scaling admits a

1/N expansion relevant to the finite-N solutions
that the standard scaling simply fails to do. For
these reasons we feel the nonstandard scaling is
the correct one for the models under discussion.
It is interesting to speculate that alternative
scalings may be relevant in treating the large-N
behavior of some more realistic models.

II. FINITE-COMPONENT FIELDS

Though the N-component fields are treated else-
where, ? we think it is convenient to describe the
main properties and techniques here. As already
mentioned

S(h) = exp )‘ - J- L[ hx))ax ‘( , (19)

and the most general form that is invariant under
O(N) reads

S(ﬁ) = exp < -a J’ le(x)dx

_Jdxjulm{l-—cos[*-ﬁ(x)]}do(ﬁ))

(20)

where do(l1) is invariant under O(N). Specializing
now we assume that a= 0 and do(Q) = C %(x)du.
Given such a C(«) it is possible to give a useful
representation of the field in the following way:
Let A (x,0) and AT (x,0) be conventional annihila-
tion and creation operators satisfying

[AGx,0),AT(y,)]=6(x - y)o@ -7) (21)
and

Ax,0)l0)y=0, (22)
|0) being the vacuum. Define new operators

B(x,0)=A(x,0) +C ). (23)

Then the field can be represented as
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®,(x)= f BT (x 0, B(x,0)d4, (24)

and it follows that

<o exp(ijﬁ-%dx)!O)

= exp{— j dx j [1- cos(’-Tl)]Cz(u)Jﬁ%. (25)
We want to find the connection of these relations
with the model action functional. In order to do so
we need to define an operator product, and it is
not difficult to see that the usual Wick product is
not satisfactory. Another candidate is & g;;%(x)
defined by the decomposition

exp(i J'E@dx) |0>

S(E)=<o

& (0)®, () = 5(x — ¥)®g;;*(x)
+:8,(x)&():, (26)

where :: denotes normal ordering of A,AT (or
B,BT), or its equivalent. In our representation
® py;°(x) becomes

Bpiy0)= [ BT (c Tyt Bl D). @7)

The generalization to higher-order products is
straightforward.

To find a relationship between C () and the mod-
el problem we proceed as follows. We assume
that C(«) is such that

- % J’ exp(i j )« ) ax - f {%mZ?(xHAV[@(x)l}dx)DE. (28)

We can change the potential by first adding the term | x,(x) V'[#(x)] dx, where y, is the characteristic
function of some compact region A; in particular, in the representation introduced above we consider

<0

exp ;z J hx) - B(x)dx - f X @) V[ (x)] dx } IO >

(29)

where the local products are defined through the R prescription. A straightforward evaluation, plus nor-
malization and the limit A =R", leads to the new characteristic functional

A—R"

lim N,exp {— J’ dxf[ 1 - ot 1R,V L] 2(,) 4 }= exp ( - f dx f {1-cos[d- h(x)]} e""[“zlcz(u)d’ﬁ> .

(30)

We conclude, therefore, that if the action functional changes according to

1-1- [ viEE)ax,

(31)

then the corresponding measure ¢(i) changes according to

Cwds - e "' 1Cw\dE .

(32)

If V' = —\V the nonlinear interaction is “canceled” leaving only the term 3m23?%(x), but even the local pro-
duct ®2(x) needs to be defined by the R prescription which does not lead to the free theory but an alterna-
tive one termed “pseudofree” (PF). To characterize this special theory we first observe the formal

identities so far obtained, namely’

Ser (E=fﬂfexp[i fﬁ(x)-3(x)dx—%m2f$2(x)dx]i)$

= exp<—fd}ff{ 1- cosld- Tl(x)]}e"“‘z”"z'ﬁcoz(u)d@ , (33)

where
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PRVICES Clu)=e" u/z)mzuzcoz(u) , (34)

and the form of the dependence on m follows from the general rule for adding V’. Invariance of the ex-

pression for Spe(h) under the transformation h (x) - sh (x) and #? - s%»* for any s >0 leads immediately to

CSw)=gu~". Here g is an undetermined positive constant which incorporates the freedom in normaliz-

ing the two-point function (or in choice of ¥ dimensions), and which can therefore be chosen arbitrarily.
In summary, the formal functional integral represented by

S@) =3 f exp(i f B(x) () dx - f (1 n2&3) +w[$2(x)]}dx>s>5 (35)

is evaluated as
Si) =exp<—g fdx f{ 1-cos[d +h(x)}e akImoxviu®) || ‘”dﬁ), (36)

where g denotes an arbitrary positive constant without any essential physics. Moreover, every such
generating functional reduces as A -0 to the pseudofree form

Ser (h) = exp(—g fdx f{l - coslih)}e ‘lh’mz“zlul'”dﬁ), (37)
which is fundamentally different from the free form
Sp(®) = exp[—%ww 11 Hz(x)dx]. (38)

This means that any nonlinear interaction is a discontinuous perturbation of the free theory—but it is a
continuous perturbation of the pseudofree theory.

III. INFINITE-COMPONENT FIELDS

We want the characteristic functional of an infinite-component independent-value field to be obtained as
the limit of those with finitely many components. In order that this limit exist we have various para-
meters to work with, namely Vy, my, and the arbitrary factor g,. We start with the finite-dimensional
solution and suppressing the integration over x we consider the relevant expression for the exponent L{R]
of the expectation functional as given by

lim fg,,dﬁ[ul"’[l —cos@ - h)e akymyBl- v ()

N>

= lim fqdﬂ"/”" 8K __ fdﬁ[l — cos(d B et * Warmy? wi- vyt
0 r(EN)

N+>
| -
- limf dr /2 ¥=1 Fé%fdﬁ[l-cOS(ﬁ'h)]e“’*“’z”"ﬂz"z"""zfu(a)da, 39)
N-= 70

where fy(a@) is the Fourier transform of e~ ") | The integration over 1 is simply the product of
Gaussian integrations and leads to

S : - (12)N
i ar (1/2)N< my’ ﬂ) ¢ _ -h/afre1/2m 2+ i0]

31::1'[ - FéuI\T)ﬂ 1+ 2 7 [1-e N Ify(@da. (40)
Finally we have to make our choice of Vy, my, or gy. assume m = (1/Nym? and gy=(N/2)7~¥/2g; apart
Evidently f,(a) should depend on N in a simple from an arbitrary positive factor g, note that g,™*
way, and we choose fy(a)=Nf (Na), which simply isone-half the surface of the unit sphere in Ndimen-

means that Vy@?) = V{1/Nu?). In addition, we sions. We are allowed to interchange the order of
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integration and first take the limit N -, if, e.g., of the form stated in Sec. I in which do(b)
Ja +0A|f(a)Pda<= [which is easily arranged = (g/blexpl -3 m?b - V(b)] db.
provided that both e~ and V’(b)e~"® are Our choice of Vy, my, and gy differs from the
square integrable on the interval (0, )], Making usual approach, though it occurs to us not un-
the substitution b=1/27 we find for the final re- natural because the free part of the Lagrangian
sult and the potential are treated homogeneously,
. b . - namely Vy(3") = V(1/N&*) and Ty(@*) = tm,*8>
L[h] =gf7)_ e-la/2)m +{an(1 — g~ (/2)bh V() da =T((1/N)$2).
Besides the expressions we have used, the
- gfw_ﬂ& o~ 1R)m2b V)1 - e-u/znﬁz) usual approach can also be examined. Here we
o b ’ fix m,2 =m?, take V,($?)=NV ($2/N), for example,
(41) and adjust g, so that the limit exists. With z =7/N
and b=1/22z, we find for the exponent of interest
which exactly leads to a characteristic functional the expression

J

) dz g P a\-(/2)¥ >2 2
1 f =zL (1/2)N< m . > _ p,=h¥a[Nz+(1/2)m2+ 0] a
Jm | wam T a i [1-e litera

=lim a _g

as (1/2)N,-[(1/2)m2+io]bL P2
Lim |55 SrdmT e (3h2d)f(@)da. (42)

With gy=NT(GN7-(/2¥g we find the general expression

LIh] =4gh%lim f db e ~(1/2Im b=V, (8) (43)

N+ “0

The limit that remains can do no more than modify the coefficient of H’, i.e., to introduce an effective
mass. If V,(b)~0asN ~x, e.g., if V4(b)=NV(b/N) as in the standard expression for polynomial V,
then any nonlinear potential makes no contribution to the effective mass. If instead V,(b)=V(b) then
the resultant exponent becomes

L[ﬁ] =%gﬁz Jm db e~V 2m®b-v(p) (44)
[}

In any case the resultant field is invariably free; and since we seek models (and have already exhibited
examples) where nonlinear interactions have nontrivial dynamical consequences, the kind of limits that
arise when m,”=n? are not at all adequate.

It is perhaps of passing interest to point out that a 1/N expansion is easy to obtain for our models. We
need only consider the basic formula

gf%b(l . Z_lrvzz_b+ 27:'}\(]1b>'(1/2m[1 _e—(1/2)b.};2(l+m2b/N+i2ab/N)-1]f(a)da (45)

that represents the relevant expression for the exponent of the expectation functional for an N-component
field (with my2=m?/N, b=1/2r, etc.). An expansion in 1/N is straightforward, and we quote the first two
terms as

g %bf(a)da e~ (V2)m% Zia)b{(l _e—(x/z)bﬁz) + I%\:(mzwf—wz)zbz (1 _e-(l/z)bﬁz)+ b_zﬁz(’;‘z___iﬁg)e—(wnﬁ’] foo } .

(46)

From the identity

e~ V) =f e~ fla)do (47)
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it follows that
(d/db)Pe"® = f (=ic)?e™ ' fla)da. (48)
Consequently the exponent of interest becomes
) ab  _(1/2ym2b _ves) —(1/2)6%2 1 i1 40 272777 o 17t " —(1/2)bh2
g) e (1-e )+N({Emb+me(b)+b[V(b)2—V(b)]}(l—e )
0

+b252[§m2+V'(b)]e-<1/2>"*h2)+~-1, (49)

which illustrates the dependence on the potential of the two leading 1/N terms.

We next seek an operator realization of the infinite-component field. We are guided by the solution in
the finite-dimensional case, although we have to be careful in order to make things well defined. In the
finite-dimensional case the choice of the measure on RY was effectively the usual Lebesgue measure dii.
If N becomes infinite, a proper measure has to be defined. In so doing we can conveniently absorb the
function C() into the measure (which is also possible in finite dimensions) and define a measure p first
on cylinder-set functions f(1) that can be written as f(x, @, ..., ), depending only on the radius and a
finite number of angles by the relation

fdp(ﬁ)f(ﬁ)= lim mdu Ciugy fdﬂ,,f(u, By or B (50)

N oo 0

where typically C?(u) = (g/u) exp{- s m?u® — A\V[u?]}. Subsequently, the class of integrable functions may be
extended to include functions that are a limit of cylinder-set functions. Note that gy =2/ f dQy and that
f=11is not an integrable function [since C?(u) € L'] but u;,u;u,, etc., are integrable functions. Now we start
again with creation and annihilation operators A *(x, 1), A(x, U) satisfying

[A(x,0),AT(y,¥)]=8(x - y)5(T-7), (51)

where the distribution 6(1 -V) has to be understood with respect to the measure dp. The operator B is de-
fined as

B(x,0)=A(x,0)+1 (52)

and our infinite-component field reads
®(x)= fB"(x,ﬁ)u,-B(x, )dp (1) . (53)
Calculating the product of two fields we find

®;(x)®,(y) = fB*(x, W) u;B(x,0) BY(y,¥) v, B(y, V) dp(TQ) dp(¥)

=1 B(x)u(y):+ fB*(x, Wuive B(y, V)5(x = )5(8 =¥)dp() dp (V) . (54)

Suitable matrix elements (e.g., between general cylinder-set coherent states) give meaning to the last ex-
pression with the result that

@;(0)Dp(y) =: @i (x)@r(¥): +0(x = y)Pgsx*(x), (85)
where
@ ris’(0)= [ B0, D Blx, Ddp() (56)

Higher-order renormalized products are defined analogously.

In finite dimensions we showed how to augment the potential of the theory by starting with some given
model, adding a potential with space-time cutoff, renormalizing the over-all expression, and then letting
the space-time cutoff go to infinity we obtained the modified expectation functional. In a similar analysis
for infinite-component fields we initially have to approximate the additional potential in two ways. We
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start with a potential with space-time cutoff that involves only a finite number of fields (say K), then we
remove the cutoff and let the number of fields go to infinity (K —«=) along with the appropriate scaling.

The order of these two limits does not make any difference. The space-time cutoff works exactly as in
the finite-dimensional case, so we omit it and assume it has been carried out. We assume without real
loss of generality that the unmodified model is the pseudofree model, which means we consider the ex-

pression

lim lim g,,fdulul'”[l — cos(fi+ B)]e-/2Imy*s’ -V )

K—>o N-oow

= lim lim fdrr(‘/z’”'l g” fdu [1 - cos(@-R)je-lr* /2)m"1 exp <—za > u,,>f,((a)da (57)

K> N->ow

k=1

We regard h as fixed and K big enough so that i lies in the K-dimensional subspace (in fact, it turns out
that this assumption is of no importance). In this case the exponent becomes

lim lim

K- N-—»oo

l"(lN)

Again it is informative to consider the different
possibilities discussed earlier. The first choice
[my?=m?/N, Ve@?=Vu?/K), and gy=1""/2"T(3N)g]
leads to

which coincides with the previous result obtained
when K=N—o. The second choice [my>=m?,
gx=Nr~U/2¥P(iN)g, and V(x)- 0] leads to

kgfi? [ " ap 0 < ygmd) I, (60)
0o

which is also in agreement with the previous re-
sult obtained when K=N - «, though again the
potential has no effect and therefore the result is
unsatisfying. The last approach [as above except
that Vi () = V(x)] also gives Sg(m?)~*h?, a result
completely independent of the potential V and
which differs from the conclusion obtained previ-
ously when K=N—- . Thus not only does the
choice m,*=m? lead to free fields but, in the latter
case, the potential cannot even be added to the
model subsequently. Such behavior is certainly
unsatisfactory, and is not shared by the alterna-
tive solution (based on m,*=m?/N, etc.) that we
advocate.

In addition, the solution we propose for infinite
N based on the exponent

L[E] =g J _%.b_e-(I/Z)m2b-XV(b)(1 _ e_(]./z)b'ﬁz) (6 1)
4]

shares the anomalous behavior found for finite N,

dr n( )N[l e'hz/“[”(l/a)’"Nz“"‘]](l o

2r

2 -(1/2x 2 \=(1/2)(N=K)
ﬂﬂr—"‘) <1+'—”ﬂ—) fele)da.  (58)

—

namely, as A~ 0 the solution does not converge to
the free theory solution (with exponent L.[f]
=1(m?® "' ?) but to the pseudofree solution based
on the exponent

LpglR]=g [ o=u/ams(y — o=t/
0

_gln(1+E2/md). (62)

We remark again that the arbitrary parameter g
fixes the scale of the two-point function and can be
chosen as desired. Just as in the case of finite N,
it is the pseudofree theory which is the relevant
one with regard to the introduction of interactions,
and decidedly not the free theory.

IV. DISCUSSION

Our purpose in this paper has basically been
twofold. On the one hand, we have discussed the
solution for the time-ordered generating function-
al in Euclidean space-time for a model field having
N components when N is finite or infini*te. No
pretense is made that independent-value models
are physical, but that does not detract from their
possible mathematical interest. After all, artifi-
cial fields with identically constant bare propaga-
tors have been usefully exploited in studies of
O(N) models! and in studies of superfields.® The
initial approach to independent-value models, as
with most other models, is to use standard per-
turbation theory with the necessary introduction
of a large-momentum cutoff to render the per-
turbation theory finite term by term. Indeed, the
kinematics is so simple that the theory itself can
essentially be solved in closed form with a cutoff
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that takes the form of a lattice.? However, that
cutoff cannot be removed no matter how one ad-
justs the values of various parameters, and this
fact simply reflects the conventional nonrenormal-
izability of such models. Our methods of solution
are entirely different, and a high-momentum cut-
off never enters as it should not since the detailed
high-momentum behavior of independent-value
models is one of their essential and intrinsic
properties. Destroy that property quantum me-
chanically with a cutoff and a chasm is set up that
simply cannot be crossed. Undoubtedly, the non-
Hartree-type behavior of independent-value models
in the limit N— « is intimately connected with
their high-momentum behavior. For, by intro-
ducing a high-momentum cutoff and rendering the
theory locally free, the large-N limit does in fact
become a Hartree type, and there is no hope of
escaping that restriction as the cutoff is removed.
Here is prima facie evidence that for these models
introducing a cutoff is the worst possible mistake
to make.

Our second main point is made now and it is the
use of the independent-value models and their
anomalous behavior as motivation for a larger
program directed toward more relevant nonrenor-
malizable theories. It is our belief that certain
essential characteristics of general nonrenormal-
izable theories are illustrated by these models, to
wit, the total disconnection of free and interacting
theories, and the replacement of the role of the
free theory by that of the pseudofree theory. Such
behavior has been demonstrated in problems
ranging from harmonic oscillators and singular
perturbations, to several soluble model field theo-
ries, and up to plausible conjectures covering

covariant nonrenormalizable quantum field theo-
ries.® Why such behavior takes place at all can
be heuristically understood in every case by ob-
serving that in a functional integral formulation
the interaction acts partially as a hard core in the
space of field histories projecting out for all
coupling-constant values certain field configura-
tions that would be allowed by the free theory, and
which remain projected out in the limit that the
coupling constant vanishes. The hard-core appear-
ance of the interaction does not need to be mani-
fest (as in the interaction of particles, say) but is
effective nonetheless. One need only consider the
example treated in this paper where the free
action term is f 82%(x)dx (take N < «) and the inter-
action term, for example, is [[&?%(x)]’dx. This
interaction is not manifestly hard core, but one
should recall that L? functions are generally not
locally L* functions, and thus the interaction term
effectively acts partially as a hard core in rvelation
to the specific free theory in question. This gen-
eral viewpoint can be persuasively argued for co-
variant scalar quantum field theories,' and for
various models involving the gravitational field in
interaction with other fields.'* In line with the
discussion in this paper, we would also conjecture
that the large-N limit of nonrenormalizable quan-
tum field theories would generally no¢ exhibit
Hartree (or Hartree-Fock) type behavior.
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