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The implication of structure analysis is investigated as a starting point for a nonperturbative treatment of the
dynamical equations of field theory. The multiparticle ordering entails the arrangement of physical processes
according to subclasses of processes embodied by the appropriate correlation functions. Closure among the
correlation functions is obtained by exploiting the cluster properties of the correlation functions. The
investigation culminates in a method for incorporating self-consistent feedback contributions as nested
contributions which result in a method of linearization, in a channel-oriented approach, of the underlying
nonlinear equations. The method of approximation exhibits a form-preserving property in that the structure of
the equations is maintained in successive steps, thus simulating the underlying nonlinear dynamics by allowing

the system to react on itself.

I. INTRODUCTION

In an accompanying paper' an analysis of the
structural aspects of functional field equations
has been given which proposes an ordering of the
field equations in terms of its multiparticle attri-
butes. It has been found that the many-particle
amplitudes exhibit clustering properties which
are the primary mover for generating subclasses
of scattering processes. Insofar as the method
of structure analysis provides a realization of the
mass operator which incorporates for successive
actions of the primary interaction all processes
of a particular multiparticle nature, the method
provides a systematic approach of multiparticle
ordering. The purpose of the present paper is to
investigate the implications of multiparticle order-
ing as a basis for nonperturbative dynamics. The
method transcends known methods where partial
summations of infinite subsets of diagrams of
simple structures may be effected. The functional
method provides a general method of analysis
by recognizing the relationship of functional de-
rivatives of fewer-particle attributes to their
multiparticle scattering counterparts.

The general criteria for the relevance of struc-
ture analysis as a starting point towards a dynam-
ical approximation method derive from the close
connection of the inclusion of subclasses of pro-
cesses to the systematic inclusion of nearby sin-
gularities. Furthermore, the particular ordering
by interaction and subclasses of multiparticle
scattering, which include all rescattering process-
es of a particular nature of given particles of a
subgroup, would seem to favor a system of parti-
cles interacting by short-ranged forces such as
the strongly interacting particles found in nature.
This conclusion follows in view of the circum-
stance that the correlations between particles
ensure that contributions due to terms of higher

order in the interaction which are left out at a
particular stage may, in fact, be ineffective as
a consequence of the short-ranged forces in ques-
tion. The foregoing discussion would seem to
imply that the method may be less suitable for a
system of particles interacting by long-range
forces. On the other hand, since the ordering
involves multiparticle correlations and interacting
strength, and in view of the existence in nature of
a reciprocity between force strength, and the
range of interaction, 'it could well be that the weak-
ness of the force syphons off few-particle correla-
tions. The success of the standard perturbation
expansion in the strength of interaction in quantum
electrodynamics could provide a case in point.
Even though the success of the method of multi-
particle ordering may thus depend on the particular
situation encountered, it may provide a viable
method in a large number of physical problems.
As a prelude to the investigation of the method in
concrete problems, a formulation of the form of
the dynamical equations is given in this work.

It is found that the formulation of the exact equa-
tions in terms of the multiparticle contributions
provides criteria for arriving at successive stages
of approximation. The neglect of an appropriate
three-particle contribution, in particular, is
shown in Sec. II to yield a Bethe-Salpeter equa-
tion with Hartree-Fock kernel. In See. IIB feed-
back effects due to the preceding stage are shown
to result in approximations analogous to the
screened-potential approach, ' whereas the inclu-
sion of the three-particle contribution incorporates
inelastic threshold effects. At this particular
stage of development the three-particle contribu-
tion is characterized by declustered two-particle
contributions acting in tandem. Feynman graph-
ical calculus is employed to illustrate the origin
of these features. In order to provide further per-
spective of the nature of the approximations in the
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context of the underlying nonlinear equations, Sec.
III provides a brief account of parquet structures,
whereupon a nested scattering matrix method is
developed. Methods to transcend a channel-orien-
ted approach and aspects of crossing symmetry
are discussed in Secs. IV and V.

in conjunction with the scattering equation

~fb, 3a +fb, 3a ~+is, 3zGxyTyb, fa~fs

and the effective two-particle interaction
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yields
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where the three-particle amplitude denotes

(2.2)

(2. 3)

(2.4)

(2.5)

The embedded three-particle contribution and
the nonlinear nature of Eq. (2.4) are contributing
factors that stand in the way of finding self-con-
sistent solutions to the equation, particularly in
view of the fact that the nonlinear structure of the
equation itself is a consequence of a self-consis-
tent feedback inherent in the equation.

In order to ease into the discussion of finding
self- consistent approximation procedures, con-
sider, first of all, the simplest approximation to
the equations in which the effect of scattering on
the mass operator is neglected. Retaining the
first term of Eq. (2.1) yields the t-channel scat-
tering Bethe-Salpeter equation ("random-phase"
approximation)

t(1);, ~, =K(1),.»,, —iK(1)...„G(1)„,t(1),» y,G(l)~, .

(2.6)

In the formulation of the exact equation the Green's
function, G, satisfies the equation

(D+q+M))»G» =5;, (2.V)

where M denotes the mass operator of Eq. (2.1).
The Green's function of Eq. (2.6) denotes the con-

II. TWO-PARTICLE SCATTERING EQUATIONS

A. Random-phase approximation

In an accompanying paper' a functional-deriv-
ative technique has been employed to derive exact
scattering equations in terms of multiparticle
attributes. Recall that the equation for the mass
operator,

M, , =K(1), J„G„„—V)» „,G„„G,„T»„,.„G», (2. 1)

B. Feedback random-phase approximations

An analysis of the structure of the mass opera-
tor resulted in a multiparticle ordering of the form'

where

ip, rq r» ( )»mq, tn» ln, pm+ (2.8)

T(1)», ~, ——K(1)», ~, —iK(1)», ,„G„T„t,Gy, (2.9).
In the part of this section which follows the ef-

fect of feedback on the integral equation is con-
sidered by taking the first two terms of Eq. (2.8)
into account in the approximation where Eq.(2.9)
is taken as the Bethe-Salpeter equation (2.6). In
contrast to the latter t-channel equation, it is
appropriate to define the s-channel amplitude
suggested by the first two terms of Eq. (2.8),

tribution of Eq. (2.V) where the approximation,
Eq. (2.6), to the T matrix is invoked. In the dis-
cussion in the sequel the symbol for the exact
Green's function will be employed throughout,
since the particular Green's function implied
will be clear from the context in which it enters.

The Bethe-Salpeter equation (2.6) represents
an approximation in which repeated binary col-
lisions in the t channel is accommodated as re-
quired by unitarity and is known to provide a useful
approximation in relativistic problems to describe
bound states and resonances and in nonrelativistic
problems to describe phenomena such as plasma
oscillations and collective excitations at low temp-
eratures like zero sound where detailed correla-
tions are not of importance. The unimportance of
feedback effects in the latter case may be traced
to the decoupling of the zero-sound mode to its
constituents in the event that the Hartree-Fock
effective two-particle interaction is itself weak. '
The breakdown of the Hartree- Fock approximation,
on which the derivation of Eq. (2.6) is based, for
the mass operator at low temperatures and the
accompanying fluctuations in particle number may
herald the appearance of phase transition4 and
indicate the importance of feedback effects of the
collective excitations on Eq. (2. 1) itself. The
thermodynamic instability of the Hartree-Fock
approximation is reflected as a dynamic instabil-
ity of the random-phase approximation which im-
plies that the latter is a short-time approximation.

The exact equation (2.4) provides a criterion
for the applicability of the approximations of this
section in terms of the role of the three-particle
amplitude Eq. (2.5). The feedback of the solution
of Eq. (2.6), in determining the three-particle
amplitude, ushers in self-consistent approxima-
tions analyzed in the following sections.
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t(1,2),.»,,=K(1)»» ~, +iV)» „G»»G,t(1)», ~„(2.10)

so that the first two terms of Eq. (2.8) may be ex-
pressed by the equation

M(1, 2),q=i&(1, 2))» ~»G„. (2.11)

U(1 2)g» y
=

G
f(1 2) ~»

XS

(2.13)

=iV„„G„f(l).....
+ iV», » G»»t(1)»,

+iV)»»~G„»G)„U(1)„„„,„. (2.14)

The remaining problem consists in finding the
three-particle contribution

8
(1)»,z

=
sG XS

(2.15)

which according to Eq. (2.6) satisfies the integral
equation

( )»cs, jag = '
( )»u jx ( )sc,ya

—i K(1).»..G„f(1)„„,
—iK(1),~,,G„G~~U(1)„,g . (2.16)

In conjunction with Eq. (2.6), the last equation
may be inverted with the result

U(1)~, y,„=—i[t(1),u y„t(1)„g,
(2.17)

The clustering property of the three-particle
amplitude exhibited by the last equation has a
simple origin. If we picture the random-phase
scattering matrix as consisting of a string of
bubbles, the three-particle amplitude, according
to Eq. (2.15), results on opening a particular
6 line, which culminates in the clustered struc-
ture of Eq. (2.17)

A graphical representation of the effective two-
particle interaction given by Eqs. (2.12), (2.14),
and (2.17) is given in Fig. 1. It is seen that the
effective two-particle interaction is of the form
of the exact one, the exact T matrix being re-
placed by the "random-phase" scattering matrix
of Eq. (2.6). This result is a consequence of the
substitution rule' which holds for Eq. (2.8) and
expresses the form-preserving properties of
multichannel ordering. The figure furthermore
depicts the nature of the feedback: In addition
to the Hartree-Fock contribution, the kernel of
the t channel, Eq. (2.2), possesses contributions

The effective two-particle interaction generated
by the last equation reads

K(l, 2)„„=f(1,2)„„+U(1, 2). . .„G,„, (2.12)

where

due to the t -channel Bethe-Salpeter equation (2.6)
convoluted in a particular way to render the con-
tribution t -channel two-particle irreducible. The
first term itself results in a vertex modification
whereas the second term may be characterized
as a contribution similar to the screened-potential
approximation of Baym and Kakanoff' of importance
in plasma physics and in describing anomalous
features of Fermi liquids due to soft bosons. The
following terms describe the contributions due
to three-particle processes that exhibit the clus-
tering features of Eq. (2.17). It is expected that
they provide an important approximation for in-
corporating inelastic threshold effects due to feed-
back of composite particles or collective states
generated from the Bethe-Salpeter equation (2.6).
The integral equation generated by these terms
is analogous to the relativistic equations proposed
by the author' in a threshold enhancement model
for higher excited resonances as corroborated in
subsequent work. ' The main physical features of
an equation of this kind derive from the strong
forces operative in the proximity of the inelastic
threshold. A further important feature of reso-
nances located in the proximity of a threshold'
is connected with its weak coupling to its con-
stituents (sharp resonances). Considerations
based on extended three-particle unitarity pro-
vide a complementary way of looking at inelastic
threshold effects. '

(b)

A A. 0 A

(c)
FIG. 1. The effective two-particle interaction in the

feedback approximation Eq. (2.12) .
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III. NESTED SCATTERING-MATRIX APPROXIMATION

It is shown in this section that the effective two-particle interaction derived from the three-particle
contribution to the mass operator embodies the effect of the kernel obtained in the feedback random-phase
approximation and that the method of multiparticle ordering provides a systematic method of incorporating
feedback effects due to fewer-particle dynamics and therefore provides a systematic method of achieving
s elf -consistency.

For the sake of orientation consider, first of all, the contribution to the effective interaction obtained
by opening the G line of Eq. (2.5):

K'(3);. ..= V;» „,B(1). . .„»V,„, (3.1)

This last equation in conjunction with Eq. (5.5) of the accompanying paper, which incorporates parquet
contributions to the three-particle amplitude, yields the following expression for the kernel:

K'(3)...„= —V» „,V,„, t(1)», „(G„oG„G,„G„+G„,G,» G,„G„+G»G,„G„G„)
+ zVi» sq VlnmsT», «ca t (1, )vy, zo(Gm v Gq«Gz» Go» Ggn Gc( + Gm«Gav Gqy Gzn Go» Gc)

+ Gm» Ggn Gcv Gqy Gz~ Go») (3.2)

Closer inspection of the last equation reveals
that it is of the form of the exact kernel in which
the feedback random-phase approximation takes the
place of the exact T matrix. It therefore appears
that the kernel obtained in successive steps of
multichannel ordering systematically incorporates
fewer-particle contributions as nested contribu-
tions. Equation (3.2), furthermore, provides a
general basis for the observation of Roulet,
Gavoret, and Nozieres' of the construction of
parquet diagrams by "bubble" insertions. The
foregoing considerations exhibit the parquet ap-
proximations as embedded nested contributions.

After these preliminary observations we now
proceed to a more general formulation of the
nested scattering-matrix method. Equation (2.5)
in conjunction with the defining equation for the
three-particle amplitude,

+(1)» q, ~4 = lG «T(1)»»-G-G.,l], (3 3)
Bgp

where

F(2) sG(2)a
eqPe

= -G(2)., G(2)„

+ iG(2)„G(2),g t (2)„yGz(2)t» G(2) .z»

(3.8)
In the last equation the index of the Green's func-
tion has been added to indicate that the particular
Green's function at this l.evel of approximation
derives from the representation of the mass-
operator Eq. (3.5). Furthermore, in view of the
fact that

t (2)»«,.= K(2)»«.y.

—iK(2)», ,„G(2)„„t (2)„~,G(2)~, , (3.9)

where K(2) denotes the feedback Bethe-Salpeter
kernel (with the Hartree-Fock contribution trun-
cated), it follows that

yieMs

M(, (3) = —V; „,G„„ I G T(1) „G,„G„)V,„,
8Qpq

M(3);; = —V;»,„,G„»G,» G,» t (2)„,,
If we now introduce the amplitude

t{2,3)s» ga=zV;» „«G„»G„t(2)„...,

(3.10)

(3.11)
(3 4)

Employing the symmetry of the mass operator,
the procedure of Sec. IIB may be followed to yield
the result

M(2)»; = —V»« „G,„G„T(1),„q G

= —T(1)»«-G..G.i Vi. ,,, G «, (3.5)

K(2, 3);, ,„=t (2, 3);, ,„+U(2, 3)(». ,..„G,«, (3.12)

where

it follows that
U(23),„, y

= t(23),, „,fb (3.13)

M(3);, = —i V(o „,G„» M(2)„,
OQ'~q

The last equation may be cast in the form

M(3);, = V, » „,G„,K(2)„,, E(2)„«o,

(3.6)

(3.7)

= z Vi«,s«G yc t (2)sc,ja

+iV;, «„G„,t(2)„, „,
+ZV, , „„G„»G«cU(2)»cs )av. (3.14)
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The kernel (3.12), derived from the three-par-
ticle contribution, exhibits the form-preserving
property noted before and demonstrates the nature
of the approximation method as successively
nested structures if we view (3.12) expressed in
terms of the random-phase amplitude t(1) itself.
As a consequence of the nested nature of the
amplitudes a new feature appears on the three-
particle level. This arises in view of the fact
that the three-particle amplitude

sK(2)„„,,
XS

(3.17)

in contrast to the three-particle amplitude U(1)
which is characterized by the Hartree-Fock ker-
nel, depends on t(1) as a nested contribution to
the effective two-particle interaction K(2). As
a consequence, the effective three-particle inter-
action becomes operative and is defined by

f (2)». ,..
XS

8
[K(2)c»ia,

BQ„,

(3.15)
It follows from Eq. (3.16) that the three-particle
amplitude satisfies

U(2)»-. - =H»-. -
—iK(2)»s „G„GfsU(2)„, q,„, (3.18)

—zK(2)„,.G.„t (2)„„G„],
(3.16)

where the inhomogeneous term denotes

H„, „=—L(2)»„,,„+iI (2)»s, , G„t(2)„p, Gf„—iK(2),„,„ f (2)„f, Gqs —iK(2)». ..G„t(2)„„,. (3.19)

Before deriving the form of the effective three-particle interaction, an inversion of Eq. (3.19) is effected.
With this view, it is useful to notice that

f (2)»s ss Gss Gps Hscs y'as = K(2)»s ~s Gsp Gfs U(2)pcs (3.20)

by virtue of Eq. (3.19) and the conjugate equation of Eq. (3.9). The solution may therefore be expressed
as

U(2)»cs, jan = [ 6'»jp if (2)»n, j~Gnso Gpn]Hoes, pas t

which simplifies to

U(2)»„,,„=—i [ t (2)»„s„t (2)„„t+(2),»sts(2) aa]G,s+ t (2)»G, Gp„G, t (2) p, cps L(2)o„sps„

—L(2)»„, +it(2)„„, G, Gp„L(2)„,p,„+iG„t(2)„),,G~„L(2)»„, ,

(3.21)

(3.22)

Comparison of the last equation, which is depicted in Fig. 2, to Eq. (2.17) reveals form preservation of
the three-particl. e amplitude in question, apart from the new feature connected with the appearance of the
effective three-particle interaction. The latter quantity w3s introduced' in connection with the formulation
of relativistic three-particle equations where a perturbative expansion of the three-particle interaction
was given. A nonperturbative result is obtained from Eqs. (3.17) and (3.12) by straightforward manipula-
tion:

—L (2)„„J = i V», „„G~i (1),p p, + z V», »G ~t(l)s, ;,+ z V„, » G»„G p U(l)„~. ..„+z V»»,j(1)„,yGy»

+zV»s„pG, »t(1)«»+zV» apG„»G»U(1)cz, &»+zV» „at(1)sc &sG»»

+zV», »,G»pi(1)», ~„+zV»»»,G»fGs»U(1)ycs ps„

+ V»»G&[f(1)ss & aGss(f1) &c„s+t(1) sc& »G«t(1) ~»~a] G„»

+ V„„„G„[t(l);,G, t(1)„, +t(1), ;,G,„t(1)„,,„]G„
+ V„»»,G»G,y[f(1), ;,t(1),y „„+t(1),,„t(1),p, ]G»

+ V„, » G@,G p[t(1)s„J,G,„t(1),y +t(1)sc ~,Gast(l)„g,„]
+ V»», »,G»G~G, s[U(1)„ss p,„t(1)ps„a+t(1)ss,J,U(l),p, , + U(1)s~ p, „f(1)sy,„

+t(1)sc ~,U(1) ops, „]G„», (3.23)

where U(1) is given by Eq. (2.17).
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-(

FIG. 2. Schematic presentation of the three-particle
contribution defined by Eq. (3.22).

In spite of the complicated appearance of the
three-particle interaction its interpretation is
transparent. According to Eq. (3.17), it derives
from the two-particle interaction by opening G
lines and therefore enumerates three-body inter-
actions generated by multiple scattering composed
of binary collisions acting in tandem and nested in
the appropriate way to render the final contribu-
tion irreducible.

The preceding considerations represent a method
of self-consistent approximation of the nonlinear
integral equations embodied by a nested feedback
mechanism. By picturing the action of the system
on itself as a step-by-step process in terms of
multiparticle ordering, a linearization of the non-
linear dynamics is accomplished; the form-pre-
serving property of the procedure constitutes an
essential ingredient in achieving self-consistency.
Although the equations appear extremely involved
in the general formulation presented, one should
keep in mind that in special contexts where domi-
nant features could be exploited considerable sim-
plification can be expected, judging from the situa-
tion encountered with regard to parquet structures
in the Kondo problem where dominant "bubble"
singularities result in nonlinear equations that
are tractable. "

M(s), , =i t(s)„,„G„. (4.2)

The effective two-particle interaction therefore
reads

K(s)„,„=t(s);„,, + U(s),„„.„G„, (4.3)

where, according to Eq. (4.1), the three-particle
amplitude satisfies

U(s), „„.,„=iV, , „G,„t(s),„,,
i V„„„G,„t(s)„,,

+ z~gq, rq Grn Gqn U(s)nns, Jqn ~ (4.4)

Equations (4.1) and (4.4) suggest that the three-
particle amplitude is of the form

U(s),„,„„=zt(s), n ~Xqq „. (4.5)

The unknown amplitude of the last equation may
be determined by substituting Eq. (4.5) into Eq.
(4.4) and by utilizing the symmetry property

t(s),~ „= t(s)~. .. -
to yield the result

(4.6)

rections as nested contributions. For the sake of
clarity, particular emphasis has been placed on
t-channel considerations. Even though a channel-
oriented approach may be a natural approach from
the physical point of view when dominant forces
operate in a particular channel, channel orienta-
tion entails the breakdown of crossing symmetry.
Before taking up these questions in the framework
of the exact equations in the next section, s-chan-
nel aspects are briefly investigated and lead to
results analogous to the "effective potential" method
developed in nuclear structure theory. "

If the two-particle interaction possesses a hard
core, it is necessary to define an "effective po-
tential" by the ladder sum

t(s);, &q =K(1)z»q+ z V&q „,G» Gqn t(s)nn, q (4.1)

If, furthermore, the latter s-channel contribution
is singled out in Eq. (2.1), the mass operator be-
comes

IV. s-CHANNEL CONSIDERATIONS U(s)„„,;,„=it(s),„G, t(s), ;, (4.7)

In Sec. III an approximation procedure has been
developed for incorporating self -consistent cor-

by virtue of Eq. (4.1).
Equations (4.3) and (4.7) for the kernel, sub-

stituted into the integral Eq. (2.2), yield

t(s, t);. ..=t(s)„&,+it(s),„„G,~ t(s)» &„G„—it(s);, ~„G„,t(s, t),z &, G&,

+t(s), ~ G,qt(s)q, J G„Gn„t(s, rt)„q ~, G~, . (4.8)

The last equation, which is depicted in Fig. 3, describes the interplay of s- and t-channel effects where
the effective potential generated in the s channel serves as driving term for the t-channel integral equation.

The interplay between the channels gives rise to new structures, such as nonparquet contributions, which
are absent in the channel-oriented approach. The starting point of this section, based on a screened po-
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tential, is known to be of relevance in nuclear structure theory and classical gases. In the next section
we return to a study of the coupling between the channels in the framework of the exact equations.

V. CONCLUSIONS

In the previous sections linear approximation methods to the nonlinear equations have been considered
by allowing the system to react on itself. Methods that involve channel orientation may be of patent ad-
vantage in particular physical situations. In order to gain further understanding of self-consistent crossed-
channel fertilization as qualifying aspects of the interplay among the channels and the nature of the non-
linear equations, it is appropriate to view these questions in the framework of the exact equations.

Recall that the neglect of the three-particle amplitude, A, in the exact equation (2.4) results in the ran-
dom-phase approximation. It is appropriate to express the equation in terms of the amplitude

9
rqm Jmv (Gqn r»»n. jm)BQ'~

which is related to the amplitude, A, by

Gntfp&~am, ~no Gntv Gmn Gan kn ~nlork + i Gqn Grk Tkn, ~ntGmx G~~ &~ttt, so sp

in terms of which Eq. (2.4) assumes the form

Tzb za K(1)zb J ZK(1')z z G v T » ~a G~ + ZVzb r G n G»T»n q +Vta rq GqnGr»T»n ra GavTvb ~aGfa+Pzb

(5.1)

(5.2)

(5.2)

where

fb, ja ip, rq G bm rqm, jmvG va Gmp ~ (5 4)

Equation (4.3) provides a convenient representa-
tion which exhibits the influence of the different
channels. It may be expressed in a transparent
form in terms of the scattering matrix:

T(s), b&a
—-K(1)&.b.&a+ zVzb «Gr» Gqn T»n, a (5.5)

The index s of the last equation merely serves as
a convenient label for indicating the oriented s-
channel sum involved and does not imply an s-
variable dependence only, for the scattering matrix
of the right-hand side designates the full scatter-
ing matrix, Were one to include only the s-channel
contributions to the T matrix on the right-hand

M, , = iT(S)tb ~a G,b, (5.5)

provide a convenient starting point for deriving
the exact nonlinear scattering equations. Accord-
ing to the last equation, the effective two-particle
interaction reads

K,, „.„=T(s)ta~,„+U(s)&ba.san Gab ~

where

(5.V)

8
U(S);b. gaa

= T(S),b „
XS

(5.8)

side, the effective potential method of Sec. IV
would obtain, whereas the t-channel contribution on
the right-hand side would serve as a starting point
for the nested T-matrix method of Sec. II.

It is appropriate to point out that Eqs. (2.1}and

(4.5}, expressed in the form

t(s,t)' = ~t(sg)
= iV)b xq Gqn Tsn, ya

+ ~~lb, rx Grk Tks, ja

+ i V]bbr, Grk G,n Uk (5.9)

,t(s,t)

FIG. 3. A simplified version of the two-particle scat-
tering in a linearized approximation to exhibit the inter-
play among channels.

which is the exact form of the effective two-par-
ticle interaction. ' It is worthwhile to emphasize
that the latter equations for the kernel are of the
same form as encountered in the multiparticle
ordering approximations developed in the previous
sections. These approximations to the equations
entailed a linearization of the equations by allow-
ing the system to react on itself in a channel-
or iented fashion. This indicates that nonlinear
and crossing aspects of the equations are intri-
cately connected. The coupling among the channels
may be made explicit by formulating the equation
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that complements Eq. (4.5). Substituting Eq. (4.5)
into (4.3), it follows that

T& &» = T (s)&& &~
—z T(s)z~ » G» T» ~& Gf

I+Pg Q jg ~ (5.10)

Equations (4.5) and (4.10) constitute a set of cou-
pled equations that describe the dynamics of s-
and t-channel scattering which serves to gauge
the importance of mutual effects of the channels on
each other. Unfortunately, short of solving the
coupled equations exactly, approximation to the
equations is considerably complicated by the pres-
ence of the exact Green's functions which in the
complete problem must acquire dressing in the
different channels simultaneously, the absence of
which would induce violation of unitarity. In con-
trast to the channel-oriented approach where feed-
back contributions could be systematically eluci-
dated by a nested scattering-matrix method, the
crossing aspects locked up in the equations, like

captives, only partially emerge.
In conclusion, structure analysis provides a tool

for revealing the multiparticle forms that lie
hidden in the functional field equations and ex-
presses the qualities as visible forms of sub-
classes of processes by means of multiparticle
ordering. Multiparticle ordering, in turn, makes
it possible to assemble the order of multiparticle
structures in new arrangements which manifest
themselves as nested structures and dictates non-
perturbative approximation methods to simulate
the underlying nonlinear dynamics in the form of
feedback contributions. The progressive steps of
the analysis exhibit a measure of form preserva-
tion which provides the germ for generating self-
consistency. The results found in the initial stages
of analysis reproduce familiar approximations and,
in effect, provide the natural grain that yield first
to analysis in terms of binary scattering approxi-
mations, criteria for the validity of which are
provided in terms of the importance of multi-
particle contributions.
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