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An action principle is presented whose variation yields both Dirac's spin-1/2 equation and Staunton's positive-

energy spin-1/2 equation. The Lagrangian used is a function not only of the matter, electromagnetic, and

gravitational fields, but also of the structure constants of the internal group. Variation with respect to the

matter field gives the dynamical equations of motion. Variation with respect to the electromagnetic and

gravitational fields yields Maxwell's and Einstein's equations, respectively. These equations include source

terms that are the electromagnetic current and the stress-energy tensors for the matter and electromagnetic

fields. Variation with respect to the structure constants determines the internal group, thereby projecting out

either Dirac's or Staunton's equation. The matter stress-energy'tensor herein determined is used to construct

the energy operator for the second-quantized free fields. The results obtained in the case of Dirac's equation

are the standard ones. In the case of Staunton's equation, the matter stress-energy tensor and energy operator
are found for the first time.

I. INTRODUCTION

The recent discovery by Staunton' of a spin--,'

positive-energy wave equation raises many ques-
tions concerning its interpretation, its physical
significance, and its relationship to Dirac s spin--,
equation. Already resolved are the forms of the
electromagnetic' and gravitational' interactions in
Staunton's equation. In addition, the classical
limit has been determined' and a perturbative sol-
ution for scattering from a static Coulomb potential
has been found. ' Questions of interpretation in
terms of a quantum-front subdynamics, as well as
generalization of the equation for other spins using
higher powers of the momentum operator, have
been treated by Biedenharn, Han, and van Dam. '
Many questions concerning the second quantization
of Staunton's field have yet to be considered. If a
correspondence could be set up between the two
known spin--,' equations, then the mell-known meth-
ods used to answer these questions for Dirac's
equation might be transferred to the new problems
involving Staunton's equation.

The major purpose of this paper is to show how

one may set up this correspondence and simultane-
ously obtain both Dirac's and Staunton's equations
from a single variational principle. This is
achieved by requiring that the variation of the Lag-
rangian not only yields the dynamical equations of
motion for the fields but also determines the the-
ories' internal group structure. After the formal-
ism has been developed, it is used to obtain the
stress-energy tensors for the matter fields, and
to determine the energy operators for the second-
quantized free-field equations. In the Dirac case
the expected results are obtained, while new re-
sults are found for the Staunton case.

In Sec. II, the Dirac and Staunton equations are

II. SPIN-2 WAVE EQUATIONS

Consider a geometrical object g that transforms
like a scalar under the space-time manifold map-
ping group. In addition, let ~t) form the basis of a
representation of the SO(3, 2) group. The genera-
tors of this internal Lie group, V„and S„„,satis-
fy the algebra

[V„,V„]=C(l, p, v, p)V'+C(2, p, , v, pa')S ~,

[V„,S ]=C(3, p, , pc, v)V" +C(4, p, , po', rw)S'",

[S „,S ] = C(5, Pv, Pc, r) V'+ C(6, Pv, Pa', rv)S'".

The structure constants, C (indices deleted), are
labeled by a number from 1 to 6 to avoid confusion
(even though their indicial structure permits ident-
ification). They are

C(1)=C(4) =C(5) =0,

C(2, p, v, p&) =
~ t(g. ~pg„g —g„, p)g,

C(3, p, pc, v) =i(g~,g,„—g»g„,),
C(6, pv, po, r&) =t( g„pg„,g,„—g„,g„,g q„

+Zvok~l g p~ gopg y~ga~)

(2)

The S„„satisfy the algebra of the Lorentz group
when g„„=g„„.Therefore, in special relativity,
the internal group and the group of space-time

listed and briefly discussed. Section III contains
the action principle and all the relations obtained
upon its variation. These include some group
structure constants, the Dirac and Staunton equa-
tions, the conserved electromagnetic currents, and
the stress-energy tensors. The free-field equa-
tions are second-quantized to obtain an energy op-
erator in Sec. IV. Finally, in Sec. V, a discussion
of some areas of future research as well as a
summary of the paper is presented.
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X ' = —'(h" h '. —h"'h )

Accordingly, we may take

II„—=iD„+eA „

(4)

as a generalized momentum operator, where A „ is
the electromagnetic potential vector and e the
particle's charge. Note that the covariant deriva-
tive is defined and determined solely by using the
internal Lorentz group generators S„. Any V„
selected that, together with S„„,satisfies Eq. (1)
will fit into this pattern regardless of the values
of C(1) to C(4).

Defining the Lorentz Casimir operators F and G

by

E= 4S„„S"",
G -=-'&"""S S8 gp po' &

we may write in a formal manner

[V„,F]=-C(7, p, v) V" +C(8, p, , po)S~. (6)

It has been shown by Staunton and Browne' that E
can take on only three values if the quantities C(7)
and C(8) defined by Eq. (6) are zero. These values
are F =0 (trivial representation), E =-,' (Dirac rep-
resentation), and E = --', (Maj orana representation).
In these cases, with n=- —, F for convenience be-
low, Staunton and Browne' showed that

~F =D —= V„V",

—S „V"=V"S„„=iXU„,

with X -=- &. In addition, they found the following:
(a) For the Dirac representation: F= —,', D =1,

o. = -2, G = c number, G =-—,
' iy„with V„=&y,

Here y„are the Dirac matrices satisfying the
Clifford algebra condition y„y„+y„y„=2g„„.

(b) For the Majorana representation: E =--,',
D=--,', @=1, G=0. V„and S„„are realized not as
finite matrices but as differential operators act-
ing on two internal coordinates qy and q, .

(c) For the trivial representation: E=D=n=G
=0, V„=O, S„„=O.

Now consider the equations

T„g=O.

mappings may be related and spinors can be in-
troduced onto the space-time manifold. However,
in the case of general relativity, the internal group
and the manifold mapping group are no longer re-
lated. '

It can be shown' that the generalized covariant
derivative D„ is given by

D„P= g. „—iX„' S,&g,

where'

Here T„ is given by

T, = -II-, +n(iS„„II"+mV, ) . (8)

Inspection of Eq. (7} shows that it reduces to
Staunton's equation' when the Majorana represen-
tation is used, while it reduces to Dirac's equa-
tion' in the case of the Dirac representation.
For the trivial representation we find that Eq. (7)
reduces to Ii„/ =0. But in this case [II„,II„]
=ieE„„,where E„„=A„„-A„„.Note that even in
curved space-time, for the trivial representation,
no terms in the Hiemann tensor appear in this
commutator since S„„=O. Therefore, Eq. (7) im-
plies [II„II„]$= 0, or i eF„„$= 0. Thus the g field,
in the trivial case, either is chargeless or it van-
ishes whenever an electromagnetic field is pres-
ent. Choosing e =0, we find that Eq. (7) reduces to

g „=0 (trivial representation) . (9)

The solution of Eq. (9) is g is a constant.
We have shown that no physical influence may

be propagated via the g field in the trivial repre-
sentation. Furthermore, the condition that

J /~ad'x be finite in Minkowski space-time re-
quires that g be zero. We shall ignore the trivial
representation in the remainder of the paper.

III. ACTION PRINCIPLE

We desire a Lagrangian action principle whose
variation will yield the vector equations (7) for
the space-time scalar field P. This is achieved by
allowing both g and V„P to be independently varied.
This is possible only if the representation, of
which p and V„constitute a realization, is not
specified before the variation. The group structure
must be determined concurrently with the dynam-
ical equations. If this viewpoint is taken, the
action of V, on g cannot be initially specified in
terms of g since the internal coordinate depend-
ence of neither the operator nod the function is
initially specified. After the variation two non-
trivial representations are found to be allowed.
One is in terms of finite (4 &&4) matrices. The
other is an infinite-dimensional representation that
may be labeled by two internal coordinates, q, and

q2
Before presenting the action principle, we will

consider in greater detail the points outlined in the
preceding paragraph. For this purpose it will be
useful to clearly distinguish between the situation
in special relativity (SR) and that in general rela-
tivity (GR). In the present case (GR} there is no
relationship between the parameters of the internal
transformation group and the descriptors of the
space-time manifold-mapping group. Only in the
flat-space limit (SR} can a connection between them
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be made. This is done in terms of the symmetry
group of the theory using the condition that 5V„be
zero. '

In SR the specification that V„be a space-time
vector restricts C(3} and C(4) in Eq. (1) to be the
values listed in Eq. (2). In GR this is not the case
since no statement concerning the internal prop-
erties of the operator V„ is contained in the speci-
fication "space-time vector. " This means that an
SR variational principle cannot contain C(3) and
C(4) as independent variants while a GR variation-
al principle may contain them. In either case the
structure constants C(5) and C(6} may not be in-
corporated in the Lagrangian as independent vari-
ants. The commutation relation they specify must
be known so that covariant derivatives' may be
constructed.

The answer to the question of whether or not

$ and (V„g) may be considered as independent var-
iants hinges on the independence of C(3) and C(4).
In SR the Lorentz transformation group applies
and we may specify the matrix elements of a vec-
tor operator in terms of its irreducible represen-
tation content. ' Thus in SR only the components of

V, in the direct integral over the principal series
of the Lorentz group are left unspecified. One may
write

A= g ~i'2gd4~ (10)

where

Z=Z, +Z +Z +2

and

z, -=(ll.y}'pv g+(v„q)'pll q

—(is „„II"tj}inp V"q

—(V"$)inpiS„„II"i(+ —,'m p'n'ptj

—m(v"g)inPV g, (12)

where

p-=-,'n(1+nx) '.
Note that S„„and O„commute with the operators
~and P. Also note that

it is appropriate that the internal group's integra-
tion manifold be left as an unspecified inner prod-
uct since a full knowledge of the group will not be
available until after the variation.

Consider an action A given by

where the I'„are vectors' within a single irreduc-
ible representation and are completely determined.
The weight factors A(j„v) for each irreducible
representation are arbitrary. Whether or not this
constitutes an additional variational degree of
freedom over and above that contained in g and its
conjugate is not obvious. In GR the situation is
different. Since C(3) and C(4) are not initially
known, V„ is not necessarily even a vector with
respect to the internal transformation group.
Accordingly, we shall consider both tjt and (V„|il) as
independent variants.

In the Lagrangian that we shall write, |t) is a
space-time scalar field. Its particular represen-
tation structure, with respect to the internal
group, will only be determined after the variation
has been performed. Accordingly we may desig-
nate a conjugate to 5, tt)~, by requiring that it be
chosen so that P~P transforms like a space-time
scalar only. (It is understood that whenever tjIi

and g appear in the same expression, an inner
product over the full range of the internal degrees
of freedom is to be taken. ) Questions concerning
the dimensionality (finite or infinite) or the uni-
tarity of the representation for the internal group
before variation are all unanswerable. In this case

(iS„„g) P = -P iS „g,

Zc =[C(2, p, , v, pa') —2i(g„,g„,-g„g„,)]'

+[C(3, p, po, v) —i(g„.g,„-g„g„,)]'+ [C(1)]'

+ [C(4)]'+[C(I)]'+[C(6)]', (13)

Z~ =—-4F„„F"", (14)

g~ -=-(16wG) 'R . (15)

The squared quantities in Eq. (13) are shorthand
for the scalars formed by contracting like indices
(i.e. , [C(1)] —=C(1, Ii, p, r)C(1, v, o, z)g""g~g'"}.

Variations of A must be taken independently
with respect to g, g', (V"i(), (V"g)i, A„ the
viexbein field h„', and each of the C's present in
Eq. (13).

Variation of A with respect to the C's yields
Eqs. (2) and (6}. Of course Eqs. (2) and (6), and
any relations derived from them, may not be used
in A until after the other variations have been per-
formed. After the variation, all the results of the
Staunton-Browne theorem' may be utilized.

Variation of A with respect to (V,g)i (or its con-
jugate) yields Eq. ('I) (or its conjugate). Variation
of A with respect to t'ai (or its conjugate) yields the



ACTION PRINCIPLE FOR SPIN-2 WAVE EQUATIONS 253

Maj orana equation

V"Ii,tj - aD(1+ax) 'my=0 (16}

(or its conjugate). Equation (16) is obtainable
from Eq. (I}by multiplication by V'. It represents
no new information.

Variation of A with respect to A„yields Max-
well's equations with a source term j". We obtain

F'" .=as(0'V" 4}=

In the case of the Dirac representation j" is
—esty"g, while in the case of the Majorana repre-
sentation j"= e(/~V" P)

The final variation of A is taken with respect to
the viexbein field h „.It yields Einstein's equa-
tions with both matter and electromagnetic stress-
energy source terms. This variation is algebra-
ically straightforward, but tedious. An outline of
the procedure is presented in the Appendix. The
new result, expressed in terms of a matter stress-
energy tensor T „is

—
( )-1/2h 6( g}

NX g ee g X

a

=-D((1+a ')QF(V II + V II )g

+ [(V.ll„+ V„II.) tj]'|j3

2m~ [V Vi+ V& Ve &a (I+a~) gn J~)
(18)

The terms in Eq. (18) proportional to m are al-
ready known to satisfy the requirement of having
zero divergence. However, for the Dirac repre-
sentation we note that these terms are only a re-
statement of the Clifford algebra condition and,
accordingly, are zero. For the Majorana repre-
sentation these terms are not zero. Their pres-
ence is necessary to correctly fix the magnitude
of the stress-energy tensor. By using the Major-
ana equation and the Klein-Gordon equation

{II'-m'- -',iaS„„[11",11"]3q= 0,
which is obtained" from forming [T„,T„]/=0,
we may easily verify that T „has zero divergence.

In the representations of specific interest, Eq.
(18) reduces to

T ~(Majorana representation) = QF(V, II~+ V„II„)p+ [(V,II„+V„II )p]~g —mg (V V„+ V~V, +g ~)g3, (20)

and

T„(Dirac representation) =--,'{p'(y II„+y„II )g+[(y II„+y„ii,)p]th).

The contraction of T „, T =- T, is in both cases T = mg g.

(21)

IV. THE ENERGY OPERATOR inate VpIIp and then by integrating by parts, we

find

In this section we shall restrict our attention
to free particles in Minkowski space-time. The
energy operator, H, is given by

H=& = d&T

d'& {(a+ I)[P Voliop + ( V/I o)) it ]

—m P (2a Vo V, + I)P3 . (22)

In Eq. (22} use was made of the fact that 2(1+aX)
= —a' in both the Dirac and Majorana represen-
tations. We may rewrite Eq. (22), using the fact
that the Clifford algebra condition holds only in
the Dirac representation, and obtain

H = Jt d'x {(a+ 1)[$ V II P (+V II g}'q]

—m6 '
g (2 Vo Vo + 1)g3 .

Now by using the Majorana equation (16) to elim- g=(Aq, +Bq,)exp[--', (q, '+q, ') -imx'], (26)

H = d & —2 a+1 g V'Il;|jt)

+2ma '(I+a)P"g

-m O'„P (2 Vo Vo + 1)g] . (23)

In the case of the Dirac representation, Eq. (23)
is the standard energy operator and evaluation may
proceed in the usual manner. " Accordingly, our
interest will center on the Majorana represen-
tation. In this case Eq. (23) reduces to

0 tMai a. a)= j'u'x[-4y'v'n, y 4

-mP'(2V, V, +l)g]. (24)

Now consider a momentum eigensolution of
Staunton's equations. Without loss of generality
we may transform to the particle's rest frame.
In this case the solution' is given by
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where A and B are arbitrary. In this realization
the z component of the internal angular momen-
tum operator, J~,"may be applied to Eq. (25).
The eigenfunctions of J» $+1/» and f «» with
eigenvalues + &, as expected, are given by

g„&,=Na(q, -q, )exp[--,'(q, '+q, ') -imx'], (26)

(j),&, =Nb(q, +q,)exp[- (q, '+q, ') im—xo], (27)

where N is a normalization constant. The quan-

tities a and b are annihilation operators for par-
ticles of spin up and down, respectively. With
N = (-,'v) 't2 we find

Ip, t, (e)
+ 1/2(ei + 1/2 ~

(e)
—1/2g -1/2b bm aa+n

(n, m =~-,'). (26)

In the case of a general momentum eigensolution
of Staunton's equation, ' the same procedure as
described here yields

(t) =N[a(q, —iq, ) +b(q, +iq2)] exp( —-', (po+p, ) '[m(q, '+q, ')+i p, (q, —qm'} —2ip, q,q, ] —ip„x"). (29)

Straightforward calculation using Eq. (29) yields

[(j) (V, V + V„V, +()I, )(j)]=3m p, p (p (j)}, (30)

(p' V, (t)) = e 'j, = m 'p, (t)'(t)), (31)

and

(()) P) =a a+b b. (32)

Note that a a and b b are the number operators for
particles with spin up and spin down, respective-

12

Evaluation of H (Majorana) is completed by sub-
stituting Eqs. (30), (31), and (32} into Eq. (24}.
We find

H(Ma o(gama)=(d'*[ '0,'(s a+( ))]. (33)

V. DISCUSSION

A variational principle that will yield both known
spin--,' equations has been found. To achieve this
objective, a portion of the group structure of the
theory had to be left undetermined until after the
variation. The unification made possible by this
approach was illustrated by our finding the matter
stress-energy tensors and the energy operators
for the second-quantized free fields.

The work developed in this paper opens up four
areas for further research. These are as follows:

General relativity. With the matter stress-
energy tensor for Staunton's spin--,' equation de-
termined, the coupled Einstein-Staunton equations
may be solved. Since the Minkowski space-time
interpretation of Staunton's equations'4 may be
visualized in terms of two particles interacting on
the light cone, the behavior of the solutions near
a singularity is of special interest.

2. Group theory Groups larger tha. n SO(3, 2}
may be considered in the same manner as used
here. While the SO(3, 2) group is interesting be-

cause the Lorentz generators S„may be expressed
as commutators in terms of the V„other groups
may enable one to incorporate other interesting in-
ternal symmetries into the formalism [i.e. , SU(3),
SU(6)]" (see Ref. 13) in a natural manner.

3. Quantum field theory Since Sta. unton's equa-
tion describes a positive-energy particle, the rep-
resentation of operators such as the time-reversal
operator may be different from the usual manner
used in quantum field theory. The applicability of
the PCT theorem and the connection between spin
and statistics are two of the many important areas
that the author believes should be investigated in
detail.

4. Spin. At present Staunton's spin- —,
' equation

is the only interacting equation of its type known.
However, it is believed' that a set of equations,
linear in the momentum operator, should exist
for each integer and half-integer spin value. By
writing the now known Lagrangians for particles
of Dirac type (i.e. , using Dirac matrices, one
example of which is the spin-2 Rarita-Schwinger
equation), it may be possible to allow the group to
be determined by the variation and thereby obtain
the equations of the Majorana type for various
spins. " If this proves possible, it will be, to the
author's knowledge, the first time that equations
of motion have been discovered from an action
principle.
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APPENDIX

Terms of the form (-g)'~'A" 'hII„a(t)ppear in
the Lagrangian. The quantity A~~ represents any
desired functions lumped together. We shall cal-
culate here the contribution to the variation from
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the (-g)' 'h",II„( term when the variation is taken
with respect to h", ". Since g,„=h,'h„„we may
quickly obtain the useful relations

On expansion of Eq. (4) and substitution with Eq.
(3) into Eq. (5), we find

5g""= (5"„h"'+h~'5"„)5h", ,

5g„„=-(g „h„'+g„„h,')5h „
~h '= -h 'h 'eh"a'

(Al) (A2)

Now taking variations with respect to h, we find

df

a 0
+ 2(-g)'"[(A"'S„,g).„-(A,'S„"g).„-(A 'S "p).,].

When A„ is any function of V„, S„„,and g

i[A "S„"q],,= (n, A-)'S„"q+A"'S„"n,g.
To verify Eq. (A4) use the fact that S,„and V, commute with II, and that

(A3)

(A4)

(A6)

II,S„„=iS,„.,+ X,"[S.„S,„]+eA,S,„, (A5)

n, V, =i V. ..+ X,"[S.„,V„]+eA, V,

to convert semicolons into II's. Substitute Eq. (A4) into Eq. (AS) and find
dt

0 a

+ -,'(-g)'" [(n.A')'is, .q A "is,-.n, q (n„A.-)'is,"P A.'is„"n„q

-(II„A„)iS "iP A„iS "II„)]. (A7)

Specific application of Eq. (A7) to Eq. (12) yields Eq. (18). To illustrate, we consider the special case
where A ~ = V"g. Then Eq. (A7) may be simplified using Eqs. (7) and (16) to read

h.. „„(-g)'"(Vq)'rr, y=-g. ,(-g)'~'(V g)'n, g
a

+(-g)'~~(—,'(1+ n ')Pi(V II + V II )P+ —,'(1+n ')[(V II„+V„II )g]iP

—mgi(V V„+ V,V )g —nDm(1+nX) 'g, „g g). (A8)

The first term on the right-hand side of (A8) is from the variation of (-g)' '. Since 2&=—0, when the
equations of motion hold, the contribution from all the terms involving the variation of (-g)'i' ultimately
cancels out.
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