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We present a detailed statistical model for describing annihilation reactions initiated by e+e and Pp
collisions. Charged and total multiplicities, fractional prong cross sections, and the m+n m+m production cross
section are calculated and compared with experiment. It is argued that the model is valid in the few-GeV

energy region and the agreement between theory and experiment is good here.

I. INTRODUCTION

Some aspects of both the inclusive and exclusive
data on e+e annihilation into hadrons and PP
annihilation show similarity. ' This has led to the
use of a statistical model for their description. '
In the present paper we carry out the statistical
approach of Ref. 1 in more detail. One assumes
in such a model that the reacting particles collide
and form a heavy resonance or fireball, which
then decays into all possible final states consis-
tent with quantum-number conservation. Assuming
that these resonances add incoherently, ' the cross
section for e'e and PP (which will be denoted
collectively as AA) into a particular channel, C, is
given by

&c(AA ) = Q&s(AA)B(R-C),

where the sum is over all possible resonances.
Here o„(AA) is the formation cross section for the
resonance, R, and B(R-C) is the branching ratio
of the resonance 8 into the channel C.

To calculate the branching ratios B(R C) for-
various channels, a model for the resonance, B, is
needed. We use the statistical bootstrap model
(SBM) of Hagedorn' in the particular form derived
by Frautschi. In this model, a heavy resonance
is composed itself of other hadrons assumed to be
contained in a box of volume V of hadronic di-
mensions. These hadrons can be m, p, ~, etc.
(i.e., discrete resonances) as well as heavy
resonances or fireballs in the continuum. There
can be any number of these hadrons in the box
consistent with conservation laws, and each state
of the system is given an equal a prion probability.
Under these assumptions~ the density of hadron
states, p(M), grows as

p(M) ~ M 'e ",
with b '- 160 MeV. To calculate a branching ratio
one simply counts the number of states for a given
channel and divides by the total number of states.
Our motivation for using the SBM comes from the

various successes of the model in areas such as
mass spectra in hadronic collisions, ' linearity
over a range of energy of the Pp total annihilation
multiplicities as a function of vs (Fig. 5) (and over
a more limited energy range those of e'e ), the
exponential falloff of exclusive channel cross sec-
tion in e e and pp annihilations into pions (Fig. 9),
and the exponential falloff, in hadronic collisions,
of the single-particle inclusive cross sections
with P~. It is of interest to note that most of the
above considerations including the similarity of
e'e and PP seem to have a limited energy range
in which they are applicable. We have studied the
predictions of incoherent resonance formation
combined with the SBM to see if it describes well
lower-energy data. One expects a breakdown of
this picture at higher energies due to the onset of
coherence which often takes the form of Regge
behavior according to duality principles. "

The method of calculating branching ratios using
the linear bootstrap approximation is discussed in
detail in Sec. II. The effect of nonlinear terms is
discussed in Sec. ID. The results of our calcula-
tions are contained in Sec. IV. They are compared
with the data and discussed. Our conclusions are
summarized in Sec. V.

II. CALCULATION OF BRANCHING RATIOS IN

THE LINEAR BOOTSTRAP

A. The linear bootstrap

Frautschi has shown that a fireball has roughly
a 70% probability of being made up of two hadrons,
about 30%%u~ of being composed of three hadrons,
and a very small probability for it to contain more
than three hadrons. Further, the dominant two-
fireball configuration is that in which of the two
hadrons in the fireball one is very massive and
the other is very light. The decay probability into
a particular channel is assumed to be proportional
to the available density of states, and we will for
the moment describe the decay of a fireball of
mass M [F(M)] by the cha. in

F(M) -w +F,(M, ) -w + v +F2(M2) ~ -nv +R,
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F(Mj F
1 ~Mi ) Fr~Mr ~ p, 6p, g

throughout the chain. To this end define
P( M„M„M, ) to be the probability density for a
fireball of mass M, to decay into a particle or
discrete resonance of mass M, and a fireball of
mass M, .

FIG. 1. Decay chain of a fireball. F (M) of mass M in
the l.inear bootstrap model in which only pions are
emitted except at the end of the chain.

where R is a discrete resonance (e.g. p, (d, }!,. . . ).
The decay chain is shown schematically in Fig. 1.

Let P(M, m) be the probability density for a fire-
ball of mass M to decay into a pion plus a fireball
of mass m. Then we have for the case of a p
meson at the end of the chain (this case is taken
for definiteness)

d)(M -) f fd(M.M", )d(M„),d, ) d(M „"dd,)„
x dM, ~ dM„,. (4)

Here B(M- nx) is the branching ratio of a fireball
of mass M into n pions. Equation (4) will, in the
following, be generalized to calculate branching
ratios into charged and neutral pions and we shall
allow resonances as well as pions to be emitted

B. Evaluation of P(N j kl2 %3)

Consider the process

F(M) -F(m) + p,
where F(r) denotes a fireball of mass r and p is a
particle or discrete resonance of mass p. Let
F(M) have isospin and G-parity quantum numbers
I and G, respectively. We assume (although this
is not an essential limitation) that there exist no

exotic resonances, which in practice means that
I & 2. Let p, (M) be the density of hadron states
with isospin I and with a fixed value of I,. We
assume that pz(M) is independent of I, and sup-
press the I, label.

We now consider only the more probable config-
urations of F(M), F(m) plus one of a relatively light
setof discrete hadronstates 8," A~, withmasses
m&, isospin I&, G parity t"&, and spin J~. Then
according to Frautschi' and with no exotics pre-
sent, we have

d(M)=, f d dd Pddd'dd '(P+P}il(M',E, —d)-
x 5 M2-mp 2eJj+I 5Ip5I)~pa p, , +BI ~p~ p. ~ +5I~ 5I Op p, +/I po p, ~ +p~ p. l

The factor 1/2! in Ref. 4 is not present since
p. , and p, are different: p, , is in the continuum and

p, , is a discrete hadron state.
Since the branching ratios are assumed to be the

ratios of the phase space available to the total
phase space, we find from the foregoing that,
generalizing P(M„M„M,) to include isospin and

G parity,

P(M;, Id, G;;Mf If Gf! md}Id Gj)

p, (M, )
=@Tj +1~br,'c,jc A(M;, M~, m, )' pI. (Mgi

where

Ig G] s Ij Gy Gt ~ Gy C

~sj =1 if Ig= Ig =].
g] I~

(9b)

C. The recursion relation forP~k(N, I, 6)

= 6, I, +z otherwise.I;. I)+I

Equation (9) ensures conservation of isospin and

G parity.
We now proceed to evaluate P„(M, I, G), which

is defined to be the probability that a fireball of
mass M, isospin I, and 6 parity G decays into n

pions, k of which are charged. This will be done

by means of a recursion relation.

A( )
V M; -(M~ -md)'™16~'

x ~"(M,.', m, ', m, 2),

with

A.(x, y, z) =x2+y2+z2 —2xy —2yz —2zx

(8a)

(8b)

A fireball decays predominantly by emission of
a light particle, leaving a lighter fireball as the
daughter (at the end of the decay chain the daughter
will be a discrete hadron state). Typically, a
fireball of mass M, may decay into n pions of
which k are charged [denoted by (n;k)] by emitting
a w' with a fireball of mass M„, which then decays
into (n —1;k —1). At first we will allow only
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(n, k

(n, k)

n —2, k 38%
n —3, k 33.1%
n —3; k—2 28.9%

—2.

(n, k)

(n, k)

O= }
—2.

emission of r, p, m, and g. The effect of kaons and
the q will be considered later. By doing a suc-
cession of calculations we can study how the
emission of the various resonances affects the
results. Including only m, p, (d, and g, the rele-
vant diagrams for P~, using the decay modes of
p, e, and q which are known, are as shown in
Fig. 2. We treat the photon from q decay as a
neutral pion for the purpose of calculation. We now
define an auxiliary probability P„by

P„(M, I, G) = pI(M)P„"(M, I, G) . (10)

(n, k) (n, k)

FIG. 2. Schematic representation of the terms in the
recursion re1ation (11) for the decay of a typical fire-
ba1.1..

Here we have assumed that p~(M) is independent of
the G parity, G, and denotes the density of states
for a particular G with G parity label suppressed.
Then making use of the appropriate Clebsch-
Gordan coefficients, it follows from the diagrams
of Fig. 2 that

(a,) P „(M, 0, G) =0 if k is odd, (11a)

(b) otherwise:

P„"(M,I, G) =
m&

A(M, y. , m„)(5z,( ,'P„,(p., 1,--G)+—,'P"„,'(p, , 1, —G))
g+(n-4)m

+ 5~2(5)22even[P22 2(p 2 12 —G) + PM &(p 2 02 G)]

+ 58)2 oddl. 2P)2 I(p 2 12 G) + 8)P)2 &(p 2 12 —G) + P)2 I(&2 0, —G)] )]'(ig
N-m~

+3 dpA(M, p, m )P„',(p, , I, —G)

+ A M, p, ,m„0.38P„, jtL, , I, G +0.331P„",p, , I, 6 +0.289P"„3 p I G
m~+(n-6)m~

N-m

+3 &(M, p, m, ) (5i.(-'P„'-', (p, 1, G)+-', P'„,'(q, 1, G))-
~+(n -5)gg ~

g, [ 8)2even(P)) (P 2I) G2) +P)2 2( p'2 0, G)

+5 . ( P„,(p, , I, G)+P—'„',(p, O, G))]]dp, .. (11b)

Note that the lower limit of integration is
m„+(n r)m„where r-=4, 5, or 6, since only p,
+, and g are allowed at the end of the chain.

To complete the recursion relation we need
initial conditions. These are given by the dia-
grams of Fig. 3. As an example of the expres-
sions obtained from these diagrams we take
n=3 in which case we get

P;( (, 8) =M0. 888„8, f2((M8, ln, ) M)8,8 ."p;M
(12)

Now

p, (p, }=5(q -m„}
and so

P~(M) I, G) = 0.3851,5e A(M)mal) m~) . (13)

D. Normalization, cross sections, and multiplicities

The probability P„(M, I, G) for a neutral fireball
to decay into n pions is given by

The other conditions can be derived in a similar
way. The density of states, p(M), has completely
disappeared both from the recursion relation and
the initial conditions if one works with P„. We
can calculate, as we shall see later, the density
of states for each version of the bootstrap model
which we shall use, from knowledge of the P„.

Using the method outlined above, the P„(M, I, G)
have been evaluated by computer. Results will be
presented in Sec. IV.
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P (M, I, G) =PP„'(M, I, G) .
k even

The normalization condition is clearly

P P„(M, I, G) =1.

It follows directly that

(14) The prong cross section is given by

op, (s) =Q o'„(s) .
n «k

The cross section o(n) for e'e -n pions is

o(n) =g o'„(s) .
k even

(20)

(21)

k even

(16) We can now evaluate the average total and charged
multiplicities. They are

Therefore, by evaluating the P „" for all n and k
we can determine the density of states p, (M) .

For the reaction e'e - hadrons we assume
dominance of the one-photon mechanism for which
C=-1.Therefore, I =0 or 1'. LetP, and P, be
the respective probabilities for these two isospins.
These probabilities may be energy-dependent. Let
c„(s)be the total hadronic cross section for e'e .
Then for A even

P„(Ws, 0, —1) P"„( s, 1, 1)

(n) = —Q no(n),
1

o„(s) „

1
(n,.„)= kv, ir(s) .

oh s

(22)

In PP annihilation, the PP system has equal
I= 0 and I=1 components. The G-parity situation
is not as straightforward. This does not concern
us much due to the lack of sensitivity of most of
our results to the isospin and G parity.

P, = ', l=0, 1.
~o+~&

Equation (17) then simplifies to

P„( s, 0, —1) +P „(Ws, 1, 1)
[P"(Ms0 —1)+PP(fs, 1, 1)]

'

(18)

n=4

FIG. 3. Schematic representation of the initial condi-
tions of which Eq. (13) is an example. Here n is the
number of pions emitted by the fireball.

(17)
where p, and p, are evaluated using Eq. (16). We
find little sensitivity to the values of Pp and Py in
our calculations. We assume that when the photon
becomes a fireball it seeks out all possible states
with equal a Priori probability so that

E. The emission of 115, K, and E*mesons

The calculations above can be extended to allow
for Q emission at every stage. We have done this
to see whether it is sufficient to include only p,
&u, and q mesons or whether the Q and perhaps
heavier resonances should be included. We shall
see in Sec. IV that the y meson has only a small
effect on the results of the calculation. The Q(1019)
has I =0 and J =1 . Using its decay modes which
are known (dominantly KK) one simply adds the
necessary terms to the recursion relation (11) and
to the initial conditions. The e'e data that we will
compare with include E mesons as well as pions.
We will in this case treat the Q-2K decay mode
as a Q-2m mode.

We also allow for direct emission of kaons.
Since there are four kaons with masses of the
same order as that of the g they should, statisti-
cally, contribute a significant amount. [We do not
consider SU(3) breaking which might cause the K
coupling to be smaller than that of other particles. ]
Secondly, the fact that the kaons have strangeness
leads to two charged and two neutral kaons as
opposed to two charged and one neutral pion.
Therefore, including kaons and counting them as
pions could increase the ratio (n)/(n. sh) and possi-
bly help explain the large amount of neutral energy. '
We give up G-parity considerations when we in-
clude the kaons keeping only isospin and strange-
ness conservation. We now must allow for strange
fireballs, of course. We allow only I =0, —,', 1
fireballs in keeping with the assumption of no
exotic fireballs. Therefore, instead of calcula-
ting quantities P„(M, I, G) we consider P"„(M, I).
When I=—,', if k is even, the fireball has the



STATISTICAL TREATMENT OF ANNIHILATION PROCESSES 2555

quantum numbers of K' or K' and if k is odd, those
of K' or K . One can derive a recursion relation
similar to (11)with similar initial conditions.
Since the mass of the R*(892) is not much larger
than that of the p, we include it for completeness
and we find little difference in the quantities
calculated.

F. Invariant and noninvariant phase space

Although the formulas we have used are fully
relativistic, the phase space which we have used
is noninvariant phase space,

Equation (8) is now replaced by

(23)

This leads to an appreciable change in our results
which we shall discuss in Sec. IV.

We have also considered using the matrix ele-
ment KM/E, E, = v, +v, for the two-body decay of a
fireball of massM. Here Ey vy and E„v2 are the
energies and velocities of the two products and K
is their center-of-mass (c.m. } momentum. The
motivation for this matrix element is discussed
in Appendix B. Instead of Eq. (23) we now have

pd ( )
V d((M m p )

M, (24}
This is the correct phase space to use for non-
interacting relativistic particles in a box. How-

ever, the branching ratios need not be given by a
simple phase-space ratio. In general there could
be a matrix element involved. At this point there
is some ambiguity. One could, for example, use
invariant phase space

,O'P, /2E, .
i

However, there is no natural way to normalize
this phase space to be dimensionally correct.
However, we have looked at the effect of using
invariant phase space normalized by the condition
that in the limit of nonrelativistic particles in
the box, the invariant phase space should reduce
to the noninvariant phase space. This leads to the
phase space

—d p.
---. V m;

E(t

We shall discuss the results of this calculation as
well in Sec. IV.

III. THE NONLINEAR BOOTSTRAP

We discuss in this section the effect of allowing
for the possibility that the fireball contains three
as well as two hadrons.

A. The three-body phase space

Although we should evaluate the vertices cor-
responding to F(M)- R, +A, +E'(m) where
R

y R2 are m, p, +, g, K, K*, etc. , we restrict
ourselves for simplicity to the case R, =R, =~.
This, at any rate, will be an important contri-
bution to the total three-particle effect. Let p~'l(M}

be the contribution of ~~E' to the density of states.
Then

(25)

The factor 9 is the isospin factor for the two pions which will be dropped when specific isospin states are
considered and the 1/2. factor results since the two pions are identical. Equation (25) can be rewritten as

2 3 3

p'(M)=—,d'P, d'P, d'P, dm, dm, dm, 5(m, —m„)5(m, —m )p(m, )55 Qp; 5 M 2,E;). —
k=y g=z

9 V2
p~'&(M) = —, , „X~'(M,m„m, )p(m, )dm, ,2i j2mj'

where

'5'(M, m„, m, )=fd'D, dd, d P,5' (EP ) 5 ( E &)M. E
t

(26a)

(26b)

'U' is just the usual three-body phase space in the c.m. system and has been evaluated by Milburn. ' We
take his result, integrate by parts, and get after doing some algebra

g'(M, m„, m, )=; d& P'($)(1- $) + P(() 1+—+-(& -. t)(5 —1) 1 1$-1
(27a)

where
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p, = r =~ 0 =-'w'M'p, '(1 r)' (1+r)' n~, m
4~2 P 4~2 0 M P ~ P Q 3

P($) = (1-r2 +r4 —2r +r') —4p2 ](1 +2r2 2r-4+4r~)

+ 1 6p, '$'(1 +2r' +6r') —64''$'(2 +4r') +256p, 'g',

(27b)

(27c)

dP(~)
df

' can now be evaluated numerically.

B. The recursion relation

Defining the quantity

(28)

and considering all isospin states of the w-w system and using the relevant Clebsch-Gordan coefficients
we get

P4(Id, I, G) =[the terms from Eq. (11)]

dp&(M, p)(~i. l SP'. .(p.0, G)+-'P'. :'.(p, 0~ G)+3P' (p~ 1 G)+3P. ' (p» G)]
Q „+(n-5)m~

+ 6, ,„,„6,,[P'„22(p,, 0, G)+ ', P'„,(p, , 1,-G)+ 5
P8„",'(p, 1, G)+ ,'P„",'(p, ,-1, G)]

+6~,gg6g, [P„'2(p, 0, G)+ 5P, '„,(p, 1, G)+ sP„:,'(p, , 1, G)+-', P„:2(p, 1, G)] j
(29a)

P~(I=O) =0 if k is odd .

The initial conditions are handled with the same method as in the preceding section.

(29b)

IV. THE EFFECT OF RESONANCES

The predictions of the version of the linear
bootstrap model in which only pions are emitted
throughout the decay and with emission of a
resonance at the end of the decay have been dis-
cussed in a previous paper. ' The multiplicities
rise linearly with v s as expected in the SBM
due to the essentially constant maximum tempera-
ture which is effectively achieved at these ener-
gies and the resulting constant average pion
energy. The branching ratios into four and six
charged pions fall exponentially with energy and

the ratio of total multiplicity to charged multi-
plicity is approximately 3/2.

In Figs. 4-9 we show the predictions of the SBM
with resonances and the three-particle vertex in-
cluded and we show how these predictions vary
with the version of the model chosen. The lighter
resonances contribute significantly to all quanti-
ties calculated, whereas the P contribution is
small. Heavier discrete resonances will contri-
bute even less. Unless otherwise indicated, we

have taken, for the volume, a sphere of radius
1.1 F and we have used the mixture of I=O and
I=1 as in Eq. (18).

We show the results of the calculations of the
density of states when all resonances are included
in Fig. 4. For m&2 GeV, p(m)-cm 'e with
k '=163 MeV, as in Eq. (2). In the cases when
fewer resonances are included, the form, (2), is
still found with the values of c and b depending on
the case considered. In Table I the values of
T „.=b ' are summarized for the cases considered.

The total and charged multiplicities for various
approximations to the SBM are shown in Figs. 5-7.
All versions give both charged and total multi-
plicities which rise linearly with v s, and the total
multiplicity has a slope which is equal to the in-
verse mean pion energy ((E,)) as Ms-~. Table I
also summarizes the values of (E,) as Ks -~ for
all the cases. With some notable exceptions,
(E ) is essentially a monotonic function of T»ax

as expected from thermodynamic considerations.
The ratio (n)/(n„.„) of the total to charged multi-
plicity is also given in Table I in the limit of
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30

20

10

1.0 2.0 3.0

M (GeV)
4.0 5.0

FIG. 4. ln[M p@)l versus M for various versions of the SBM. p p4 is the sum of the density of states for I =0 and
I =1, which we have calculated. These results are for a hadronic volume which is a sphere of radius 0.85 or 1.1 F.

Ws-~. It is proved in Appendix A that the decay
of an I=O system into any number of pions, con-
serving isospin, is symmetric in isospin space so
that

&r --"'--
f'f -ii'

t
ll

f f j f

Data:—

pp (Ref, IO)

e'e (Ref. 9)

I

4.0
I

5.02.0 3.0

Ps (GeV)

FIG. 5. Mean charged particle multiplicity and mean
total multiplicity versus Ws. Curves are our model.
predictions. The mean total multiplicity is evaluated
by dividing the m.ean charged multipl. icity by the ratio of
charged energy to total. energy. Unless otherwise indi-
cated the volume used is that of a sphere of radius 1.1
F. Data are from Refs. 9 and 10.

(30)

where (n, ,) is the average number of v, , in
the decay. The same theorem is true if the initial
system is I=1 with equal probability of having

I, =O, +1. In both e'e and PP the initial fireball is
a linear combination of I=O and I=1. Therefore,
as the length of the decay chain increases we ex-
pect that even the I= 1 fireball will give approxi-
mately the same number of ~„m', and mo if
isospin is conserved throughout. This leads us to
expect that

(n)/(n„.„)——,
' as s —~.

Deviations from this ratio are due to g decay and
E meson production.

For the linear bootstrap with only pions we see,
following Table I, that (n)/(n. .p)- s as s-~ as
expected from (31). If p, v, and q are included
the (n)/(n;g) - 1.67 as s-~. The ratio has in-
creased since the g can now be emitted anywhere
along the chain and therefore has an effect even as
Ms-~. We can understand the over-all increase
in multiplicity when resonances are included (see
Fig. 6) by noting that including p, u, and q in-
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11 — ---------- 7F only r = 1.1 Fer. mi
= 0

I

2.0 3.0

Ps (GeV)
4.0

I

5.0
I

2.0 3.0

Qs (GeV)

I

4.0
I

5.0

FIG. 6. Caption as for Fig. 5. FIG. 7. Caption as for Fig. 5.

creases the density of states. It is therefore not
surprising that the explicit calculation shows an
increase in the inverse maximum temperature
b =T, ' (p-cm se ). The resulting decrease in

T, (from 200 MeV to 170 MeV in our calculations)
leads to a decrease in the average pion energy and
therefore an increase in the multiplicity.

Including kaons (without Q) the temperature
lowers to 160 MeV but the multiplicities fall. The
lowering of (n) and (n,h) is due to the fact that the
kaons are much heavier than pions. For a given
temperature they will have the same kinetic
energy as the pions and therefore a larger total
energy which accounts for the reduced multipli-
city. The ratio (n)/(n, , ) increases slightly as
expected.

Using invariant phase space, the temperature
rises to 180 MeV and the multiplicities rise. The
reason for this is that the effective matrix element
resulting from the use of invariant phase space
for a two-body decay is

rn ng, 1 1
&i E2

with

0.4—

0.2—

0,0

0.6—

O
M 02

O

0.0
O
I—
C3

m Q.4

0.2—

0.0

0.2—

0.0

8 PRONG

—PRONG

ef. IO)

1
Y( (i 2)172 (32h)

2.0 3.0

gs ( GeV)
4.0 5.0

This matrix element is larger when the velocities
of the decay products are smaller and thus the
average pion energy will decrease which results

FIG. 8. Fractional prong cross-section predictions
for e+e and PP annihilation versus u s. The squares re-
present pp data (see Ref. 10). The hadronic volume is a
sphere of radius 1.1 F.
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in an increase of the multiplicity.
We plot in Fig. 6 (n) and (n.~) for the cases of

pions only and all resonances included, for two
values of the volume V. There is a significant
though not a huge difference between values for

spheres of radii 0.85 and 1.1 F. At all but the
lowest energies the effect of using an I=0 versus
an I=1 initial fireball is negligible as far as
multiplicities are concerned. We show in Fig. 7
the effect of the w7rI' vertex on the multiplicities

r = t.1Fermi

7T ONLY I = 1 ( UPPER CURVE )

.9 X 10-' X PP, ' 5 MIXED I
—SPIN ( LOWER CURVE)

I
--- npcuqeR*

e+e ———Kp4) g K k'*

e+e DATA SLAC—LBL {Ref.9)

10 ROUP

F R ASCAT I {Re f. 11 )

GROUP,

DATA X .9 X 10 {Ref. 'IO)

(8
0)
O

t5
D. 1

U

U)

65

O

2.0 4.0

ms (Gev)
6.0

FIG. 9. e e and~ annihilation cross section into four charged particles (pions or kaons). The curves represent
the predictions of the SBM with only pions included and with all resonances included. For the e e hadronic cross sec-
tion we have used Sf&.C data (Bef ~9). For the+ annihilation cross section we have used an eyeball fit to the data (see
Bef. 10).
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TABLE I. List of the maximum temperature Tma~ =b, averaged pion energy (E~) =vs/
(n) as vs ~, and the ratio of total to charged multiplicity as vs ~, which we have calcu-
lated for various cases.

Particles
included

Radius of
hadron (F)

Maximum Aver age pion
temperature energy &E~} (Me&)

(Mev) as vs -~ &a&/&a, „„, &

as vs—

n with 27t

z, g with 27t

7tw p, Mw 7f

'ftw Pw w 0
with 2~

m, p, co, g, K,K*
with invariant
phase space

&w Pw w RwKwK*
with matrix
element (24)

0.85
1.1
0.85
1.1
0.85
1.1
0.85
1.1
0.85
1.1

0.85

0.85
1.1

266
200

222
189

212
169

199
170

160

197

186
160

180

165

890
674

708
564

615
560

610
540

535
515

510

540

574
545

1,52
1.51

1.52
1.50

2.0
2.04

1.85
1.67

1.70
1.67

1.70

1.75
1.74

1.76

1.73

for the cases of ~ only and m', p, m, g. It is in-
teresting to note that including the wwI' vertex
lowers the temperature in every case by 10—20
MeV. This implies a higher multiplicity and in-
dicates that if the SBM is to be interpreted
strictly, the three-body phase space must be in-
cluded if one desires detailed accuracy. When
all resonances are included the A@I' vertex has
considerably less of an effect due to competition
from the resonances. However, this might change
if RyA, E vertices were also included, where
8, and R, would be discrete resonances.

We present in Figs. 8 and 9 the results of our
calculations of the prong probabilities and ex-
clusive channel a(w'w w'w ). The results are
compared with the data. The agreement is better
when heavy resonances (and kaons) are included.

V. CONCLUSIONS

Although the calculations which we have dis-
cussed describe the low-energy data on e'e and

PP annihilations quite well, all of them fail to ex-
plain the flattening with energy of the charged
multiplicity in e'e collisions in the 3.5-5 GeV

center-of-mass energy range. This may be due
mainly to new effects coming into play in the
region of the P resonances. The narrow reso-
nances by themselves should not be much of a
problem as long as they are ignored, since they
only appear as spikes. However, they could
contribute along with other particles as threshold
phenomena at high enough energies. Further,
there is a possibility of heavy lepton production
which must be separated from the hadronic
processes in order to compare with a hadronic
model such as the one we use. In spite of this,
it is possible that when the threshold phenomena
subside one could again reach a region of validity
for the statistical picture. However, it is ex-
pected that at high energies there are new
mechanisms which dominate over incoherent
resonance formation and decay discussed in this
paper. The simplest such mechanisms would be
a possible coherence of the various resonances.
This is expected according to duality considera-
tions. ' This could affect e'e and PP differently
as well as affecting various exclusive channels in
different ways. The multiplicities, prong proba-
bilities, and exclusive channel cross sections
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should change character at high enough energy.
At high energies one might also expect any
constituent structure of the hadrons (such as
partons) to be prominent. We see such a possible
effect in high P~ single-particle inclusive cross
sections in hadronic collisions where the cross
section starts falling exponentially as predicted
by the SBM' and eventually a power-law behavior
such as is predicted by parton models, ' for ex-
ample, takes over.

All of this leads us to believe that the validity of
the picture above is limited to the region of a few
GeV only.

APPENDIX A

where I'(M;m, m, ) is the probability thatM is
composed of m, plus m, and I (M;m, m, ) is the
decay width of a system containing two masses
m, m, with invariant mass M. For P(M;m, m, )
we take the phase-space ratio discussed in this
paper. For I'(M;m, m, ) assume there is no inter-
action between m, and m2 and that when they have
separated a distance x, they decay. Then

r(M m, m, ) = '
0

where v; is the velocity of nz;. Calling the total
width r(M) the branching ratio for M going to
m, +m2 is given by

Consider the decay of anI=O system S into
n I=1 systems 8, ~ ~ S„. Pick any S„. Since 8„
has I=1 and it must combine with

(S, .S»,S„+, S„)to give I=o, the system
(S, ~ S„,S», , S„jmust have I= 1. Now

B(M;m, m, ) =
)

I'(M;m, m, )
1

fp
(a3)

I o, o& =
3 I 1, » I I, -» —

3 I I, o&11, o&
1 1

+
~
1, —1& ( 1, 1) .

Thus S~ has equal probability of having I,= o, +1.
Since this is true for all 8„ the isospin symmetry
is established. Now the system
(S,. ~ S» „S„,~ S„j is an I=I system with equal
probability of having I, =O, +1, and from the last
argument any one of its decay products has equal
probability of having I, =O, +1. It is easy to esta-
blish from this that any system with I= 1 and equal
probability for I, = O, + 1, which decays into I= 1
systems conserving isospin, has a decay which is
symmetric in isospin space.

APPENDIX B

Consider the decay of a fireball of mass I into
two products (either fireballs, discrete resonances
or pions) of masses m, and m, . Then the partial
width for this process is given by

r(M;m, m, ) = J(M;m, m, )r {M;m, m, ), (al)

To calculate I'(M) we consider the most likely
configuration for a fireball of mass M, i.e., when

M is composed of a large mass particle and
a small mass particle. Then (v, +v, )/r, = I/r, . We
thus take r(M) = I/r, We t.hen get

But

B(M; m, m, ) = (v, + v, )

x noninvariant phase space. (a4)

KM
I 2 E EI 2

(a5)

hence the origin of the matrix element discussed
in the text.

Note that if the expression for I'(M) is correct
and I/r, is in fact the true average of

(v, +v, )/r, over all configurations, then the density
of states calculated using the matrix element (aS)
should be the same as that coming from noninvari-
ant phase space. In our calculations we find the
difference between the two to be very small rela-
tive to the differences encountered when including
resonances or using invariant phase space.
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