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A method of analysis for investigating the structural aspects of field equations is developed. An ordering of
the field equations in terms of subclasses of multiparticle scattering processes is effected which proposes
equivalent realizations of the mass operator. The characterization of the mass operator in terms of subclasses
of scattering processes exhibits a form-preserving property which provides a starting point for self-consistent
nonperturbative methods as a framework for describing dynamical properties of field equations and many-

body problems.

I. INTRODUCTION

The functional-derivative technique constitutes
a powerful method for formulating exact field
equations.! In view of the complexity of the re-
sulting field equations, which for nonlinear quan-
tum systems represent an infinite hierarchy of
coupled equations involving correlations among
successively larger numbers of particles, the
basic problem consists in formulating a closed
set of equations that is amenable to solution. The
iteration of the exact equations exhibits recurrent
topological substructures which in special cases
may be resummed into partial subsets described
by integral equations. However, the functional-
derivative technique itself furnishes the proper
way for deriving relationships among the correla-
tion functions and for generating conserving ap-
proximations,? even in the nonequilibrium situa-
tion, by studying the response of the system to an
external source.

Rather than undoing the precise functional equa-
tions it is complemented in this work by a new

method of analysis, referred to as structure analy-

sis, that results in a compact formalism that suc-
ceeds in representing the exact field equations,
successively, in terms of higher-order correla-
tion functions in a particularly suggestive form.
Closure among the infinite sequence of multi-
particle amplitudes is achieved by exploiting rela-
tionships between the Schwinger mass operator

in the presence of external sources and multi-
particle correlation functions which are brought
to light. The structure that emerges from the
analysis is particularly transparent in the case

of the mass operator and exhibits the remarkable
feature of a self-generating set of equations in
which, at each step, a slight mutation occurs
which possesses the germ for generating higher-
particle attributes. Each successive step of the
analysis is terminated by a corresponding multi-
particle amplitude. These correlation functions
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satisfy integral equations in which the kernel and
inhomogeneous terms consist of amplitudes of
lower-particle attributes which enter in a de-
clustered form. A brief account of the method with
reference to three-particle equations® recently
appeared in print.*

In the next section, a generating functional is
defined and its application to the derivation of
single- and two-particle equations considered,
particularly with a view of obtaining appropriate
equations for the mass operator which is the cen-
tral object of interest in the analysis. The latter
quantity, in turn, defines the effective two-par-
ticle interaction which provides the starting point
for arriving at two-particle scattering processes.
Elimination of the transient aspects related to the
presence of an external source results in a hier-
archic order of multiparticle amplitudes which
shed light on the crossing and nonlinear aspects
of the equations. In Sec. III, three-particle equa-
tions are investigated and the analysis of multi-
channel contributions to the mass operator is taken
up in Sec. IV. This results in a multichannel or-
dering, the structural aspects of which are exhibit-
ed in the last section,

II. GENERATING FUNCTIONAL AND TWO-PARTICLE
EQUATIONS

The description of relativistic microscopic par-
ticles resulted in promoting the classical fields
to operator-field variables with specified com-
mutators. The differential equations for the cor-
responding fields supply a system of equations
for the particle correlation functions that contain
the dynamical properties of the particles. Func-
tional methods provide a convenient method for
deriving the quantum-field equations in question
by considering the response of the system to clas-
sical external sources.

Consider a system of spin-3 particles in inter-
action, described by the equation of motion
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Dik lpk +V{m,ln$m¢)n¢l =0 ’

1= —
Vim,ln =2(Vim.1n = Vmi .ln) ,

2.1)

where D;, may represent a Schrddinger operator
or Dirac operator of the form

Dy ¥ =—1(r");0(x; -xk)Wag ¥(x,). (2.2)

A compact notation is employed, repeated indices
are summed, and the Latin indices denote the
space-time and spin variables. The equation of
motion, which may serve as a starting point®'® in
many-body theory or in a nonlinear theory of self-
interacting particles, is to be understood as a
symbolic equation for arriving at appropriate equa-
tions for the multiparticle Green’s function that
defines the dynamical properties of the system.
Consider the generating functional

U =exp(iq;, ¥ ¥s), 2.3)
w=(0|TU|0),
where ¢,, denotes a classical nonlocal source
which removes a particle from the system at one
point and restores it at another. In particular,

the linear response of the single-particle Green’s
function

PR — 2]
Gy =iW™(0|T¥, 9, U|O) = T Inw (2.4)

defines the four-point function or two-particle
correlation function

9G,
Ezm,ln = 3q -
nm

=Grm,in = Gr1 Gmn (2.5)

where the two-particle Green’s function is given by
Grmin =W (0| TV, ¥, 9, U|0) . (2.6)

The inclusion of effects of the external source by
generating the correlation functions as functional
derivatives guarantees the maintenance of con-
servation laws.?

The set of differential equations for the Green’s
functions is generated from the equation of motion
and the commutation relations of the field opera-
tors. Thus, the equation of motion implies that

(D +@) i Grs + i Vim pn Grnsm =i 2.7

provided that the following equal-time commuta-
tion relation is satisfied®:

é(tk - ts)(d)k 53 'H;‘bs ‘pk) = 6/;3 . (2.8)

Continuation of this procedure would yield an
infinite set of equations involving successively
higher-order correlation functions. On taking the
relationships between the higher-point functions
into account and truncating the set of equations by

neglecting correlation functions of more than, say,
n variables, a Tamm-Dancoff-type approximation
would result. The disadvantage of this method is
that self-energy effects are not treated self-con-
sistently nor are the clustering properties of mul-
tichannel correlation functions taken into account.

This can be effected by adopting the mass-opera-
tor formalism. Accordingly, define the mass
operator by

Mik Gks = iVim.kn Gkn.sm ’ (2-9)
so that

(D +q +M);;, Gpo =03 =G, Gys . (2.10)

Forming the functional derivative of the last equa-
tion with respect to the external source ¢, and
employing the fact that the dependence of the mass
operator on the source is only via the Green’s
function, it follows that

Ea,m:—Git’ qu" iGinKks,trFrq.sp Gim (2-11)

in view of the definition of the effective two-par-
ticle interaction by

OM,,

o 2.12)

Kks Jar = -
It is convenient to transform from the Bethe-Sal-
peter equation for the correlation function to the
two-particle equation for the scattering matrix de-
fined by

Fia,mﬂ =_GiP qu + iGij an Tjn,fg GfmGgp ’ (2-13)
which satisfies
Tis, ja =Kis,ja = tKis, jx GeaTyp,ca Ges » (2.14)

Utilizing Eqgs. (2.5), (2.9), and (2.13) yields the
following exact equation for the mass operator”:

M;; = (v m,in Vimumi)Gnm = Vipra Gre Gan Ten,imGmp «
(2.15)
The relationship between the two-particle attributes
may be drawn closer by noticing that the 7' matrix
may be regarded as the linear response of the

mass operator., This can be shown as follows.
Consider

M, .
=iK F,
aqpq kS,br Fra,sp

(2.16)

which in virtue of Eq. (2.13) and (2.14) yields

oM,

== T, Gep -
.aqpq an kn,lg “Ygp

(2.17)

Substituting this result into Eq. (2.15) results in an
integro-differential equation for the mass operator
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. . oM, ;
Mii=l(Vim,jn_Vtm.nj)Gnm- 7‘Vlm,knka< > .
. G mn

(2.18)

The above equations constitute a complete set of
equations for determining the single- and two-
particle attributes of the system in the presence
of an external source. Equation (2.18) in conjunc-
tion with the Dyson equation, derived from Eq.
(2.10), provides coupled equations for the mass
operator and the single-particle Green’s function.
The solution of these equations (with appropriate
boundary conditions) in the presence of the exter-
nal source would provide a starting point for ar-
riving at two-particle attributes by functional
variation with respect to the external source.

One may also look upon the external-source tech-
nique as a device for arriving at the multichannel
features of the theory. As soon as the dependence
on the source is not explicit, the multichannel
aspects of the scattering theory become manifest.
The connection between Eqs. (2.15) and (2.18) may
be looked upon as the simplest example of this
feature of the hierarchy of equations which will be
encountered in the development in the following
sections.

We ease into the discussions by deriving the
exact equation for the two-particle T matrix. This

J

Tiy,ia =KM)ip,50 = 8K ()i, jx Gey Typ g0 Grs + Linrja+ Jisrjas

where
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is accomplished by finding the effective two-par-
ticle interaction, which according to Eqs. (2.12)
and (2.15) assumes the form

Kig,ix =K(1 )is.jx +8Vip 2 Gan Tsn, jmGomp
+ inp,rx Grk Tks,ijmP + iV{s.ra Grk Gan Tkn.jx
+ iViP.rq Grk an Gmp Ukns WJimx s (2-19)
where
9T, ;
Ukns.jmx = _ﬁ'ﬂ . (2.20 )
xS
Furthermore,
K()is,ix =Vis,sx = Visoxs (2.21)

represents the contribution to the effective inter-
action in a Hartree-Fock approximation to the
mass operator Eq. (3.3) by equating 7' =0. This
assertion assumes that rescattering is not of con-
sequence. In the exact analysis, the remaining
terms of Eq. (2.19) express the effect of scattering
on the mass operator. Since differentiation with
respect to a G line corresponds to the removal of
this line from the corresponding diagram of the
amplitude, Eq. (2.20) represents the effect of
three-particle processes.

In conjunction with Eq. (2.19), the two-particle
T matrix, Eq. (2.14), satisfies

(2.22)

Liv,ia = tVip.a0 Gan Ton,imGmp + tVip ra Gro Tep ,imGump + 2 Vip g Gy Gon Tin, ia

+ (Vil’ %0 Gan Ton,imGmp +Vip v Grl; Tis,imGmp + Vis,ra

and

Jib.ja = iV_iP.rq Grk an Gmp(Uknb.jma - iUkns.jmx ny Tyb JSa Gfs) .

Before interpreting the equations, it is appropriate
to simplify Eq. (2.22). With this view, consider the
quantity defined by the equation

- aT, -
Ninp,jma =—G Ly _5&111& G lea (2.25)
qei
==G""; Upna,jme Feize G ea (2.26)

=Upnp,ima = *Ukns,jmx Gxy Typ 50 Grs 5 (2.27)
so that Eq. (2.24) reads

Jib,ja = iVl#.rq Grk anAknb.jma Gmp . (2-28)

It therefore follows that whereas the three-particle
attribute that enters into the equation for the effec-
tive two-particle interaction derives from varia-
tion with respect to the exact single-particle
Green’s function, the corresponding quantity in

the scattering matrix results from variation due

Grk an Tkn .jx)ny Tyb Sa Gfs

(2.23)

(2.24)

r
to the external source.

In concluding the analysis of the two-particle
equations, it is appropriate to find the relation-
ship of the vertex function to known quantities.
The vertex function is defined by

-1
9G4,

- - =1 -1
becsad ~ aqd ==G bi P‘it’.ed G ea*
c

(2.29)
The meaning of the system of two-particle equa-
tions is now discussed using Fig. 1 as a guide.
Equation (2.14) is an exact equation for the two-
particle T matrix, in the ¢ channel, in terms of
the effective two-particle interaction given by Eq.
(2.19). Equations (2.22) to (2.28) express the T
matrix in terms of the initial interaction, the first
terms sum the bubbles and ladders whereas the
nonlinearity of the equation which results in com-
binations of ladders and bubbles (vertex correc-
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tions) is a consequence of a feedback mechanism
as pointed out below. Whereas the T matrix gen-
erates both reducible and irreducible contribu-
tions, the f-channel kernel itself only contains
contributions which are two-particle irreducible

in the ¢ channel. These contributions consist of
fully irreducible ones such as the Hartree-Fock
term and the three-particle contribution, plus
further contributions which may be two-particle
reducible in the crossed channel (s or u channels).
The latter contributions have a particularly sug-
gestive form and appear as two-particle crossed-
channel convolutions of the starting interaction
with the two-particle T matrix., This implies that
these contributions arise because of a feedback
phenomenon: In spite of the fact that the full T
matrix contains two-particle reducible contribu-
tions in the channel under consideration, the feed-
back nevertheless results in contributions to the
two-particle kernel, because the presence of the
convolution in the crossed channel renders the total
contribution two-particle irreducible in the desired
channel. The nonlinearity of the two-particle equa-
tion is an immediate consequence of the feedback
phenomenon and is an important agent in achieving
crossing symmetry and self-consistency. Al-
though a detailed consideration of the numerous
symmetries inherent in the equations is beyond the
scope of this investigation, it nevertheless pro-
vides new insight into questions of crossing-sym-
metric two-particle equations, particularly in
view of the fact that in the formulation of crossing-
symmetric equations® to date, the kernels of the
equations are only implicitly known.

The analysis leaves the multichannel contribu-
tions undetermined, the determination of which is
the task of structure analysis developed in the
following sections.

e ;@(g

O
.im .i@’
\w@\

FIG. 1. (a) Bethe-Salpeter equation for the ¢ channel.
(b) Kernel of Bethe-Salpeter equation which depicts
embedded s-channel contributions.

III. THREE-PARTICLE ASPECTS

In Sec. II a formulation of the two-particle equa-
tions was developed which indicated a hierarchic
order of multichannel aspects. In this section the
analysis is subordinated to an investigation of
some of the three-particle aspects.

It was found that the two-body T matrix satisfies
the equation

Tp,50=K(1 )ivsia = iK();4, 3¢ Gry Typ,ta Gys

k3

+(I+ )50 (3.1)
where
; -1 aTgn,[m -1
Jiv,ia =~ 1Vip,rq Gre Gan Gmp G G -
9q vy
(3.2)

In order to indicate the role of the multiple parts
of three-particle processes, consider first of all
the three-particle amplitude defined by

9
Araw,ibv = m (an Grk Tkn.jﬂlep) (3-3)

which, in conjunction with the equations of the
previous section, may be expressed as

Jib.ia = _Iib.ju - in.ra G—lbwArqw,in G_lva ’ (3'4)
so that
Tib.ja =K(1 )ib.ja - iK(l )is 2J% ny Tyb.fa Gfs
= Wip ra G-lbwAraw.ij Gl (3.5)

The advantage of the latter representation is con-
nected to the fact that it may serve as a starting
point for initiating a nonperturbative approxima-
tion procedure. The assumption of a vanishing
three-particle amplitude Eq. (3.3) results in a
“random-phase approximation” for the two-particle
T matrix. An approximation of this kind which
singles out a particular channel above others na-
turally results in the breakdown of crossing sym-
metry. A more natural starting point towards
crossing symmetry would correspond to a vanish-
ing three-particle amplitude Eq. (3.2) according to
the discussion of the previous section. These re-
marks serve to illustrate the role that knowledge
of the nature of multichannel processes could pro-
vide in deriving criteria for effecting nonperturba-
tive approximations.

As a preparation for the analysis of the mass
operator, which accentuates the process of multi-
particle ordering, a number of three-particle
amplitudes are introduced which arise in this con-
nection:

9
Bkma Jnp = 84, (Gmb ka.ca Gan Gcl) s (3-6)
q
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9
Ek'mq senp = 84, (Gmb ka,aa Gan) . (3.7)
T

The connection between the amplitudes is expressed
by

Brma.inp =Orma,inp + Exma,conp Get » (8.8)
where
bkmq,lnﬁ ==Gm ka,ca Gan Gop Gy
+LGmp Top,00 Gan Gex Gy Ty,20Gz1 Gop
(3.9)
and
Arqw.jiw =Crqu,ipv+ Grr Epqu,ipv s (3.10)

where

@rqw 1350 =~ Gro Gk Gon Tin, imGmp
+ iG”. GwcTyc,fd Gfk de an Tkn .ijmﬁ .

(3.11)

The quantity a corresponds to the amplitude b when
the indices are read in the reverse order, so that
the three-particle amplitudes defined by Eqs. (3.3)

and (3.6) are conjugate to each other.
—_—

Lyyp,cxe = _aKky.cx/aGgh ’
and @ denotes

9

=—F,
Qrmq.:vrm aqpq xm,yn 3y

which equals

2] .
Qmq,ynp = _B-CK; (- Gin Gy +1Gyp Gy de .en Gey Ghn)

==Foqnp Gmy = GenFmq, vp + 1 Eeq ;5o Gma Tra .en Gy Gin = Gus Brma,yno +

The above equations yield the three-particle equation

Bimavins = Lema,ins = Kpy,cx Get Ges Brma,ynp »

where the inhomogeneous term is given by
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In order to gain further knowledge of the nature
of three-particle processes a derivation of the
three-particle equation satisfied by the amplitude
Eq. (3.6) is considered in the concluding part of the
section. It follows from Eq. (2.17) that Eq. (3.6)
may be cast in the form

.9 M,
Buma,no =1 50~ [(@ﬁ) Gct] ) (3.12)
so that
Bkma.lnP=Gmkab.ca Gan ch,lp +kaq,1np, (3-13)
where
92 M
=4 [———ke
kaq sinp ? <aqpqaqnm> Gcl (3-14)
[ 9 .
=t <_8_¢;;— szy.cx E:m.:m) Gct (3-1 5)
q
=kah.cxg Fgu.)w Fxm.yn Gcl
_Kky.chqu,mp G . (3-16)

In the above derivation free use has been made of
the chain rule and the fact that the source depen-
dence enters via the Green’s function. Further-
more, an effective three-particle interaction is
defined by

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Lyma,inp = =Gma Tra,ob Gon Gop Gt +EGma Tra,co Gon Gei Goj Tig,rs Gri Gsp + Liuyn,cxe Gen Gmy Ger Gep Gan
=% Lyyn,cxs Gep Gan Gxa Gmb Tup,ae Gay Gen Gt = E Lipyn,cxe Gen Gmy Ger Goo Tre st Gon Gip Gar
= Liyn,ox¢ Gra Gmd Tus.te Gay Gen Gef Gao Tro,st Gsn Gip Got = Kry,ox Got(Gyp Gan Gy + Gign Gimp Goy)
+iKpy,cx Got (Gmy Gri Gon + Gun Gmi Gry)Goj Tigrs Gsp + Ky, cx Gt Gup Gor Gma Tpa sen Gy Gan

+Kpy,0x Gt Gyi Goi Tij rs Gof Gop Gma Tiaen Gey Gan -

The last equation, which is depicted in Fig. 2,
provides an integral equation for the three-particle
amplitude expressed in terms of two-particle at-
tributes and an effective three-particle interaction
denoted by L. A most important feature of the

(3.22)

J—
equation as far as its structural aspect is con-
cerned, is the clustering property displayed by
the inhomogeneous term which exhibits the three-
particle contribution as a two-particle T' matrix
accompanied by a spectator particle or an rescat-
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tering of particles generated by the two-particle T

matrices acting in succession. This feature, which
reappears again on a higher-particle level, culmi-

nates in a kind of multiparticle ordering.

IV. MASS-OPERATOR FORMALISM AND STRUCTURE
ANALYSIS

In this section it is shown that the mass operator
plays a central role in providing closure among
the multiparticle correlation functions.

In the previous sections an integro-differential
equation for the single-particle Green’s function
has been formulated which defined the mass opera-
tor

M1, Grs = tVim,un Gnrysm (4.1)

With the aid of the conjugate equation of motion an
alternative equation for the mass operator may be
formulated which expresses a simple symmetry
constraint

Gip Mys = iGim,ankn,sm' (4.2)
Employing the result
Gimpn = Git Gmun— Gin Gy
+iGiaGmb Tab.cd Gck Gdn, (4-3)

which is a consequence of Egs. (2.5) and (2.13), it
follows from Eq. (4.2) that

Mrs = i(Vrn,sm - Vnr,sm)Gmn
= Gmp Trb,cd Ger Gan Vin sme (44)
1t follows from Egs. (2.17), (2.18), and (4.3) that

FIG. 2. Graphical representation of the three-particle
equation (3.21).

. . IM,
M;;=90;4,imGmn = tVip o Gra (““u) (4.5)
3qn
and
. . [ OM,
My; = iNgy, jmGon = i <§m) GoVinymy  (4.6)
nm
where
Oinvim=Vin,jm=Vinm; - .7)
and
N}zn,jm=an.jm_ Vnk.jﬂl:Okn,jm' (4.8)

Although there are further symmetries inherent
in the theory as a result of the symmetries of the
Green’s functions, we shall not enter into sym- /
metry considerations in detail, for this could well
mask the simplicity of the method of structure
analysis.

Forming the functional derivative of Eq. (4.6),
yields

%%4:"' =10, jmEma np = Vin,im Brma inp » 4.9)

where B denotes a three-particle scattering ampli-
tude given by

.9 oM,
= — | [ ke
Bkma,lnﬁ ¢ aan [( aq"’n)GcI]

which is closely connected to the three-particle
amplitude, Eq. (3.6), encountered in formulating
exact two-particle equations. This can be shown
by utilizing Eq. (2.17), with the result

(4.10)

9
Bkmq.tnP= aqp (Gma Tka,chbn Gcl)- (4'11)
q

Information about the structure of the mass opera-
tor is obtained by substituting Eq. (4.9) into Eq.
(4.5)

M;;=M;;(1) +iVip 4 Gra Bemg inp Vin,jm » (4.12)
where

Mij(l) = io{n.!men +Vip.rq Grkokn.jm me.nﬁ . (4'13)

The last equation is the expression of an impor-
tant connection in structure analysis which may be
expressed as follows, It is, first of all, to be
noticed that

. 9
iK(1);,7a =3c— - M),
a

(¢01p,;mGmn) (4.14)

= 3G,
yields
K@)i5,50= O15,5a =Viv.sa = Vivsas - (4.15)

The effective two-particle interaction defined by
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Eq. (4.15) corresponds to a Hartree-Fock approxima-
tion which results from Eq. (4.3) by equating T =0,
which assumes that rescattering is not of conse-
quence for the mass operator. In an exact analy-
sis, the effect of two-particle scattering on the
mass operator is expressed by Eq. (4.13). In order
to demonstrate this fact, consider

K(l )ks 2J% Em W$P
which according to Eq. (2.11) equals
—qu Gap [K(l )kb.ja - 1.K(1 )Izs vJix ny Tyb,fa Gfs] ’
(4.17)

(4.16)

so that
K(Wes, s Fequsp == Gap Gap T (s 14 5
where, according to Eq. (3.1), we have that
TW)yp,50 =Tip,50 = L+ Dip,ia
=Tip.5a * Vipira G owAraw,ipv G i

=K(1 )ib,]a = iK(l )is.jx ny Tyb.fa Gfs

(4.18)

4.19)

with the result that
My (1) =K1, imGmn = Vipora Gra T (Des, 0 Gap Gap -
(4.20)

It therefore follows that the two-particle 7' matrix
which enters in the successive steps of structure
analysis is not the nonlinear object with embedded
three-particle structure of Eqs. (2.21), (2.22), and
(2.26), but rather as shown by Eq. (4.19), the ef-
fective kernel being determined by the Hartree-
Fock kernel (4.15). In particular, if three-particle
processes characterized by the amplitude, A of
Eq. (3.3), in a given physical situation is not of
importance, 7'(1) would correspond to a “random-
phase” generated scattering matrix, This rep-
resents a useful approximation in the description
of bound states or collective excitations in which
correlations due to rescattering are not of im-
portance as in the case of zero sound or plasmons.
The contribution of more detailed correlations is
incorporated by the last term of the exact equation
for the mass operator which, according to Egs.
(4.11), (4.12), and (4.20), reads

Mij = iK(l )in.Jmen - Viﬂ,rq er qu T(l )xy,ijwP
(4.21)

The form of the last equation demonstrates the
emergence of a substitution rule: The exact Eq.
(4.21) results from the exact Eq. (2.15) by replace-
ment of the exact two-particle 7 matrix by the
matrix T (1) which satisfies Eq. (4.19); the residual
term of Eq. (4.21) thus incorporates rescattering

+1Vip,ra Gra Brma,inp Vin, jm -
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and many-channel contributions that are left out

of consideration when two-particle scattering is
described by T(1), which one may wish to consider
for practical reasons, instead of the full T matrix,
We shall find on further analysis that the substi-
tution rule persists in the higher-particle sector
and that the investigation of the multiparticle struc-
ture of the mass operator may be pictured as a
process of multiparticle ordering.

The preceding formulation of this section com-
pletes the first phase of structure analysis which
provides two equivalent realizations of the mass
operator. The second representation, Eq. (4.21),
is expressed in terms of a two-particle 7' matrix
which satisfies a simplified Bethe-Salpeter equa-
tion in which dressing of the effective two-particle
interaction is not of consequence and in which
possible three-particle contributions can be sepa-
rated in a concise manner. The next phase of the
analysis demonstrates that a corresponding sim-
plification of the three-particle structures may be
effected by making explicit the nature of four-
channel processes.

Forming the functional derivative of Eq. (4.21)
with respect to the external source, yields the
result

oM, _ .
=iK(1 )in e D— Vlb.rqA(l )raw.!-‘Pv
aqvw

+ iViP.ra Crmqw.tnpv Vln.cm ’ (4-22)

where the four-particle amplitude is defined by

9
Crmaw.lnpuz oq, (Grk Bkmq.lnp) (4.23)
w
and
9
A(l)rqw.c?v= aq [qu erT(l)xy,co Gop] . (4-24)
vw

The three-particle amplitude defined by the last
equation differs from the exact three-particle
amplitude Eq. (4.11) in two respects: The most
important difference which is responsible for the
separation of purely three-channel effects is the
occurrence of the matrix T'(1) of Eq. (4.19) instead
of the exact T matrix; the second difference per-
tains to the particular dependence on the single-
particle Green’s function which results in a con-
jugate three-particle amplitude.

Substituting Eq. (4.22) into Eq. (4.6) yields

M,; = iK (1 )xn.imen —Guy T )zy,jg Ggy jS Vev,iw
+1Vap,rgA a )rqw.JPv GjicVon,iw

+Vzp.rq Vln.jmcrvnqw,lnpv jSch.iw' (4-25)
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The second phase of the analysis, therefore, leaves the first phase intact and verifies the substitution
law whereby the exact three-particle amplitude is replaced by Eq. (4.24), providing at the same time a
statement of the four-particle aspects involved.

By recalling the defining relationships Eqs. (4.24) and (4.19) it follows that

A (1 )rqw,jl’v =Ew XU qu T(l )xy.jo Gop + er a {qu[K(l )xy 2jo Zl{(l )xs vjd Gdc cy.fo Gfs op} ’ (4-26)

which after some manipulation provides the three-particle equation required:
Al )rqw,jpv =1(1 )rqw Wby T ierK(l )xs 2id GfsA o] )dqw,fpu ’ (4.27)
where
L) 4,550 = =Grv Gus Goy Ty, 50 Gop + £Gra Grop Tap,c1 Gox Gav Goy T (L),y, 50 Gop
= G K1y, 10(Gev Guy Gop + Gay Gov Guop) + £ Gryx Goa Gupp Tap,ca Goy Gav Gop K (1), 50
+1G,, G”K(l)xy'ja Goa G Ty, cq Gop Gao+ 1K (1),5, 50 Gy Gy Gys GdcT(l)cy_,a Gy Gop
+K(1),5,50 Grx Gpa Guop Tus e Ghs Gov Gao T ()ey 10 Gay Gop - (4.28)

By comparing Eqgs. (3.21) and (4.28), it follows that the major simplifying feature of the last equation is
the absence of the effective three-particle interaction so that the last equation is a linear realization of
the three-particle dynamics in terms of two-particle scattering. Before deriving the equation satisfied by
the four-particle amplitude, the next phase of the analysis is considered.

Accordingly, forming the functional derivative of Eq. (4.25) yields

OM,;

oq =_iG T(l)zv..rs' B(l)zhw.clval,jh+ inl’.rqD(l)rqhw,cplvVcl.jh+sz.jv: (4-29)
w
where

D), qnw,cprv = aq [A@),qn,ip1 Gicl (4.30)

w
and
9
sz .jv zp,ra an.om aq (Crmqh,fnpl Gac)Vcl WJh (4.31)

The last equations in conjunction with Eq. (4.5), in turn, furnish
M;;=1K(1);n,1mGmn = Viv,rwGre Gy T( )ay.se Gev+ V30,006 re B any et Ver ,in
+Viv,rwGre Vap 0e D a )thw sootv Vet in = WViv,ewGee Rew,gv- (4.32)
The relationship between the three-particle amplitude of Eqs. (4.11) and (4.27) and the approximate

three-particle amplitude of the realization (4.32) may be established as follows:

B(l)kmq.lrw: [GmbT(l)kb,ca Gan Gcl] ’ (4.33)

2
aqﬂq
which according to Eq. (4.19) equals

B(l )kmq.lnP ch.ll’ Gmb T(l )kb,ca Gan +G { mb [K(l )kb.ca - lK(l )ks N4 Grh Thb.fa Gfs] Gan}

] aq
=9 (umq,1np = tK (s, cr G Bumq,smp Ger 5 (4.34)
where
(1 )kmq.znp =-T(1 )kb.oa GanGep Gy Gp — K(Q )kb m(Gmp Gap Gan + Gmp Gop an)ch
+ 2T (Vgp,00 Gms Gan Gex Goy Ty aro Gt Gop + UK (Dp,ca(Gmx Goy Gy Gop Gan + Gmp Gax Gy Gin Gop) iy 10 G
+K(1 )ks.cr Ge1 Gry Gyy Ty ,20 Gon Gop G Thp ga Gps Gan + 2K o1 )ks,cr Ge1 Grp Gon Gmp Thp fa Gps Gan - (4-35)

Finally, the equation satisfied by the four-particle amplitude is derived. It follows from the defining
relationship Eq. (4.30) and Eq. (4.27) that
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2 .
D (1 )r:hw oplv = A (l )r:h,ipl Fiw.cv + Gic ? {I (1 )rgh il ZG”K(l )xs.idA (1 )dgh P Gfs] ’ (4-36)
vw

which yields

D (1 )rqhw ,eplv = Gic I (1 )rqhw siplv ™ A (1 )rqh,il’l Gi v Gwc +iA (1 )rqh vipl Gia wa Tab.de Gdc Gev
+ iGi c Grv wa K(l )xs yid A (1 )dqh oDl Gfs + Gi c Gra G_wb Tab.ek Gex Gka(l )xs ,idA (1 )dgh Bl Gfs

- iGi c erK(l )xs .idD (1 )dqhw,splv ’
where

9
11 )rqnw.im = m 1 )rqn.m .

The exact four-particle amplitude satisfies an
equation quite similar to the preceding equation,
the only difference being the appearance of an ef-
fective four-particle interaction which is defined
in analogy to Eq. (3.17). Furthermore, the clus-
tering property of the four-particle amplitude is
exhibited, which, as is shown in the following
section, is the basis for the grouping into compact
structures and of a multiparticle ordering.

V. MULTIPARTICLE ORDERING

In the previous section an analysis of some of
the multichannel aspects of the mass operator
has been given which results in a multiparticle
ordering of the form:

Ali.i :iK(l)in.ijmn = Vix ,hy th Gbe(l)hb Ja Gax
+1Vip ra Gra B(Vema,im Vin,im

+ Viv .hwGthdn ,rmD(l)rmaw.anv Vzp.la
R (5.1)

The analysis proposed equivalent realizations
of the exact mass operator expressed successively
in terms of higher-particle amplitudes. The dif~
ferent realizations are connected by the existence
of a substitution rule which is an expression of the
fact that the hierarchic cycle of equations pos-
sesses a form-preserving property. The sub-
stitution law calls for the replacement of a given
multichannel amplitude by a simplified one in
which the multichannel contribution of the next
order of complexity has been truncated and the
latter part in turn serves as the generator in the
following step of the analysis. This process is
illustrated in Fig. 3 and can be seen to represent
a nonperturbative ordering in terms of the pri-
mary interaction and multiparticle-scattering
amplitudes. The particular choice of the scatter-
ing amplitude to initiate this process is not pre-
determined and the ordering scheme therefore
presents a viable method which may be adapted
to accommodate particular physical situations that
may be of relevance in different circumstances.

(4.37)

(4.38)

A particularly important aspect of the structure
of multiparticle equation, which has been pointed
out in the previous sections, relates to the cluster
properties of the amplitudes that imply the pres-
ence of substructures generated by rescattering
of a particular nature. This culminates in a sys-
tematic method of incorporating subclasses of
scattering contributions. In the previous section
the formulation was given in terms of a family
of multiparticle amplitudes in terms of which the
substitution rule assumes a particularly trans-
parent form. In order to exhibit the substructures
accompanying the ordering process it is appropri-
ate to express the multiparticle amplitudes of
Eq. (5.1) in terms of the three-particle correlation

@ -
Y

+v4(5 PARTICLE AMPL.)
(d)
FIG. 3. Graphical representation of the realizations

of the mass operator that exhibits multiparticle order-
ing and the form-preserving property.
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function

Z. . = o T, . (5.2)

Ino ,ime aqeo In,jm:-

In particular, we have that

T(l)kb Ja = ka Ja = Ikb Ja +inp R Grl an Gm) G_lbo Zlno Jme G_lea y (53)
where I is defined by Eq. (2.23)

Furthermore, according to Eqs. (3.6) and (5.2) it follows that
9
B(l)kmq Janp = o [ Gy T(l)kb ca Gan Gcl]
Bq”
= Fma 2P T(l)kb ,ca Gan Gcl + Gmb T(l)kb ,ca Faq.np Gcl + Gmb T(l)kb ,ca Gan ch ,ip +Gmb Z(l)lzbq ,cap Gan Gch
(5.4)

which by virtue of Eq. (2.13) may be expressed in the following form:
B(Dema,im = = T(Das,calGmp Gap Gan Ge1 + Gmp Gap Gan Gt +G iy Gan Gop Gat)
+8T(1)g ca(Gmx Gay Gy Gop Gan Gt +Gomp Gax GayGenGop Ge1 + Gy Gan Gex Gay Gy Gop) Ty 20
+Gnp Z(1)ivg cap Gan Ger - (5.5)

The importance of the latter representation of the three-particle amplitude derives from the separation
of terms which incorporate the cluster property expressed in terms of the two-particle T matrix as de-
picted in Fig. 4. Before continuing the analogous discussion for the higher particle amplitudes, it is ap-
propriate to consider the application of the results to the mass operator.

The first term of Eq. (5.1) expresses the familiar Hartree-Fock contribution in terms of the exact single-
particle Green’s function.

Consider the second term of Eq. (5.1), denoted by M(2), which according to Eq. (4.19) may be expressed
as

M(Z)ij == Vix Jhy Ghd Gyb[ K(l)db,m" iK(l)ds Wr Grg Tgb Jfa Gfs] Gax . (56)

This result shows that the latter contribution is of the form of the exact result, Eq. (2.15), with the
effective two-particle interaction replaced by the Hartree-Fock effective two-particle interaction. The
last equation represents contributions to the mass operator generated by a random-phase two-particle
scattering matrix with embedded “vertex” modifications.

The three-body generated contribution to the mass operator, according to Eq. (5.4), assumes the form

M(s)ii == iV{P R Grk T(l)kb ,ca(Gmp Gab Gan Gcl +Gmb Gaﬁ an Gcl +Gmb Gnn ch qu)Vln WJm
- Vil: e Grk T(l)kb .ca(Gmx qu sz Gap Gan Gcl + Gmb Ga.x qu Gsn Gop Gcl + Gmb Gan ch Gay G.zt Gop)Txy ,20 Vln Jm
+ iViP ra Grk Gmb Z(l)lzbq,cap Gan Gcl Vln Jim- (57)

The last equation provides a compact repre-
sentation of three-body contributions to the mass

operator in which the cluster property is mani- \
fest and in general characterizes numerous par- = - ﬂ‘ K@D

quet-type contributions to the mass operator.

According to Figs. 3 and 4, three-particle con- '
tributions are included which consist of the two- ) . ) @)
body T matrix accompanied by a spectator par- +) +! + ‘ *ﬁ-
ticle or multiple-scattering contributions as de- (T) (T) M)

scribed by the two-particle scattering matrix

acting in succession. In order to make more FIG. 4. Graphical representation of Eq. (5.5) which

explicit the nature of the processes incorporated, exhibits clustering aspects of the three-particle ampli~
some representative contributions are depicted tude.



13 STRUCTURE ANALYSIS:
-y

-%%9“\@’ \(g

R

(b)

FIG. 5. Three-particle contribution to the self-energy
in the ‘“parquet” approximation.

in Fig. 5, where for the sake of economy in pres-
entation the two-particle scattering is taken as
the random-phase-generated contribution, thus
neglecting crossing and vertex modifications. In
general, the parquet contribution may be pictured
as particular three-particle correlations in which
independent interaction is favored as determined
by the underlying two-particle dynamics. Similar
views on parquet structures have also been given
particularly by Nozieres and co-workers.?® The
importance of the summation of “parquet con-
tributions” has been recognized in a number of
problems!? such as the extensive studies in con-
nection with the Kondo effect!! and has led to
particular infrared features with its accompanying
low-temperature aspects'?; in connection with the
role of soft bosons in the anomalous low-tem-
perature features of Fermi liquids'® and in con-
nection with an infrared driven electromagnetic
bootstrap where “parquet” contributions act as

A METHOD FOR ANALYZING FIELD... 2393

s

FIG. 6. Four-particle contributions to the self-energy.

a feedback mechanism.**

The parquet contributions of Fig. 5 may be
divided into two classes: class I where two par-
ticles interact repeatedly but independent of a
third, or in class II where families of paired
particles interact any number of times but in-
dependently and link up with a third.

In concluding the analysis, the four-particle
contribution to the mass operator is given:

M(4)ii= Viv.hwGM Vdn,rmD(l)rmqw,znpv VZP. ja- (58)

In order to exhibit the clustering property of
the four-particle scattering it is appropriate to
express the four-particle amplitude in the fol-
lowing form:

D(l)rmqw.znbv Bq [A(l)rmacancz]
=[D'(1)+D”(1)]rmaw,mpw (59)
where
Dl(]‘)rmcw.wv“A(l)rma,cnp cw,2v (5-10)
and
D”(l)rmqw,mpv=ccz 8q [A(l)rma,cnp] (5.11)

By carrying out the relevant functional deriv-
atives, the three-particle amplitude in question
may be expressed in the form

Ay ma,om =G T(V 0aGanl= Gy Gop +1G 1, Goy T, v.50Gsb Gop)
+G o T(1)ry e Ganl=Grp G + Gy Gay Ty 0 G Gop)
. Gy Gy T(1) 4y o= Gop G + Gy Gy, Tyy.50GnGop) + Gt Gt Z(1) 1oq cap Gan - (5.12)
The contribution of the four-particle amplitude (5.10) to the mass operator therefore reads

M, (4):‘1‘ = [ Viv ,hwGhd Vdn ,rmVZP JJa ch cwa T(l)kb ,ca +1 Viv,hwGhd Vdn ,rme Ja T(l)kb »ca Gcs th Tst ,eu Gez Guv]
X [Grk Gan Gmp qu + Gmb Gan Grp qu + Gmb Grk Gap Gan

- iTxy,fo(Grk Gan Gmx qu Gfb Gop + Gmb Gan er qu Gfk Gop + gmb Grk szx Ga.v an GOP)] ‘ (5‘ 13)

Further contributions due to clusters arise from Eqs. (5.8) and (5.11), with the effect
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M"(4);5= Vo 4wGna VanwmVa ,ial GezGra T(Dap 1ca Gan Gav(Gmy Guop = 1G s Guot Tst ou Gep Guo)
+1Ge;Grp T(1p ca Gan G mx Gay Tey o Gop(= Gy Gupp +8G 15 Gyt Tt ou Gep Guw)
+GozGmp Ty ca Gan Gar(Gro Gup = 1Grs Gt Tt sou Gep Guv)
+8G;G iy T(D)pp ca Gan Grx Gay Ty 10 Gop(= Gy Gy +8G 15 Gyt Ty ou Ger G+ .

Representative terms of the last two equations
are given in Fig. 6. In view of the clustering
property of the four-particle amplitude, which
has been utilized, it follows that the contribution
may be characterized by nested subclasses of
binary scattering events acting in tandem.

In this work a method of analysis of the multi-

(5.14)

-
channel aspects of field equations has been de-

veloped which provides a systematic method for
including subclasses of physical processes. In

an accompanying paper’® the implications of multi-
particle ordering in arriving at nonperturbative
dynamical approximations are investigated.
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