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Study of the longitudinal kink modes of the string

15 APRIL 1976

W, A. Bardeen*
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Itzhak Bars~
Department of Physics, Yale University, New Haven, Connecticut 06520

Andrew J. Hanson*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

R. D. Peccei~
Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305

(Received 18 December 1975)

We examine the massless limit of a model for the massive relativistic Nambu string. The system possesses
longitudinal kink modes excluded from the standard lightlike gauge treatment. We demonstrate the
equivalence of these modes to those proposed by Patrascioiu, The classical nonlinear field theory of the two-

dimensional string is shown to be a completely integrable Hamiltonian system. The Hamiltonian is expressed
in terms of normal-mode action variables alone; the mass-squared spectrum is linear in the Bohr-Sommerfeld
approximation. The difficulties of canonical quantization are exposed using a particular timelike gauge which

admits commuting center-of-mass coordinates.

INTRODUCTION

The massless relativistic string model derived
from the Nambu action functional' is widely be-
lieved to be connected in an essential way with
the dual models for strong interactions. It is
therefore puzzling that despite the desirable fea-
tures of the dual models, the free-string quantiza-
tion procedure of Goddard, Goldstone, Rebbi,
and Thorn' (GGRT) and the interacting string
quantization of Mandelstam' succeed only in
26-dime nsional spacetime. Patrascioiu4 has
pointed out that this phenomenon may occur due
to the omission of longitudinal modes of oscilla-
tion which appear when the massless string action
principle is suitably generalized. Patrascioiu's
modes belong to a class of solutions with discon-
tinuous derivatives which appear to be excluded
from the GGRT solutions due to a singularity in
their choice of coordinates.

Qur purpose here is to reexamine the string
with particular attention to the longitudinal modes
in two spacetime dimensions. We argue that a
physically sound procedure for constructing the
Hamiltonian is to define the massless relativistic
string as the smooth massless limit of a massive
relativistic string. ' Then the longitudinal modes
remain in the theory as subtle minima of the ac-
tion principle: In two dimensions these motions
appear as massless limits of the solutions to the
massive Euler equations, but cannot be derived
from the standard Euler equations if the masses
are set equal to zero before the variation. We

note that the string is an essentially nonlinear
system if the constraint equations are taken into
account; the longitudinal modes of the string be-
have precisely like kink solutions of a nonlinear
field theory, which enormously complicates any
attempt at canonical quantization of the indepen-
dent modes.

Qur eventual aim is to write down the full quan-
tum Hamiltonian and Poincare group generators
for the longitudinal plus transverse string oscilla-
tions in D dimensions, and then investigate posi-
tivity and Lorentz covariance for D =4. This prog-
ram remains for the moment incomplete, so this
work will concentrate on limited sectors of the
full theory.

We begin by deriving the Hamiltonian dynamics
of the massive relativistic string system. This
yields a system of particles interacting via a re-
lativistic potential which becomes linear in two
dimensions. Then we take the massless limit of
the massive theory, obtaining longitudinal modes
of oscillation. We thus find a more physical under-
standing of the motions proposed by Patrascioiu,
who used different methods. Qne section is de-
voted to showing the equivalence of our simplest
mode to Patrasgioiu's orthonormal-gauge solu-
tion. Working mostly in two spacetime dimen-
sions, where no transverse solutions exist, we
approximate the quantum mechani s of the lon-
gitudinal oscillations by using a semiclassical
Bohr-Sommerfeld approach. For the D = 2 string
with an arbitrary mass distribution, we find in
the massless limit a simple form for the Hamil-
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tonian in terms of action variables alone. The
theory of the kink solutions of the D = 2 string is
thus a completely integrable Hamiltonian system,
comparable in spirit to the classical system found
by Faddeev and Takhtajan' for the sine-Gordon
equation. Finally, using a gauge proposed by
Rohrlich' to separate the Newton-Wigner center-
of-mass coordinates of the string, we examine
the Dirac bracket algebra of the fully constrained
system and expose the difficulties of canonical
quantization. We do not find Rohrlich's simple
spectrum. An appendix gives the Dirac bracket
analysis and an alternative gauge-invariant ap-
proach to the oscillators of the constrained system.

dx 6x 6~x

d7. d7 d~

The canonical momenta

(1.2)

n I Axe
sx„, (-x, )/

obey the constraint

p +p. 0

(1.3)

(1.4)

and have canonical Poisson brackets (PB) given by

lP "(~),x'(~6= -A "".
In the timelike gauge

x'(~) = v. ,

the Hamiltonian becomes

pO (~p2 +~2)l/2

If we now take the limit p, -0 with p finite, we
find a finite Hamiltonian

even though the action functional vanishes. We
also recover from E(I. (1.3) the usual result that
for p to remain finite as the particle becomes
massless, the particle must move at the speed of
light,

x, '=0.
Another approach to the massless classical re-

I. MASSLESS LIMIT OF MASSIVE RELATIVISTIC SYSTEMS

Classical relativistic theories with points moving
at the speed of light require extra care in the def-
inition of the system. Here we review the theory
of a massless relativistic scalar particle, so that
we may later apply the resulting intuition to the
string model.

We take as our Lagrangian

p ( x 2)l/2

where

lativistic particle might be to consider the action
functional

r(x(= f *d,
( .,*)~,

7

where x "(r,) and x "(~2) have a lightlike separation.
If we prohibit paths connecting x"(v, ) and x"(v2)
which make (—x, ') & 0 at any point, then there are
no legal variations of the action functional; only
the single lightlike path connecting the two points
is permitted, and I(x] -=0.

We interpret these observations as an indication
that to find the correct Hamiltonian for a mass-
less classical system, it may be necessary to be-
gin with a massive system and take the limit as
the mass goes to zero.

(1.10)

II. THE MASSIVE STRING

G =x, 'x,' —(x, ~ x,)'.
We define

P"(~ o')=Ax", ( x, ') ' '-,

Z" (r, o') =[x",x,' —x",(x, ~ x,)](-G) ' ",
X"(~, o) = [x.x, '- x,"(x, x.)](-G)-'/',

(2.2)

(2.3)

so that we may write the canonical momenta as

6' (2 o') = =p (~ (x)+rK (~ o)n

5x~,
(2.4)

where neither p" nor E is a true canonical vari-
able. The nonvanishing canonical Poisson brack-
ets are

The Nambu action' describes a relativistic mass-
less string. Because points on the string can move
at the speed of light in this theory, the Hamilto-
nian may contain terms of the type found in the
preceding section, which do not follow from the
standard variational methods.

We are thus motivated to expand the techniques
of the preceding section and consider the theory
of a massive relativistic string. When the string
is massive, all points move with velocities less
than the speed of light, so the standard methods
may be applied without ambiguity to find the Ham-
iltonian. The Hamiltonian of the massless rela-
tivistic string is then found to be the smooth limit
of the massive Hamiltonian as the mass goes to
zero, as was the case for the point particle in
Sec. I.

The action for a massive relativistic string is
1 2 ~7l

S[x]= J d7 do[-(((, (-x„')' ' —y(-G)' '],
7' "0

(2.1)
which has been briefly considered by Chodos and
Thorn. ' x"(T,o) is a D-component field on (T, o)
space and
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((P"(T, v), x (r, v')) = -g"85(v —v'),

and 6'" obeys the constraint

6"+ 2y[((P ~ x,)'+](].'x, ']'~'+ y'x, '+ p,
' = 0

(2.5)

(2.6)

One can now compute the Poisson bracket of H in
Eq. (2.8) with Z[f]. We find

s(f (v) x.) s(P'. s(f (v) &)=, ~ sx.
'

sv ',y' sv

due to v reparametrization invariance. If we

choose a timelike gauge such as x'= v, we find
the Hamiltonian

fr 86)0 g + ggo g6)0

B[p,]= dv (P'(~, v)
do

dv(e'+2y[((P ~ x )'+ p, 'x ']' '
0

+ y' x.' + p ']'~' . (2.7)

$7I

dv 8[f (v)(P']/Bv =0 .
0

(2.14)

Equation (2.14) implies that Z[f ] is a constant of
motion. Hence we will be able to use 0 reparamet-
rizations to further simplify the theory.

At this point we may take the mass parameter
p -0 with 6'"(v, o) fixed, yielding the Hamiltonian

If= Jt dv[(p+yK)'+2y(p x J+y'x, ']'~'
0

(2.8)

for the massless relativistic string. This differs
from the usual massless string Hamiltonian

H =y do' K2+x
0

(2.9)

even though the action functionals appear to be the
same in this limit. To understand the difference
between these two formulations of the Hamiltonian,
we recall that the canonical momenta in Eq. (2.8)
are given by Eq. (2.4), where K ~ x, is formally
zero. When p=0, the two Hamiltonians are identi-
cal. However, as p,

-0, p(r, o ) need not be zero
in our formulation in any region of o for which
the string moves at the velocity of light (x, ' =0),
as is evident from Eq. (2.3). Our approach thus
makes it apparent that the string may have more
general motions than those considered in the stan-
dard treatment of GGRT.

The Nambu action is invariant under o repara-
metrizations as we11 as 7 reparametrizations.
Placing mass on the string as in Eq. (2.1) breaks
the 0 reparametrization invariance. However, the
theory described by the Hamiltonian (2.8) regains
the invariance. This may be seen by examining
the generator of o reparametrizations

y d -G/
0

(3 1)

describing a pair of point masses joined by a
string. Even for p, 0, this action is invariant
under the usual invariance group of v reparame-
trizations obeying o(r, 0) = 0, o(T, ]])=n ln the.
massless limit this theory corresponds to treating
the Hamiltonian (2.8) in a specific gauge. This
connection will be made clearer when we study
gauge transformations between equivalent sys-
tems in Sec. IV. For 0 &cr &m we find the equations
of motion

III. MASSLESS LIMIT OF A STRING WITH

MASSIVE ENDS

The general Hamiltonian for the string system
proposed in the preceding section incorporates
the possibility of many complex motions. To un-
derstand more clearly the properties of such mo-
tions, we devote this section to a detailed analy-
sis of the simplest sector of the theory with p(v, v)

0: We restrict ourselves to purely longitudinal
motion and allo&a only the end Points to move at
Ne speed of light in the massless limit. To illus-
trate the desired motion it is sufficient to consider
the simplified action

z[f]=J chf(«)tP «, .
0

(2.10)
K, +N. =0.

At the end points o=0 and a=ewe have
(3.2)

The function f (v) is arbitrary save for the con-
straints

f(0) =f(7f) =0, (2.11)

which follow from the requirement that the end
points of the string map into themselves. x "(T,v)
and (P "(g, v) transform under the action of Z[f] as

4 "(v) Z[f]]=f(v)x,"(v) (2.12)

(6'"(v), Z[f1] =s [f(v)(P "(v)] ~ (2.13)

P", (0)+yN (0.) =0,

p", (w ) —yN" (m) = 0 .
(3.3)

The variables P, K, and N are defined as in Eq.
(2.3). The conserved total momentum is

f' = d«6" P(0)«lP(«)«« i d«K, (=8 4)
0 0

and the conserved Lorentz transformation genera. -
tor is
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do ~ t6-x'6'
0

=«"(0)p (D) —«(0)p" (0)+«(«)P («) —«(«)P" («l«y J d«(««K —«&K )
0

A. Massive classical solutions

(3 6)

In order to solve the equations of motion, we must fix the gauge to eliminate arbitrary functions. Choos-
ing the timelike gauge

(3.6)

to fix the scale of v, we find the Hamiltonian

H= [p'( 0) +p']' '+ [ p'(1r) +i(.']' '+ r dr[ K'(o) +x,'(c)]' ' .
0

(3.7)

If we consider only longitudinal motions, so that we are effectively in two spacetime dimensions, then K
= 0, xT=g~q and x =g

~ giving

H=[p'(0)+p, ']' '+[p'(z)+p, ']' '+r jt do(x. ) .
0

The Euler equations (3.2) and (3.3) which we must solve are'

(3.8)

X~
so (»,2)i/2 =0 0&v& w (3.9a)

P XT PX~
(1 x 2)1/2 (x 2)1/2 (3.9b)

Using Eq. (3.9a) and o reparametrization invariance, we see that we can make x,(v, o) independent of a for
0& a & n, so that'

do[», i
= jx(r, n) -x(7, 0)i . (3.10)

The Hamiltonian (3.8) then becomes

H = [p'(0)+ u'1" + [p'(~) + u '1"'+rl »(~) - x(0)l (3.11)

We can check classical Poincare invariance of the two-spacetime-dimensional system by using Eq. (3.5)
to derive the boost generator

B—=M" = 7 (p(0) +p(m)) —x(0)[p'(0) + p, ']'/' —x(m)[p'(n) + i(, ']'/' ——'r( x(0) + x(m))( x(w) —x(0)( . (3.12)

Taking the total momentum P =p(0)+p())) from Eq. (3.4), we verify the Poincare group Poisson bracket
(PB) algebra

JLP,H) =0,

(B,p&= -H,

(B,H) = P. -
The Hamiltonian (3.11) therefore describes a classically Poincare-invariant system.

The solutions of the Euler equations are now of the form

«(«, «) = «(——)) (-((« —«.)*+«'/2)'+(«'/4 «u /r )"&'' (3.13)

in the rest frame, where P =p(0)+p(w) =0. For
—2 m& v & —,')) one chooses the (+) sign and sets r,
=0; this solution joins continuously onto the next
7 region as shown in Fig. 1 provided that for 2 n

& v& ~ m, one chooses r, = m and the (-) sign, etc.

We observe that at o =0 and o = m

(1-x, ')"= (w/'r)[(~ ~.)'+ p'/'r-'] " (3.14)

so that the first term in the 0 = 0, m boundary con-
dition (3.9b) remains finite as p, -0. For any p,
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0))g=x

~ ~ &~~
'~ ~

(
t

o'
L /'

7T

~ y'~ 2
~+ ~

/

\ p
~e—+—

4 7 ~

Oq )
2

~ OO ~ 0 ~ 0 = Q

x(w, ~)
I

+
72 7

the momentum of the end points is thus

p(o = 0, 7i ) =+ y(7 —r, ) . (3.15)

In Fig. 2, we plot P(0), P(m), and x,(o) as a func-
tion of v.

8. Massless limit

In the massless limit our Hamiltonian (3.8) with
the gauge choice (3.10) becomes

&=I p, l+Ip. l+y Ix, —x.l, (3.16)

where x, =x(v, @=0), etc. It is amusing to observe
that the potential energy in this Hamiltonian has
precisely the form of a one-space-dimension Cou-
lomb potential, so this system is closely related
to the two-spacetime-dimensional relativistic
"hydrogen atom. " Examining the p, 0 limit of
the classical rest-frame solution (3.13), we find

r =m/4 20' 1x(~, o) =+
(

& ——(I ~ —~.i
—-* ~), (3.11)

FIG. 1. Solution of the two-dimensional string equa-
tions with masses at the ends only.

while Eq. (3.15) for the momentum continues to be
valid. The resulting motion is pictured in Fig. 3.
This motion will be shown in Sec. IV to be identi-

0=X

7a
2
I

7m

2
I

p SCALE

I

2 8 2+

I

~O

~O

X~ SCALE

~ / L
1F ~
p ~ 2

~ '(

X(z, g)

~ oooo ~ p (Q)

p(~)
x (c ), aii~

~ 44444 g - Q

-———~ g =a/4

FIG. 2. v dependence of p(0), p (~), and x~(0) for the
string with massive ends.

FIG. 3. Massless-limit solution of the two-dimension-
al massive-end string.
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cal to the simplest longitudinal string mode pro-
posed by Patrascioiu. J= Adr, (3.21)

C. Action-angle variables and Bohr-Sommerfeld quantization
where the integral is around the path of Fig. 4 and
k(E) is the solution of

We now exhibit the center-of-mass momentum
P of the system by changing to the variables & =I '.P --kl+I-.'P+kl+ylrl. (3.22)

P =P0+P

R = —,'(x, +x,),
k =-'(u, -~.},

Xfl X0 ~

(3.18)

The result is

1
(E2 P2)

y
(3.23)

Then the Hamiltonian (3.14) becomes

&= I zP -kl+I 2P+kl+ylr I

Hamilton's equations now tell us that

r =
ak

=e(k —2P}+e(—k+ 2P), -

~Hk= ——=-ye(r),

(3.19)

(3.20)

The invariant mass squared is thus

M =—8 -P =yJ, (3.24)

and J is manifestly Lorentz-invariant.
The Bohr-Sommerfeld approximation for the

quantum-mechanical energy levels of the center-
of-mass system is simply

M'=yJ =2mhy(n+ const), n =0, 1,2. . . . (3.25)

where e(z) =(algebraic sign of z) =z/Iz I. When we
plot the motion in ~ for arbitrary initial energy H
=E and momentum P, Eq. (3.19}generates the
closed phase-space trajectory of Fig. 4. In the
rest frame the total momentum P vanishes, and
the vertical lines at constant r in Fig. 4 disappear.

We now define the action variable

k

(2lk,„l+ylr I) )))(r, t) =t)dy(r, t).

Here we may represent Ik,~l as

(3.26)

The mass-squared spectrum of this sector of the
longitudinal massless string thus rises linearly
with n in this semiclassical approximation.

The exact quantum-mechanical mass spectrum
of this system is presumably given by setting P=O
and examining the integral equation

I E
/

Ik,~l g(rt) = f dr, 'G)r, r )g(e', t), '

where

(3.2'I)

G(r, r')= lim — dkkcosk(r r')e '-
E+0 ~ 0

I

0 I

I I

I
—(E-P)

I

I

))-- p )I

2

/
J'

I

2

(3.28)

and P denotes the principal value.

D. Lightlike gauge

Throughout the preceding treatment we have
employed the timelike gauge x'= 7. Since the
usual GGRT analysis is conducted in the lightlike
gauge, one might ask what happens when we use a
lightlike gauge to study longitudinal modes. De-
fining x' = (x'+ x)/v 2, let us begin by choosing the
gauge

x'(v, e) = 7. (3.29)
FIG. 4. Phase-space orbit of the massless string with

Hamiltonian (3.19). The arrows give the direction of
increasing time.

In the x, -uniform gauge the action (3.1) then yields
the Hamiltonian
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0 m'

where we have written

p, =p'(~, v =0)& 0, p, =p'(T, v = w) & 0,

x, =x (~, v=0), x, =x (v, v=m).

Now we define the total (+) momentum

P —=P+=P0+P,

(3.30)

(3.31)

(3.32)

and make the canonical transformation (3.18) with
null-plane metric variables replacing the timelike
variables. The Hamiltonian then becomes

A. Orthonormal gauges

We begin by reviewing the properties of the ortho-
normal gauge. We recall that the orthonormality
conditions

x '+x '=0

x„x,=0 (4.1)

allow the massless string Euler equations to be
written as

normal-gauge analysis and show that his solutions
can be mapped identically into ours by an appro-
priate gauge transformation.

The invariant mass squared is simply'

2

M'=2PII =, ++2ylpl, IxI~4

where the transformation

K=4/P, p =rP

(3.33)

(3.34)

(3.35)

x,",-x P

x",=0, at o =0, m.

(4.2)

(4.3)

These equations can then be solved in the form

s 1
x~(T, v) =q~+ + — —n„"cosnv e '"'

ry ry. .n"
(4.4)

has eliminated all reference to P and made Lo-
rentz invariance manifest.

It is clear that the p. -O limit of the lightlike
gauge description of this system is quite patho-
logical, in contrast to the timelike gauge. How-

ever, the semiclassical spectrum of M' agrees
with that found in the timelike gauge. We can see
this explicitly by calculating the action-angle vari-
ables for p, 10 using the standard techniques. We
find the result

J=2P
&y (&-2p /&J')

dy 1—
0 P E yr-

subject to the constraints

L, =2 g o. o. +-,'P'=0,

L„=2 g n n„„+P~ o.„=0.
(4.5)

6'"(v, v) =yx,"(T,o). (4.6)

If we take the nonvanishing clanonical PB of the
Fourier components of x" to be

In the orthonormal gauge the canonical momen-
tum is simply

1 i+~
2Pgz —2p, 2 lny- 1 —a

M(M' -4p')'~' —4p, ' ln —+,—1
2p, 4p, '

(3.36)

where

lo. ", o.„']= —ivryg"'m6

then the equal-7' PB of 6'" and x' are

Here

h(v, v') = Q [5(v -v''+2nm)

(4.7)

(4.8)

2~&/EP )~/2 (3.37)
+ 6(v +v + 2B1T)] (4.9)

The variable J is well behaved as p,
2 0, giving

1V1 —2PE —yJ, (3.38)

so the Bohr-Sommerfeld quantum spectrum is the
same as in the timelike case.

is just that modification of the periodic 5 function
necessary for compatibility with the boundary con-
dition (4.3).

B. Simple longitudinal motions

IV. COMPARISON TO ORTHONORMAL-GAUGE RESULTS Patrascioiu has observed that a general solution
to Eqs. (4.1)—(4.3) is

The motion shown in Fig. 3 strongly resembles
a class of solutions to the massless string studied

by Patrascioiu' in a timelike orthonormal gauge.
In this section we will review Patrascioiu's ortho- x(v, v) =a+ [f (7+v)+f (T —v)]

27ry

(4.10)
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provided

f '(v. +2rr) =f '(v),

[f (~+a)]'=[f (~-a)]'=1,
where f '(z) =Bf/Bz. We note that

6'(v, v) =yx,

(4.11)

~ periodic

[f '(v+o)+f'(~-a)],

xo(7, v) = [f (r+v) —f (r —(7)].
27ry

(4.12) I I

0
7

2'

The conserved total momentum may thus be writ-
ten as

do 6'(r, v)
FIG. 5. Plot of periodic absolute-value function,

Eq. (4.14).

= —[f (~+ rr) —f(v' —rr)]2' (4.13) where

for arbitrary 7'.

Suppose we now choose the simplest rest-frame
solution

.[(-1)"-1],

Co= 27K.
1

(4.15)

a—= ai'i = -Z/2y,

f(z)=-f"(z)=lzl„„.„,= g c.e'"',

ai'& =f i'i = O,

(4.14)

We now show that this motion is precisely that
shown in Fig. 3 and examined in Sec. III as the
massless limit of the string with massive ends.
Working from the plot of f (z) in Fig. 5, we may
construct e (v, o), x(v, o), x,(v, o) for appropriate
values of v to find the motions presented in Fig. 6.

0.

I I l~

77r
2

3m'7-—
2

77r
2

37r
2

I I I~

Xg

I-

p ~

7r 07 7r 0 vr/2 7r 0
I I I~ I I I I I~ I- g

0 7r- p 7r/2 7r 0
7-7r 27r 7 27r-7

7=7r/27=0&E 0&7&7r/2 yr/2&7 & m' 7= a+6' vr&7&3w/2 v ~3m/2 $7P/2 &7&2&

FIG. 6. Plot of 5', x, x~ versus 0 at successive values of 7 for simplest rest-frame solution of orthonormal-gauge
string equations.
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x(r, o) = x(~, o(~, o))

and taking the 0 derivative

(4.16)

(4.17)

Now suppose x, is in the orthonormal gauge (uni-
form 6'0) but xs is indejendent of o (uniform-x
gauge). Then we can evaluate the integral imme-
diately, finding

We can thus see directly how this solution con-
trives to have 6'x, = 0 without forcing either 6' —= 0
or x, =—0. If we follow the motion of the end points
in Fig. 6, we find that the end points of our solu-
tion, shown in Fig. 3, follow the same paths. The
motion of the end points is physical and cannot be
gauged away, so we conclude that the physical
meanings of the two pictures are very likely the
same.

The motions of the interior points in Figs. 3
and 6 differ because this motion depends on the 0

gauge chosen. We can complete the identification
of the two systems by making a 0 reparametriza-
tion which maps the orthonormal gauge into the
uniform-x, gauge. The appropriate transf orma-
tion is found by requiring

regions of x in Fig. 6 into the end points 0 =0,
v=a of the new system. For example, when 0
&7'& 2n, o vanishes for the entire interval 0&0& v,
where x, =0 and 6'10.

If we define the momentum accumulating near
an end point as

7I/2

p, (v) = do t(o)
0

(4.21)

in the orthonormal gauge, we see from Fig. 6 that

P, increases linearly with v for 0& 7& 2 v. In the

x, -uniform gauge, 6'(o) vanishes except at o = 0, gr,

so 6'(o) necessarily becomes proportional to a 5

function at the end points. P,(T) is thus precisely
identifiable with our end-point momentum (3.15),
which does indeed change linearly with time.

In Fig. 8 we plot the new functions 6'(o), x(o),
xz(o) versus o and v. Comparison to the proper-
ties of our solution (3.17) for the p, - 0 limit of
the massive-end string shows that the motions
are identical. Having demonstrated the equiva-
lence of the orthonormal gauge and x,-uniform
gauge treatment, we remark that the latter ap-
proach has a more obvious physical interpreta-
tion; the system consists solely of massless point
particles interacting via linear potentials.

&J

o(v, o') = F(v) dp x~(7, p),
0

(4.18) C. Longitudinal Fourier components

o(r, 0) =0,

o(r, m)=m,
(4.19)

where F(T) =(x-,) '. The requirement that the end

points stay fixed,

Because of Eq. (4.11), the longitudinal solutions
are not linearly superimposable and behave like
kink solutions of a nonlinear field theory. In fact,
if we identify the coefficients in Eq. (4.4) with
those in Eqs. (4.14) and (4.15), we find

then fixes the function F(v) uniquely, giving
q=P =0,
i n„=Eve„=—[(-1)"—1],

(4.22)

Jo dpxp(v, p)
(4.20)

Taking x,(7, o) from Fig. 6, we plot a(T, o) in Fig.
V.

The effect of this transformation is clearly to
map the finite-width plateaus in 6' and the zero

so that the extraction of quantizable amplitudes
from the Fourier coefficients of the classical
solution is nontrivial.

It is instructive to note that the solution (4.22)
satisfies the constraints (4.5) in an unusual non-
linear manner. For L, we find

0
)&

7r-

7r 0 7 vr-7m 0 7r/2 ~ 0 vr-7 7 7r 0
I I I~ I

m' 0 7-7r 7r 0 7r/2 7r 0 27r-7 7r
27K-7 7-7r

7=0 0&7&vr/2 7 =7r/2 7r/2 &7& vr 7-7r m'&7 & 37r/2 7=3~/2 3~/2&7&27r

FIG. 7. Mapping from orthonormal-gauge parameter o to the x~-uniform-gauge parameter 0(~, o) at successive values
of 7'.
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0'

yT

)I-y-7T

2
~ y(7r-7)

-y(&-7r)
l~

y(7-Tr)
r

"-y(m'-7)

y (27r-7)

"-y(7-27r)

X
)i il

2 2

2
I

5aT-—
2 I

0-

0 0

2Tl- 7F

7r 0

-I
I

Q 7r 0

2T 31r

2Y
'rr

7=0+6 0&7&7r/2 7=7r/2 7r/2&7 &7r 7 -"7r+g 7r &7&3~/2 7 =. 3m'/2 37r/2 &7& pvr

FIG. 8. Plots of p, x™,xp in x~-uniform gauge versus o at successive values of 7. Heights of 5'(0), (p(x) give the
coefficient of the appropriate 6 function.

2p' 7'
2Lp= E2 ~ &m& m

—&
m &0

=4 —
2 1 —-1 m —p2

m -1

=6g(2) —w'=-0, (4.23)

1 1 1 1

m(n —m) n m n —m
(4.2f)

and the fact that (- 1)"'"= (- 1)"to prove that
there is a cancellation of terms in the sum which
makes L„=-O.

D. N-fold longitudinal solutions

%e saw in the beginning of this section that the
simplest longitudinal solution (4.14) of the con-
straint Eq. (4.11) corresponded to our solution
(3.17) with only the end points of the string mov-
ing at the speed of light. More general solutions

where g(n) is the Riemann g function. Examining
L„,n+0 we see that

2r' r'
f'n= ~a g &m&n m

m ~p, n

=[1+(-1)"]Q, (4.24)
m &p, n

which vanishes trivially for odd n. For even n
one may use

for f (z) give longitudinal motions with arbitrary
numbers of interior points moving at the speed
of light.

The only restrictions on f '(z) are that it be pe-
riodic and have unit magnitude. If we confine our-
selves to the rest frame P=O, then Eq. (4.13) im-
plies that f(z) itself has period 2w. Wherever
there is a discontinuity in the slope of f (z), there
is a point moving at the speed of light; we will
hereafter refer to these points as "folds."

In Fig. 9 we depict f(z) for a mode which has N
folds; for simplicity, we have chosen f(z) =f(-z)
so that the initial o positions

Cn, n=1, . . . )N

of each discontinuity are identifiable with the in-
itial position of each fold. For this solution the
initial momentum density 6'(0, a) vanishes for all
o. More general choices for f(z), with f(z)
0f(-z), have 2N free parameters giving nontrivi-
al initial momentum configurations.

V. HAMILTONIAN APPROACH TO N-FOLD MODES

In the preceding two sections we examined the
Hamiltonian for longitudinal oscillations of the
string with end points only moving at the speed of
light and related that motion to a particular solu-
tion of the orthonormal-gauge string equations.
Motivated by the existence of N-fold solutions in
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Vj Xy Xo

J2 X7). X$

R =-,'(x, +x, +x,),
and

(5.4)

C) C~''' CN &

FIG. 9. A more general solution f (a) of the con-
straints (4.11). The projection on the vertical axis
represents a string at T =0 with N folds moving at the
speed of light.

4 = s(- 2po+p, +p.),
I.=k( po-p,-+2p.),
P =Po+P, +P„

we find that the Hamiltonian takes the form

&=I-', I' -&, I+I-,'&+&, —&. I

+I —,'&+&, I+ylr, l+ylr, I

(5.5)

(5.6)

the orthonormal gauge, we now turn our attention
to the Hamiltonian description of longitudinal
string oscillations with N interior points moving
at the velocity of light.

For pure longitudinal modes the Hamiltonian
(2.8) can be written

H(I'=o) =~=I&, l+I&, -+, I+I@, l

+ yl r, I + yl r, I (5.7)

Yet another set of interesting variables is the
choice

Hence in the P =0 frame the Hamiltonian reduces
to

do'[I p(~, o')I+ yl x,(r, &)I],
0

(5.1)
(5.8)

where a e gauge remains to be chosen. We argued
in Sec. II that p(v, o) remains nonzero in the mass-
less limit only in those v regions where the string
moves at the velocity of light. By making a suit-
able choice of o gauge, we may write H in the
form

In this case

~=-'I&, ++ I+el~, -& I+I& I

+ylx, +x I+ylx, —x I. (5.9)

N+1
II= Q I p„l+y Q lx.„—x.l,

n=o n=p
(5.2)

To proceed with the Bohr-Sommerfeld quantiza-
tion, we must analyze the most general periodic
motions in phase space. We begin by choosing the
initial conditions

where x, =x(v=0), x„„=x,=x(&r=a), and similar-
ly for P, and Pz+, . Here x„(v) labels the nth point
moving at the velocity of light along the string,
and p„(7) its conjugate momentum.

In this section we will first analyze the motion
and action-angle variables for the one-fold mode.
Then we give the form of the general N-fold Ham-
iltonian expressed in terms of action variables
alone.

A. One-fold mode

The string with one interior point moving at the
velocity of light is described by the Hamiltonian

&=I p. l+I p, l+Ip„l+ylx, -x. l

k, =k, =0,

Ale
V j

mr
' (5.10)

ynr, =(w-c) —,
77r

'

where m is the rest mass and c corresponds to
another constant of the motion. This particular
choice of initial configuration is suggested by the
type of one-fold orthonormal-gauge solution dis-
cussed in Sec. IV D for which all momenta initial-
ly vanish. Hamilton's equations of motion deter-
mine the subsequent periodic motion of the sys-
tem, which we plot in phase space in Fig. 10. If
we calculate the action-angle variables in
(x„k„.x„k,) space, we find that 8, and 4, are in-
dependent of c:

+ylx, —x, l. (5 8)

It is convenient to rewrite the above in terms of a
set of relative coordinates and momenta. Defin-
ing the new coordinates and momenta

k,«, =~2 2r

J, = k,dr, =m' 2y.
(5.11)
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This is expected because of the exact symmetry of
the Hamiltonian (5.V) under 1 2 interchange.

A typical phase-space diagram in (k„r,) space
is given in Fig. 11. The exhibited 7 sequence of
numbers corresponds to the initial conditions
(5.10). The action variables J, and Z computed
by integrating over these phase-space orbits de-
pend explicitly on c; moreover, the regions 0&c

3 7t 3 m & c & —', m, —,'m & c & m must be treated separate-
ly. For arbitrary c one finds the result

m'J, = Q, dr, = ——,+g c (5.12)

where

7 c c 3 c 2 c
g(c) =- —— ——1 +- +

2 7T 7T 2 7T 3 1r 3

9 c 2

2 7 3
1

7r 3
(5.13)

We plot J, vs c in Fig. 12. Now we may eliminate
the constant of motion c to determine M' uniquely

ki
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7
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(a) 12 I3 l4~ ~~
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I
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I
l,2, I6

l ~r 3

6 5 4
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(b)

7

Q8
I

2
I

r 9I

)4
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'2

(b)

Q9
//I

y/
gl

/g
//

/y
IO ~r

76psee~me~ ~~
/
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/
II4 l5 l6

]/
]/

//
//

5./II3

) QI2 I I

FIG. 10. (a) Phase-space orbit of one-fold system
projected on the (k &, r&) plane; (b) projection on the
(k2, &2) plane. Numbers label sequential configurations
in T.

FIG. 11. (a) Phase-space orbit of one-fold system
projected on the (k+, x+) plane; (b) projection on (k, & )
plane. Coincident paths are displaced for clarity; num-
bers label sequential configurations in w.
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in terms of J„with the result

M'jy=m'jy=J, +J =J, +J', . (5.14)

B. N-fold modes

We have shown in our explicit analysis of the no-
fold mode that

Ic = 2 7l' (5.15a)

J', and J are clearly interpretable as normal
modes. We see that when a(P = 0) = M = (yJ)'~',

while for the one-fold mode

(5.1"I)

then

J =0, J =m jy. (5.15b)

H(P=O) = M =[y(J +J' )]' '

= [y(J, +J,)]'~' . (5.18)

c=0 or c=m

then

J,=m'jy, J =0.

(5.16a)

(5.16b)

In this case the end points move exactly as in the
no-fold problem of Sec. III; the "center" point
attaches itself alternately to one end point or the
other, always remaining on the right side of the
string (or always on the left side). In this case
there are no folds in the string. We plot these
normal-mode motions in Fig. 13.

The motion consists of the center point oscillating
in opposition to the two ends, which remain coin-
cident throughout the motion. This is a complete-
ly folded string. When

dv'6'(r, o)x,(v, o'). (5.19)

J+ was identifiable with a normal mode indistin-
guishable from the no-fold motion described by
J; J corresponded to a double cycle of the com-
pletely symmetric folded mode of the one-fold
motion, as can be seen from Fig. 13. It is clear-
ly of interest to know whether similar expressions
hold for arbitrary P and for an arbitrary number
of folds. We will now show in fact that for X folds,
the Hamiltonian can be written in terms of P' and
a sum of appropriate action variables alone.

We begin by defining the local action variable

J(~)= f P(v;v}dx(7;v)
one period

J'+ (c) Jl
y
2

2
9

(a)

I I 2
3 2 3

In the timelike orthonormal gauge of Sec. IV, 6'
= yx, and x(r, o) is given by Eq. (4.10). Then we
may consider the direct sum of all the action vari-
ables, which we write as

$'tr 1 17I

do J(o) = — dr do 4"(7., o)
0 & "-7t

g2 'lr

dv do [1 f+'(v+)fo'(T —&r)] ..

(5.20)

In the last line we have used Eqs. (4.11) and (4.12).

(c) &(

E
2

(b)

7
9

I I

I I 2
3 2 3

(a) (b)

x(cr =0)
x(o = c)

-- —x (0. = m)

FIG. 12. (a) The action variable J+ as a function of
initial condition c; (b) the action variable J .

FIG. 13. (a) x-space motion for c=~/2, a pure J
normal mode; (b) x-space motion for c = ~, a pure J+
normal mode. Note that in case (a) the system returns
to its initial configuration in half the time required by
case (b).
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Changing variables from (v, o) to (v+o, T —o) and
using Eq. (4.13), we find

f dv J(v) =

%'e now subtract the contribution of the transla-
tion mode action variable [see, e.g. , Eqs. (3.18)-
(3.19) or (5.4)-(5.6)]

J~~= PdR =2P y,

obtaining

J'„=2vk(I„+const), L„=O, 1, 2, . . . . (5.28)

The Hamiltonian describing the motion for any
number of folds, given appropriate initial condi-
tions, is then

(5.29)

Defining 8„(r) to be the canonical conjugate to
J„(v), we find from Hamilton's equations

middle, J, with two folds, etc. The Bohr-Sommer-
feld quantization rule is

M = E —P = y do' J((r) —J~~
0

(5.21) ~ 8Q ny
m„—= 6)„= - =—= constant .

n
(5.30)

This argument extends trivially to D dimensions,
with the result

D-j.
M'=E'-P'=y g ~ dot;(v) —2P'.

i=x
(5.22)

In two spacetime dimensions we may revert to
the x,-uniform gauge and write Eq. (5.21) as

M' = y Q J„,
where

(5.23)

Jn= k„dr „
complete cycle

(5.24)

nr
cn= -- .~

n=1, 2, . . . , NN+1 (5.25)

undergoes N+1 identical cycles while the no-fold
variables finish one complete cycle. The appro-
priate Bohr-Sommerfeld quantization applies to
the variables

1
Jn= —J„= ~~ P„dg„,

~ single cycle
(5.26)

and (P, R;k„,r„) comprise a complete set of can-
onically conjugate pairs of variables.

We saw in the one-fold problem that a particular
choice of (0„,r„) makes one of the J'„'s (J+) a pure
no-fold variable, the other (J ) a pure single-fold
variable. In addition, the no-fold variables (k„r+)
went through one cycle while the single-fold vari-
ables (k, r ) went through two complete cycles,
as seen in Figs. 11(a) and 11(b). It is easy to con-
vince oneself that the completely symmetric N-
fold string, with orthonormal-gauge initial o con-
ditions

Thus

8„(r) = 8„(0)+ y (5.31)

where 8„(0) is a constant of motion. Since H is in-
dependent of 8„(r), each of the Z„'s is also a con-
stant of motion. Thus we have been able to ex-
press the N-fold string problem as a completely
integrable Hamiltonian system. Equation (5.29)
for the two-dimensional string parallels exactly
the Faddeev-Takhtajan Hamiltonian' for the clas-
sical sine-Gordon equation; both give the com-
plete solution to their respective nonlinear clas-
sical systems.

VI. TOWARD CANONICAL QUANTIZATION

Although we have completely solved the classi-
cal longitudinal string, the quantum theory does
not follow trivially from the diagonalized Ham-
iltonian (5.29). Even the no-fold Schrodinger
equation (3.26) could not be solved for the exact
quantum spectrum. Motivated by the desire to
have local commutation relations among 6'"(v, c)
and x"(7', o), we devote this section to a timelike
orthonormal-gauge treatment of the string con-
straints. The constrained oscillators in two
spacetime dimensions should then determine the
canonical properties of the longitudinal string mo-
tions.

The first step is to separate the over-all center-
of-mass variables of the system from those de-
scribing the intrinsic motion. In the lightlike
orthonor mal gauge

where the integral in Eq. (5.26) is over one cycle
in the (k„,r„) subspace instead of one cycle in the
full phase space. We thus take the standard over-all coordinate variables

(6.1)

n Jn, (5.27)
q(' =M ('+/P+ (6.2)

n=l

where J, represents a pure no-fold string, J, is
associated with a string having one fold in the

commuted with one another. Unfortunately, as
we saw at the end of Sec. III, treating longitudinal
oscillations in the lightlike gauge is exceedingly
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difficult. In the timelike gauge

x' =P'~/~y,

6"=Po/11 (6.3)

the form

M""=q1'P" —q'P~+S1", (6.11)

then the definition (6.5) of Q" is an identity if

the coordinates are

Q~ M ~o/Po (6.4)

These Q's do not commute (except in two dimen-
sions), and hence are unsuitable center-of-mass
coordinates; nevertheless, this system can be
mapped directly into the lightlike-gauge variables
using DDF variables, "with the result that the
transverse seeIors of the string in the two gauges
are equivalent. "

Here we investigate a timelike gauge condition
used by Rohrlich' which produces appropriate
commuting (Newton-Wigner) coordinates for the
string's center of mass. The fully constrained
Dirac bracket system does not seem to imply the
simple quantum spectrum postulated by Rohrlich.
By going to two spacetime dimensions, we are
able to exhibit clearly the complicated nature of
the longitudinal modes appearing in the classical
system.

S ~"P,-PS~'=0. (6.12)

Taking J' = —,~" S'" as the independent components
of 8"", we see that the constraint (6.12) implies
the usual Wigner representation of the classical
boost:

M"'=(N);= (-P"Q+p, ) (6.13)

(6.14)

Thus Eq. (6.12) implies that the constraints on the
Fourier components (4.4) necessary to give New-
ton-Wigner q's are

For massless states this formalism is modified to
replace Q and T by appropriate massless-particle
variables. "

In any orthonormal gauge the spin matrix S"'
for the string model takes the form

A. Newton-Wil, ner coordinates g„—= n„'(P'+P) —c.„P= 0 (6.15a)

In order to illuminate the canonical properties
of the orthonormal-gauge Fourier coefficients
(4.4), we wish to separate out the Newton-Wigner
coordinates Q" of the center of mass. A general
expression for Q" is

along with

qp=0. (6.15b)

The analogs of the gauge conditions (6.1) and (6.3)
on the canonical fields are

P~m'"P
P 1/ + P

P'+P P(P'+P) PP'(P'+P) '

where

( P2)1/2 [(Po)2 P2]1/2

(6.5)

(6.6)

m'I'P
xo(v, a)(P'+P) —x(~, o) ~ P—," = P(P'+P),—P vy

(6.16)

(M"' P"i =g""P"-g P"

fM"' M )=g" M —g M" +g" M '
-g "m"~

we find

lqu q] —0

(qp pn) pn on pP

(6.7)

(6.8)

(6.9)

P' is seen to act as the Hamiltonian, since

(Q, Pof= T/P' (6.10)

is the velocity of the center of mass. If M"' has

and Q'=-0 defines Q" as a timelike-gauge variable.
Using the canonical Poisson-bracket algebra of
the Poincare group,

6'o(v, v)(Po+P) —P ~ 6'(7, o) = P(P'+P) .—

B. Dirac brackets

The canonical Poisson brackets (4.7) are not
compatible with the constraints (4.5) and (6.15).
However, one may define modified brackets —the
Dirac brackets" —which are manifestly consistent
with the constraints. In the Appendix we define
and calculate the Dirac brackets for the Fourier
components of the string in the Newton-Wigner
gauge; we also present an alternative technique,
using gauge-invariant variables, which yields
equivalent results.

The computations in the Appendix give the follow-
ing formulas for the Dirac brackets, distinguished
hereafter by an asterisk:
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(q", q'} *=0,

{q~ P")*=g~ -g'"P "/P'
(6.17)

{u', up*= —imy5'lm5 „+mn(Plu„'+ T„P—u'„+„T )( lyl) 2+ mn u'„P'(U V—)- g V,u', (lly)'
)wp, m

-mnu' P'(U„—V„) —g V, u'„, (wy)2 —2mn(lly)' g T,u„',u'„„, ,
~wp, n f Ap, m, -5

(6.18)

(6.19)

Here T„,U„, V„are defined in the Appendix. Since
the constraints (4.5) are now strongly valid, we
are free to define

P =0, H=M, for simplicity:

(P, q)2 = —1,

M'=-P'= u .n
m&p

(6.20) (q, e)*=P/a= 0,

even though cy„' contains implicit M' dependence;
similarly, we may now take (a, u„j+= '

Jf=Pa = ( I '+I')" (6.21) (6.25)

as a dependent variable. Equations (6.17) indicate
that canonical quantization is straightforward for
q and P. Unfortunately the Dirac brackets (6.18)
and (6.19) are so complicated that canonical quan-
tization is decidedly nontrivial.

{q) utl) 2pg2 g i ulu1l-l
)~p, n

(P, u„)+=0,

C. Two-dimensional system

In two spacetime dimensions the only simple
solution of the constraint equations (4.5) is

Even in two dimensions we see that canonical
quantization of the longitudinal modes will be dif-
ficult.

n"=0
n

P9 „=0, (6.22)
VII. CONCLUSION

so x" has only translational degrees of freedom,

x'=
ry

(6.23)

The Newton-Wigner coordinate (6.5) becomes
simply

pp (6.24)

However, the Dirac brackets (6.18) evaluated in
two dimensions indicate that a highly nontrivial
Hamiltonian system still exists if +„=0 is ex-
cluded. These brackets presumably give all the
available information about the classical Hamil-
tonian dynamics of the longitudinal modes. We
exhibit the brackets of n„'—= n„ in the rest frame

We have investigated the massless limit of a
model for the massive Nambu string and have
found that we recover longitudinal modes of oscil-
lation excluded from the GGRT treatxnent. These
oscillations are kink-like, not linearly superim-
posable, and are identifiable with those proposed
by Patrascioiu.

The model was examined in detail in two space-
time dimensions and the Hamiltonian expressed in
terms of normal-mode action variables alone.
The resulting theory was a completely integrable
classical Hamiltonian system. The Bohr-Sommer-
feld approximation to the quantum mechanics gave
a linear, integer-spaced, mass-squared spectrum.

Finally, we separated the simultaneously mea-
surable Newton-Wigner coordinates of the string
center of mass and examined the Dirac brackets
of the oscillators occurring in the fully constrained,
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orthonor mal-gauge system. The brackets exhibit
complex structure for the longitudinal mode oscil-
lators even when we go to the rest frame in two
spacetime dimensions. Our attempts to find an
oscillator canonical quantization procedure have
so far failed. Nevertheless, the no-fold Schro-
dinger equation (3.26) and its many-fold analogs
give a nontrivial quantum mass spectrum for the
string in two spacetime dimensions. At present
we are still far from our goal of solving the quan-
tum mechanics and checking the Lorentz covari-
ance of the D=4 string in the presence of longitu-
dinal modes.
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(A2)

It is clear that the Dirac bracket of a canonical
variable with any one of the constraints vanishes
identically.

For the case at hand, the set of P„'s is given by
Eqs. (4.5) and (6.15),

(4'n) =(~n &a~ o~ n&oitn&o~ C ~a'n&0)= 0 (AS)

We exhibit below the matrix C„s defined by (Al)
with Q„given by Eq. (A3), and its inverse C '„8.
Defining

The Dirac bracket of two canonical variables A and
B is then defined as

APPENDIX

1. Dirac brackets
nwy(V+M)M

'

(A4)

The canonical Poisson brackets of a constrained
system can be replaced by Dirac brackets" which
are compatible with all constraints. Let us denote
by (P„), $„=0, the entire collection of constraints,
and write the PB of any two constraints as

n„O
U = ——"T

n H n 0

H-M
~n H~ +n n 0

C s=(4 48). (Al) we find

Ln)O IO Ln&O Rn&O

—Q 0
2

Cn&O

1/T,

IO

I &O

—n, 1/T„

1/T, —u',
Ql 0

«2

C~8=$$~ ps) (A5)

S'm& O

Rn', 2/T,
2/T,

q0 H n, a ~ ~ ~ -Rn, -Rn0 0 0 0 0 -Rn, -Re,

gm&O 1/T 2 2/T,

2/T, Rn',
Rn',
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Ln&p Lp

V 2

Ln&p

2T-2

8'n& p Cfp 8'n&p

L,p

Lp —V —V

V, 2T,
-V -V ~ ~ —U, —U, 1/H -U, —U,

L &p 2T2

C 'q= (A6)

gm&p

Q'p

8m&p
T2

U 2

U, T,

U,

U2

T-2

=0

Using C '„8 and Eq. (A2) we obtain for the Dirac brackets the formula

(A, B)*= (A. , B)—(A, L„)V „(Lo,B)+ (A. , Lo) V (L „,B)—(A, L „)2 T„(L„,B)

-(A, L )T„h„,B}-(A,L.) (q', B)+(A—, L,)U„(~ „,B)

+(A, q'} —(L„B)-(A,g „)U„(L„B}-(A, g „)T„(L„,B). (A7)

Here the implicit sums over n exclude n =0. Equations (6.17), (6.18), and (6.19) in the main text follow
directly from Eq. (A7).

2. Gauge-invariant oscillators

A simple extension of the concepts introduced in Ref. 11 allows us to construct gauge-invariant classical
oscillators obeying the Newton-Wigner gauge constraints (6.15). The Newton-Wigner coordinates Q" given
by Eq. (6.5) are already gauge-invariant, and satisfy Q'=Q. The analogs of the DDF variables" are given
by

r7r dX "(8) . X'(8)(H+M) —X(8) P M+P„/H-
M(H+M)

(A8)

where in any orthonormal gauge X"(8) may be ex-
pressed in the form

crate the gauge transformations. In addition, A„"
itself obeys the Newton-Wigner constraints (6.15a),

X"(8) =q" + + —Q —u„"e-"Pe g 1

n~p
(A 9)

—.'y[x~(m) -x~(- ~)] =p~. (A10)

All of the arguments in Ref. 11 may now be
imitated to analyze the properties of A„". The
first result is that A„" is invariant under the ac-
tion of the Virasoro constraints (4.5), which gen-

This expression and Eq. (4.7) define the canonical
Poisson brackets of X"(8), and hence the canonical
properties of A„" are determined. Note also that

Ao(H+M ) —A„~ P = 5„,M (H+M),

where A„" with n =0 is just the momentum:

(A11)

(A12)

The canonical brackets of A„" and Q" among them-
selves are identical in form to the Dirac brackets
(6.18) and (6.19) of n„", q", and P". Unfortunate-
ly no explicit solution of the Virasoro constraints
obeyed by A„" is known, so that the quantum analy-
sis of the closure of the Lorentz algebra cannot
be carried out.
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