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Renormalizability and lepton-hadron universality in pion P decay in a gauge field theory
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The divergent contributions in the second-order weak and electromagnetic corrections to pion P decay are
calculated in the symmetrical theory of weak and electromagnetic interactions using the unitary gauge and
dimensional regularization. It is shown that, after renormalization, these divergences cancel and the Z,/Zl
ratios for leptons and pions are equal as expected from lepton-hadron universality.

I. INTRODUCTION

Following the work of 't Hooft' and others, '
several attempts' have been made to calculate
higher-order corrections to the leptonic and
semileptonic processes in the Salam-Weinberg4
theory of the weak and electromagnetic inter-
actions. Recently, Sirlin, using Ward identities
and current algebra in the context of SU(2) && U(1)
gauge models, has shown in the 't Hooft-Feynman
gauge that after renormalization of strong-
coupling constants and masses the divergent part
of the second-order corrections to the leptonic
and semileptonic amplitudes mediated by the W
meson is a universal multiple of the lowest-order
amplitude independent of the strong interactions.
It would be interesting, therefore, to check lepton-
hadron universality for a semileptonic process
explicitly without using current algebra, and we
have done that in the present paper.

Using the Salam-steinberg model of leptons and
a model of pions in which the strong interactions
of the pions are not incorporated, we have calcu-
lated the second-order weak and electromagnetic
corrections to pion P decay (m - m +e + v, ) in
the unitary gauge and shown the finiteness of
second-order radiative corrections and the equal-
ity of Z, /Z, ratios for leptons and pions after
extracting the various renormalization constants.

In this presentation we have systematically ne-
glected terms of the order of m, /m~', which are
negligible for practical purposes. Although our
approach is similar to those of the previous at-
tempts, ' it is somewhat more comprehensive
and, perhaps, more explicit in demonstrating
lepton-hadron universality together with renor-
malizability including the relevant counterterms.

The plan of the paper is as follows: Section II
is devoted to the discussion of the relevant La-
grangian and the classification of diagrams.
Sections III-VI contain the results of calculations
of divergent parts of the matrix elements due to
different classes of diagrams. In addition, vari-
ous renormalization constants and the relevant
counterterms are defined in these sections. The
Higgs scalar interactions are discussed in Sec.
VII. In Sec. VIII the principal results in regard
to renormalizability, including the equality of
the Z, /Z, ratios for the leptons and pions, are
presented. Section IX contains a brief rdsumd
and some concluding remarks.

Il. LAGRANGIANS AND DIAGRAMS

A. Relevant interaction Lagrangians

The relevant leptonic Lagrangian in the Salam-
Weinberg model~ is

C„~ = (1+C, )e(g —m, )e+ C,ee —(1+C,)vg ' v+gsingeyxeA"

+ 2vyx 2
v —~eyx e Z +g eyxeZ + —(1+C4) Pyx ew +eyx vW

g 1 1 —y, , 1 —y, x sin'Q x g 1 —y5 +& 1 —y&
cos 2 2 cosP 2

—(1+c,)(-,'w'„, w„„+m 'w'„w ")

+CBW~W "+ig(cos(j)Z' —sinyA )[W ~(8 W+ 8 W+) W+ &(s W- s W-)+sr(W-W+ W W+)]-
-g'W„w,'(cospZP —singA~)(cospZ, —sin/A )(g~'g~' g» g" )

——(W W "W'W" —W W' W W"') X« — (1+tan'Q)XZ Z" -gm~XW W'"+ . xXs

2 2

(1+ tan P)X Z Z ——X'W W' +other counterterms
8 4 y, 7
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where e, e, S' and 8' denote creationof electrons, positrons, negative W bosons, andpositive Wbosons,
respectively, and annihilation of the corresponding antiparticles. The parameters g, g, and P are re-
lated to the electronic charge e, the Fermi coupling constant G, and the boson masses m~ and m~ as
follows:

g G m~gsinQ =e =g'cosQ, , = —,mw =
Smear g 2 cos (lb)

Terms involving C&'s (i =1, 2, . .. , 6) are the relevant counterterms necessary to show the finiteness of
the second-order radiative corrections to pion P decay.

The difficulty of incorporating hadrons in the Salam-Weinberg theory is well known, ' and several inter-
esting schemes' have been proposed. However, in our calculation we have used a simple model of pions'
in which a gauge-invariant pionic Lagrangian is constructed out of a doublet y, and its conjugate y,
formed with an appropriate combination of pions (w) and the q-meson fields, plus the gauge fields A„
and B„coupled to weak isospin (T~) and hypercharge (Y~). The doublets y, and y, are given by

——(g+ iw
1

and y, =i,~,qr, =

(q —iw'))
(2a)

with the weak hypercharge YL =+ & for y, and —
& for y, . The coupling strengths of cp, and y, to the gauge

fields A.„and B& are precisely the same as the corresponding coupling constants of I. and 8 which occur
in Weinberg's leptonic Lagrangian. The interaction Lagrangian' is

Zp, ,„=-,'(I+ C,}(spw'9 "w' —m, ()
'w' ')+ 2Czwo'+(1+CQ)(s„w'8 "w -m„+'w'w }

+C„w'w + — (w'S g)Z" -ig sing( w9 w')zi4+ — (w S w')Z"1 g 0- . . —, ig 1 —2sin'
2 cosQ " " 2 cos(())

+-,' g(1+ C»)([f(w s„q)+ (w -a„w')]W -('+ [f(qa„w')+(w'e„wo)]W ('I-
2.—:(.".")(,w w-, ~, z z)2 cos'p

+w'w g', Z"Z +g'sin'Q&»+-, 'g'W+W "+g'tan(I)(1 —2sin'P)A Z", (1 —2 sin~ )'
4 cos'P

1 2 sin
+

2
g' Z" +g'sin'P&" [(iw'w qw )W'„, —-(iwow'+qw')W, ]

+other counterterms, (2b)

where 7t and m' denote absorption of negative and
positive pions, respectively, and creation of the
corresponding antiparticles. Here again terms
with C s are the relevant counterterms; the
expression for C&'s in terms of different renor-
malization constants will be given in appropriate
sections. The Higgs scalar (y) interaction terms
in Eq. (2b) arise from the SU(2}x U(1)-invariant
interaction

a(q,'~„q,)(x.'~"x) +P (y.'~„y,) (x'~"x) ~ (2c)

which gives rise to a zeroth-order mass difference
between m and m' through spontaneous symmetry
breaking, i.e., when X develops a vacuum expec-
tation value [a and P in Eq. 2(c) a,re arbitrary

constants]. It may be noted that the strong inter-
actions of the pions are not incorporated in the
pxomc Lagrangian.

B. Classification of diagrams

The lowest-order diagram and all relevant
Feynman diagrams of order g for the process
m - m +e + v, are shown in Fig. 1. The diagrams
of order g~ can be classified into four groups:

(1) two-boson exchange [diagrams (2)-(6) and
(50)-(52)],

(2) boson-propagator modification [diagrams
(7)-(16)],
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FIG. 1. Feynman diagrams for w P decay in orders g2 and g and tadpole diagrams (see Sec. VII).

(3) vertex modification [diagrams (17)—(33)],
(4) external-line modification [diagrams (34)-

(49)].

The matrix element for the lowest-order process
[diagram (1)] is

III. TWO-BOSON EXCHANGE [DIAGRAMS (2)—(6)]

Diagrams (2)-(5) contribute to the weak radia-
tive corrections. All these diagrams are quad-
ratically divergent, and the total divergent con-
tribution from them is

where

4 2
Z'( p, +p. )'@(q)y'(1 —y, )v(Q)

(g„, —z„z./mw')
X 2 2K —mw

(3)

where

&& y„(1-y, )v(q)(a+ b+ c),

wg cosf 2
1 (2 )4 ~ 4 (Pj, P2)

(4)

p, =p, +q+Q, K=p, —p, .

It is to be noted that the divergent and finite
contributions to the matrix element due to the
diagrams (27}, (28}, (50), (51), and (52) depend
on the momentum transfer py p» only and the
former cancel with the divergent contributions
from other diagrams leaving the finite part. In

an earlier paper we have shown that this finite
contribution gives rise to possible violation of
conservation of vector current, which was esti-
mated to be 0.1/z for pion P decay. However, in

the present paper from now on we shall concen-
trate on the divergent contributions to the matrix
element depending on p, +P, only. In evaluating
the Feynman integrals we have used dimensional
regularization. '

and

1b=
mz

+y gauge terms . (6)

2 21 K mgc= » --,m, --, Z
mw mz

Diagram (6) contributes to the electromagnetic
radiative correction, and the corresponding di-
vergent contribution to the matrix element is

w'g sin'p 2~1 =
(2,)4 4~2 4 (pl+ p2)" t7(q)y. (I —y5)v(Q)(a)
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IV. VECTOR-BOSON-PROPAGATOR MODIFICATION [DIAGRAMS (7)-(17)]"
The W-boson self en-ergy function w„„k(K) involved in the diagrams (7)-(11)and (14)-(16) has quartic,

quadratic, and logarithmic divergences. m„„k (K) can be expressed as
2 2

v 6 (K) = [a'(K'g 8-K "K8)+b'(K'g -K'K "K )+ c'(K'g"8 K-K~K )+d'K'g +f'g" ] (7)weak (2&)4 4

where a', b', c', d', and f' are finite constants defined as

7 mw'+ 7 mw' 37
b - 7 mw'+mz'

6mz 2 ~z 3 12 mz

C
1

p
1 mw 2 mw' 115

»mz" ' 4mz'
6 4

W W 3 2 3 2 2f'= ——,+3, —am~ +-, m~ —m, '

4 mz mz'

The modified W propagator is then

g„, —Kag, /m ga -KaK /m 4, , g, a
—K„ga/m

)mw W W

This can be rewritten in the form [neglecting terms O(g )]

g])() —KeKK/[m)v + (bm)K ) weak ] weak EWE cos (I 2
/ 5 (10)

where the mass and wave-function renormalization constants (bml, ')„„k and Z,""",respectively, for the
W boson are defined by

and

(bmw ) weak (an 14 4 12 2 4 man 2mw m K

(12)

Thus, even after the mass and wave-function renormalization, the propagator 4'„, is not finite; it has an
additive infinite constant. The first term in (10}partially renormalizes m](, and g in the lowest-order
matrix element [Eq. (3)], and the second term gives the following divergent contribution:

M,""=, (p, +p, )'u(q)y, (1 —y, )v(Q)(,—'a+ b+ c) .2m' 4 2 4 —n
(13)

Thedivergentpartsof the W self-energy due to the electromagnetic interaction [diagrams (12) and (13)]
contain quartic, quadratic, and logarithmically divergent terms and are dependent on the photon gauge.
The self-energy function

n,"„,(K)=, ( ) [5(K'g —K K ) —';a(K g'a K'KKa)+-', K'g 4+(15/—4a)g'4]

+y gauge terms (14)

also renormalizes the W-boson mass and wave function by (6m~'), and (Z,' )"', respectively, and con-
tributes an additive infinite constant to the matrix element. We obtain

and

(bm(K ), = 2, 4
—m)g —,+y gauge terms,

2 2 2

Za = 1+ e 2 1—,+y gauge terms,
27] 4 —n mz'

M,' =, (p, +p, )'u(q)y, (1 —y, )v(Q)(]eka) +y gauge terms .
' vsgi ' tn()2
(2v)'4 2

(16}

(17)
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Thus the total contributions of weak and electromagnetic corrections to the mass and wave-function renor-
malization (Z, ) constants are the following:

5m~' = (5m~')„„k + (5m~'),

and

(»m~ —4m' -m„)+y gauge terms
27t) 4 —n

w &g 2 mwZ = 1+ 4
—

2 —— +y gauge terms .(2v)' 4 n m.,' (19)

Since we started with the renormalized Lagrangian, these W-boson mass and wave-function renormaliza-
tion contributions can be canceled with the counterterms C, and C, respectively by choosing C, =&mw and

C5=Z, —1. It should be emphasized that these counterterm prescriptions do not remove the divergent
contributions (13) and (17) to the matrix element. .

V. VERTEX MODIFICATION [DIAGRAMS (17)-(33)]

The vertex parts for both e v,W and II II W vertices are (luadratically divergent.

A. e v, Vvertex

The total divergent contribution to the e vgW vertex due to W and Z exchanges [diagrams (17)-(19)]is
2 3

a".,r(-t), e)=
( ), ~( )(eos'g[gg" y(a+a)(a)(' ——,'m * —-', ms')g s

The total vertex operator
+ cK'g ——',(a+b)K K —cK K ])yfI(1 —y,). (20)

r„„k(-Q,q) = y"(1- y )+ A"(-Q q)
2 2

can be rewritten as

(21)

k(-Q q) =, y (1 yes) Z
-k

+
2 4 4 [(Qa+ b+ c)(K' —nI(g')g" 8 ——',(a+ b)K "K —cK "K ]y I)(1 —y,),2II 2 2 4 n-

where the renormalization constant for the v, W' vertex is defined by

(22)

(23)

We see that the vertex renormalization does not make I'„"„k(-Q,q) finite. The infinite contribution to the
matrix element after the e v,W vertex renormalization is

(a )(g, +g,)"e(e)y„(t —y, )s(t))(&s+a+e). (24)

The radiative correction to the e P,W vertex due to photon exchange [diagram (20)] can be handled in the
same way, and the vertex normalization constant for such a correction is given by

= (+,( ) (t —,) (
—)+y gauge .terms,

and the divergent contribution for such a process is

Mg =—, 4 (p, +p, )'u(q)y, (1 y, )v(Q)(1»»a)+y gauge terms.
II'g' sin'(p 2

(2v)'4 2 4 —n

Thus the total renormalization constant due to the e v, W vertex diagrams [(17)-(20)]is given by

1 m2g2 2 m ' 29
(2 )4 4 g

—
12

+ y gauge tel'Ills .
I

(25)

(28)

(27)
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This vertex renormalization can be canceled by choosing Ca = (Z2/Z, ), (Z, )'" —1, leaving the divergent
contributions (24) and (26) to the matrix element.

B. n no@vertex

The divergent contribution to the w w W vertex due to weak radiative corrections [diagrams (21)-(33)]is

lr2 3

A„aak(P»P, )=-, cos'(P[2'g +(a+f))(»K' ——a'mw' —-'amz')g" +cK'g" ——2(a+5)K K —cK K J22w' 4 n-

3 1 —cos'(P+ cos'(P g" & P~+P2~ S ~

4 cos (P
(28)

The vertex operator is then

~weak (Ply P2} 2g(P1+P2} +Aweek (P1t P2}

1
2g(pl +P2) Zweak

1, ff'

( )[(ace(tee)(g' —m ')g" ——',(a+a)g g —cg"tt"]((+()t, te (29)

where Z,""„",defined as the m m W vertex renormalization constant due to W and Z exchanges, is given by

1 mg2 2 3 mz2 1 mw2
Z"'~ (2w)' 4-n 4 ' 12m ' ' (30)

The infinite contribution to the matrix element that remains after renormalization of the pion vertex due
to weak radiative corrections is then

a (g „)((t,eg, )"a(a)y. (t —y, )c(t))(Sat(t+c).

Similarly, the electromagnetic correction coming from diagram (26) to the w w'W vertex is
2 3 2

tt, = —
( ) ( )[-',g"c+a(—'„'g' —-', mr')g'e —[ag'g ]()t,eg, )ety gauge terms.

(31)

(32}

The corresponding vertex renormalization constant is given by

=1+ a ~

1—,. —+y gauge terms,
2w ' 4 —n& mw' l2

and so the infinite contribution that remains after renormalization is

w' 'sin' & 2
Ma =-

a ~ (p, + pa)'u(q)y„(1 -y, )v(Q)(pa) +y gauge terms.
(2w)'4 2

The total w w'W vertex renormalization constant
due to weak and electromagnetic corrections is
therefore

Zga ~ (ac)'(4 —e)(m ' 4m ' 12)

+y gauge terms. (35}

2 ZW 1/2

1

This renormalization of the m m'W vertex is can-
celed with the choice

VI. EXTERNAL-LINE MODIFICATION
[DIAGRAMS (34)-(49)j

The modifications of the lepton lines [diagrams
(34)—(38)] and the pion lines [diagrams (39)-49)]
give rise to quadratic and logarithmic divergences
which renormalize the masses and wave functions.
The effect of the modification of the electron and
neutrino lines due to weak and electromagnetic
corrections is to renormalize the corresponding
masses by 5m, and 5m, and the wave functions
by (Z, ,)'" and (Z, , )'I', which, within our ap-
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proximation, are given by

+y gauge terms,

(37)

(38)

in Fig. 1}of order g:
(a) two two-boson exchange diagrams,
(b) two W-boson propagator modification dia-

grams,
(c) four vertex modification diagrams, and

(d) five external-line modification diagrams.

However, within our approximation, the divergent
contribution comes only from the boson-propaga-
tor modification and pion-line modification dia-
grams. The contribution of the Higgs scalar in-
teraction to the 8'-boson mass and wave-function
r enormalization constants are

Similarly, choosing the photon gauge

(40)

where n is the dimension of space and p, is the
photon mass, and using p, '=m, -', p,'=m„0',
we obtain

2 2
7T g 2 „2 10

4(2 ). 4 „(~mx +—m

and

7Tg 2

(S(ar) 4 —s)'
Similar contributions for the pions are

(43)

(44)

3'll g 24- —
=4(ar; 4 .)

2 4

m' " m'
(41a}

2 2 2
'tT g m~- 2 2 2

( m ,— ) scalar(as (2 4 2 2 4 ( m m x ) t
77) mw

(45)
2 2 2

(5m 0 ) ai 4
(

4 2 „(2 m o —m x )

and

2 3Wg 2
4(ar)' 4 —s)

2

X 2 + 2 mfIQ 2 2 4mw
mz 2 mz 2

mw mw

(41b)

mg' 2 3m m 1
2, rr (2 )4 4 n 4 2 2 2 t

(46)

and

(~2 ) scalar int
= 1

Higgs scalar interactions also give rise to tadpole
diagrams (53)-(58) shown in Fig. 1 in lowest-
order perturbation theory. These diagrams can
be attached to all the lines (both internal and ex-
ternal except the neutrino line) of the diagram (1)
of Fig. 1, and give extra divergent contributions
to the mass counterterms C„C„C„and Cy0 and
the W-boson wave-function counterterm C, only.

7Tg 2 3m
(2ll)' 4 —n 4 m~2 2

(42b) VIII. RENORMALIZABILITY AND Z2 /Z]
FOR LEPTONS AND PIONS

It is to be noted that Z, , is independent of the
photon gauge. The counterterm prescription to
remove these divergences is

It is easy to see from expressions (4), (6), (13),
(17), (24), (26), (31), and (34) that

C7 =Z, ,0 —1, C, =5m, 0', M weak +~weak +~weak +~ weak p1 2 3 4 (47)

C9 =Z~, —1, 2C,0 —5m~- . and

Mern+I em+ Mern+~em2 3 4 (48}

VII. HIGGS SCALAR INTERACTIONS

When the Higgs scalar interactions with external
particles and gauge bosons are considered we
obtain the following additional graphs (not shown

We have explicitly verified that the y-gauge-de-
pendent terms in (48) cancel among themselves.
As pointed out earlier, the modification of the
lepton and pion lines does not give rise to any di-
vergent contribution to the matrix element after
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mass and wave-function renormalization. There-
fore it follows from (47) and (48) that in the pres-
ent theory of pion P decay the electromagnetic
and the weak interactions are separately renor-
malizable.

We also find

(49)

and

(
Z, (Z, ,—Z, ,o)'~'

1 7r & 7I

IX. CONCLUSION

Using the Salam-Weinberg model of leptons and
a model of pions in which the strong interactions
are not taken into account, we have calculated the
second-order radiative corrections to pion P de-
cay in the unitary gauge for 8' and Z bosons and
the gauge (40) for the photon. We have used di-
mensional regularization to evaluate the divergent
integrals. We have shown that the second-order
weak and electromagnetic radiative corrections
are finite and the present theory of pion P decay
is renormalizable. We have also demonstrated
the equality of the Z, /Z, ratios for leptons and

pions as expected from lepton-hadron universality.
We have verified that the above conclusions re-
main unchanged in the presence of the Higgs sca-
lar interactions, which give additional divergent
contributions to the mass counterterms (except
that of the neutrino) and the W-boson wave-function
counterterm only.

It may be noted that Eq. (49) can be obtained by
subtracting Eq. (7) from Eq. (9) of Bollini et aL"
From Eqs. (49) and (50) we conclude that the Z,jZ,
ratio is the same for leptons and pions even when
the second-order radiative corrections are taken
into account. This result is expected from lepton-
hadron universality, and, consequently, C, = Cyy,
as prescribed by multiplicative renormalization.
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