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Collinearity angle distribution in e-p, events
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We present an analytical formula for the collinearity angle distribution of e and p, in the process
e+e ~L+L followed by heavy-lepton decay L~vL + I+v, , t = e or p,. Both V —A and V+ A couplings

are included, as is a mass for the vL. At high energies we find that the collinearity angle distribution in cos8
becomes a function of the single scaling variable x = P'y'(1 —cos8)/2, where P and y are heavy-lepton boost
parameters from the rest frame to the e+e laboratory frame. This scaling in x may be compared with the

scaling in pT in hadron physics, and it holds independently of the detailed coupling scheme. A violation of
this scaling is a signal of the appearance of heavier leptons.

Perl et al.' recently reported the observation
of e- p. events in electron-positron annihilation.
The most plausible interpretation of these events
is that they are due to a heavy lepton' L with a
mass of around 1.8 GeV and an associated neutrino
&&."' One of the dynamical variables which char-
acterize the e- p, events is the so-called collinear-
ity angle distribution. "However, an analysis of
the actual experimental data is complicated be-
cause of various kinematical cuts involved. The
momentum cut, for example, significantly modifies
the collinearity angle distribution. '

Before discussing the detailed effects of various
kinematical cuts in the experimental data, it may
be useful to study the information contained in the
collinearity angle distribution. In this respect it
is certainly worthwhile to have an analytical for-
mula of the collinearity angle distribution for a
somewhat idealized experimental setup, namely,
no energy and angular cutoffs. In this paper we
present such a formula for the sequential heavy-
lepton production (see Fig. 1). Unlike the ordin-
ary sequential heavy-lepton scheme, ' where the
weak and electromagnetic interactions act on e,
ILL, , and I. universally, we allow V+A as well as
V -A currents for the heavy lepton. The associ-
ated neutrino may also have a nonvanishing mass.

The amplitude corresponding to Fig. 1 can be
readily evaluated by the standard method or, bet-

ter, by the method utilized by Tsai, ' which allows
us to identify the spin-alignment term directly.
This spin-alignment term represents one of the
dynamical effects which allow us to distinguish
V —A and V+A coupling for a heavy lepton. In the
six-body phase- space reduction, the kinematical
variables of the neutral particles may be first in-
tegrated over. One can then integrate over the
directions of the heavy lepton with all other vari-
ables relatively fixed in the heavy-lepton frame.
Equivalently, the collinearity angle distribution
without any angular cutoffs can be evaluated by
first taking the average over the directions of the
incident electrons with the final-state configura-
tion fixed. ' In this way the six-body phase space
is reduced to the following essential part (see
Fig. l for the definition of momenta):

(s —m')(s' —rn') d'P d'q
(( ),

SS 2po 2Q'0

x5((P' —q)' —s')dsds'.

The normalized distribution for V —A and V+A
couplings can now be written as

(2)

where the matrix elements T, and T, depend on
the coupling scheme.

(a) V —A current.

m2
T~= (M +m ) 1+ —2s-

s

2M m rn2

—2M'
x tel'(t 'q) (&'p)(&'q) (I'"p—)(I"q)+ — . (I''p)(&'q) (4)
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(b) V+A current

T, =36(s —m')(s' —m'), (P p)(P' q),
Q +2M

(5)

2 —2MT =36(s —m')(s' —m') M'(p'q) —(P'p)(P'q) —(P"p)(P"q)+ 2M, (P P)(P'q) (6)

&&[(1 —e')(1 —8e'+ e') —24&'Inc]'.

In Eqs. (1)-(V)

s =invariant mass for the v~v system,

s' =invariant mass for the v~v, system;

I=mass of the heavy lepton L,
m =mass of the neutrino v~;

(V)

(8)

(9)

Q' =4E' with E the energy of the incident electron;

(10)

(11)

and the common normalization factor is given by

~~6 2 2+ 2M2

and P and q stand for the momenta of the muon
and electron, respectively. In Eq. (2), T, stands
for the spin-alignment term. The natural phase-
space boundaries are provided by

e'&s &M' and e2 &s'&M2. (12)

(13)

One finally obtains the normalized collinearity
angle distribution for 0 & 8 &

m

For simplicity we neglect the electron and muon
masses. In this case the energy and angular inte-
grations factorize. The integration over energy
variables may be performed by using the 5 func-
tions in (1). One can then perform the integration
over s and s' within the natural boundaries (12).
The final step is the integration over the angular
variables with the fixed collinearity angle 0,

co» =-- (p q)/II I IqI.

(14)

where

1 I 3 2 1 12 (1 —1/y')'"' =16j (1+ )' y' (1+ ) ''(1+ )'' (1+ )

1 15 12 1 60 16 —24/y 3(1 —1/y )» (1-)' ' (1")' (1")' (1-)' .(1 )'

(15)

(16)

1 35 (8/y )(6 —1/y ) 8 1 21 2(1+4/y )
256 (1+x) (1+x)' y (1+x)' (1+x)4 (1+x)'

with

(10 —8/y')(1 —1/y') 3(1 —1/y')'
+ 3

(I )3
+

2( )2
L x 4 + 3 x (1V)

L(x) -=2 ln(l+2x+2[x(1+x)]' ']/[x(1+x)]' ',
x -=—,'P'y'(1 —cose),

(18)

(19)

and P and y are the Lorentz factors for the heavy lepton (y =E/M). The pa-rameter q(&) in (14) is a function
of the mass ratio, e =m/M, and it characterizes the structure of the heavy-lepton current'

q(a) =1 for V+A,

1 (1 —e')(1 —lie' —4Ve'- 3e') —12m'(3+ 2c') Inc '
9 (1 —&')(1 —8e'+ c') —24e4 In~

(20)

(21)

Equation (21) is plotted in Fig. 2. q=0 corresponds to the vanishing spin-alignment effects. We empha-
size that formula (14) is valid for arbitrary mass values of L and v~. The only constraint is that the energy
cutoff, if any, is kept small and the counter covers (approximately) 4v angles.
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At threshold y =1 (and P =0), (14) becomes

= p[1+ 3'/I(f) cosII],dcoso (22)

which is a generalization of the formula given by Tsai. In the forward direction
2 2 2

(2D —5/y )+g(t) [8 —1/y +1/(2y )]I,
g 0 2y'+1 (23)

+q(~)[F,(x, ) —E,(x, )+F,(x, )]. (24)

The right-hand side is a universal function of x
characterized by the parameter q(e) which con-
tains the dynamical information. Equation (24)
shows that the P'dI'/dx distribution becomes "scale
invariant" at high energies in terms of the x vari-
able (this scaling starts around y =2 and works
very well above y =3). Thus one can compare the
data from various values of y corresponding to
the same x. The scaling formula (24) in the small-
x region is plotted in Fig. 3. For the V —A cur-
rent we used q(0) =—', (see also Fig. 2). Figure 3
shows that a discrimination between V-A and
V+A may be possible even at high energies. The
definition of x in (1.9} and Fig. 3 indicates that
the major part of the collinearity angle distribu-
tion (i.e., about V0%) is concentrated in 0 ~ x s 2,
namely'

I] ~ 3/Pr =2[(M/2)/(P ~/3)], (25)

w'hich shows that the cos8 distribution has a sharp
peak around 0 =0 at high energies. The height of
the peak is different for V-A and V+A currents.
Another interesting result is obtained at large
values of y2, where (14) can be rewritten as

p2. —y'(x oo}, dr

V+A current still gives rise to more events at
smaller values of ~ compared with a V-A cur-
rent for the identical values of & and cutoff energy.
See also the threshold formula (22).

Finally several comments are in order.
(i) At high energies the incident electrons are

usually (transversely) polarized. This polariza-
tion may modify the collinearity angle distribution
at a fixed outgoing angle of the muon (or electron)
with respect to the incident beam direction. How-
ever, if one assumes a 4m counter' and integrates
over the directions of the outgoing muon (or elec-
tron) the effects of the polarization of incident
particles are smeared and the collinearity angle
distribution is still correctly given by our formula
(14}, which is based on an unpolarized incident
beam. This statement, which is valid in the one-
photon approximation, can be most easily under-
stood by observing that the collinearity angle dis-
tribution without any angular cutoff can be evalu-
ated by first taking the average over the directions
of the incident electrons with the final-state con-
figuration fixed.'

(ii} For a finite energy cutoff, the collinearity
angle distribution (14) is modified. One of the
modifications is a strong suppression of the cos8
distribution at large values of 0 compared with
formula (14). Another important modification

or 0~20 at y=10, which may be attainable at the
next generation of colliding machines' if the
heavy-lepton mass is not large. ' The cos~ dis-
tribution at lower energies is more sensitive to
the energy cutoff' and varying values of &, and
Eq. (14) is not Iluite adeIluate for a quantitative
analysis of the existing data. ' However, a numer-
ical analysis at lower energies indicates that a
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FIG. 1. e- p events via heavy-lepton production.
FIG. 2. The parameter g(~) for a V -A current given

by Eq. (21).
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FIG. 3. The behavior of the scale-invariant distribu-
tion given by Eq. (24) in the small-x region, where the
bulk of the x distribution (i.e., about 70%) is concen-
trated.

arises from the different energy spectrum of the
muon (or electron) which depends on V-A or
V+A coupling assumed for the heavy lepton. ' In
other words, the T, terms in Egs. (3) and (5) also
give rise to different collinearity angle distribu-
tions for a finite energy cutoff, in addition to the
spin alignment term T,. In this respect it should
be noted that the distribution (14), which is valid
when one does not impose any significant energy
cutoff, corresponds to the pure phase-space dis-
tribution given by Eg. (1) when the spin alignment
effects vanish, namely, @=0.

In conclusion the exact formula (14) combined
with the x variable will provide a convenient basis
for the analysis of collinearity angle distributions
at high energies. A more detailed discussion of
the effects of the finite energy cutoff and varying
values of e will be given elsewhere.

Note added. After completing the present work,
a related work by S. Y. Park and A. Yildiz [Har-
vard report (unpublished)] came to our attention.
Their result agrees well with ours at threshold

=0

One of us (K. F.) thanks T. Walsh and T. C.
Yang for stimulative discussions. We also thank
T. Walsh for reading the manuscript.
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cos ~ A(~) +sin ~B(e) +sin2o. C(&)
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where

A(E) = {1-E)(1—8E +& ) —24' ln&,

B(e) = 3 [(1—c ) (1—11& —47& —3& )

(3+26 )lnE],

C(e) = —2e[(1-e )(1+10' +e )

+126 (I+& )ln&].

If one assumes a V+A current for the ordinary leptons
e and p when they couple to the heavy lepton, the
parameter p(&, a) is replaced by p(e, ~/2 —e) and the
role of V-A and V+A couplings for the heavy lepton
in the collinearity angle distribution is interchanged.
If one takes a completely arbitrary four-fermion
coupling scheme including S,P, T, and derivative
couplings, the expression for g becomes more compli-
cated. However, formula (14) still retains its form
with this modified parameter q, which is always
limited within

~ q~ —1 by the positivity constraint on the
heavy-lepton decay probability.

~The average muon (or electron) momentum is about one
third of the heavy-lepton momentum at high energies,
and the maximum transverse momentum of the muon
(or electron) with respect to the heavy-lepton direction
is M/2. Thus Eq. (25) is physically reasonable. The
scaling in x may be compared with the scaling in pz
in hadron physics. At high energies (i.e., p& 5), the
finite muon mass modifies our formula (24) in the
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large-x region, x~ 10, if the heavy-lepton mass is
relatively small. However, more than 90% of the x
distribution is concentrated in the small-x region,
x & 10, and the effects of the finite muon mass can be
safely neglected even at large p~ except for the very
large values of the parameter ~, ~ = 1.

VAt high energies the identification of electrons and
muons becomes easier, and the noncoplanarity cutoff
may not be a major obstacle to measure small 8. We
thank S. Orito for a comment on this point.

An (approximate) 4~ detector will after all be required
in future experiments if one wants to make sure that
there are no particles other than e, p, and neutrinos
in the final state. Our formula (14) is valid for any
noncoQinearity cutoff with a 4~ detector.

SThis difference in the energy spectrum is well known
for the case of muon decay. See, for example, J. D.
Pjorken and S. D. Drell, Relativistic Quantum Mechan-
ics (McGraw-Hill, New York, 1964), p. 263.


