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The isospin structure of the three-pion-to-three-pion scattering amplitude is studied using a generalization of
the tensor analysis which is we11 known in two-pion scattering. This leads to a natural definition of the
various 3m-to-3m isoscalar amplitudes, a simple deduction of the consequences of Bose statistics for these
amplitudes, and a straightforward technique for carrying out the isospin reduction of the full scattering

amplitude and corresponding scattering integral equations without the use of recoupling techniques. Our

general results are applicable to a very wide class of three-pion scattering integral equations; however, we only

consider in explicit detail the so-called K-matrix formalism. A new derivation of the latter is given specifically
for 3m-to-3m scattering in order to illustrate the generation of connected-kernel scattering equations for three
identical particles without the usual introduction of (interim) unphysical operators and amplitudes which are

defined in terms of the interactions of specific particles.

I. INTRODUCTION

Some years ago Basdevant and Kreps' made
the first serious attempt to understand the reso-
nant states of the three-pion system, such as
the &, in terms. of a particular model for
3n-to-3m scattering. Given scattering integral
equations for the 3v-to-3n amp1. itudes in each of
the four three-pion total-isospin states one iden-
tifies the appearance of a 3w resonance with a
relative maximum (for real energies) or a pole
(for unphysical energies) in the inverse of the
Fredholm determinants of these equations as a
function of the total c.m. energy.

The basic physical. picture, apart from all of
the poorly understood approximations introduced
to obtain tractable integral. equations, underlying
the model of Ref. 1 is the idea that elastic 3z
scattering could be viewed solely in terms of the
pair-wise (off-shell) scatterings. Given the full
two-pion (off-shell) amplitude as input, one is
then left with a standard three-particle description
of the entire scattering process. While this pic-
ture apparently constitutes a fairly good descrip-
tion of reality for the low-energy three-nucleon
pr ob lem, its extens ion to three-pion scattering is
open to some question.

The calculations of Ref. 1 as well as those car-
ried out along the same lines by Mennessier
&&al. were unsuccessful in predicting the prop-
erties of the 3~ system for c.m. energies less
than 1.5 GeV, while for energies much above this
the model is inapplicable owing to inelastic effects.
One of the easily identifiable reasons for this
was the neglect of al1. but the isovector two-pion
scattering in the I 0 states. In the preceding
picture of the scattering process this leads to a
degeneracy between the I = 1 and I= 2 resonances.
Other unsatisfactory aspects of these calculations

are not so readily explained.
A much more satisfactory formulation of

3v-to-3v scattering has been introduced recently
by Brayshaw in terms of a relativistic three-par-
ticle version of the boundary-condition model.
Here physically reasonable assumptions are in-
troduced in order to specify the nature of the off-
shell propagation of pions under specific kine-
matical conditions and to handle (phenomenolog-
ically) those aspects of the dynamics which do
not fall into the picture of the scattering as a
succession of two-pion scatterings. The calcula-
tions carried out thus far using this model in the
e andA. , channels are quite impressive and give
strong support to the basic physical idea of the
pair-collision picture of the 3m system at least
for c.m. energies less than 1.5 GeV. '

Another calculation using the so-cal1.ed mini-
mal K-matrix model' has also been carried out
recently in conjunction with an analysis of
w P -m m' m P scattering. The A., channel was con-
sidered in detail but the results were quite un-
informative. The other isospin states were not
investigated nor were the properties of the 3m-

to-3~ scattering amplitude considered in isolation.
The minimal K-matrix model."yields a set

of on-shell integral equations for the 3r-to-3~
scattering ampl. itude in which the only input con-
sists of the (on-shell) two-pion amplitudes. The
primary virtues of the model are its simplicity
and the fact that it yields unitary 3m-to-3n ampli-
tudes below the, inelastic threshold. Although
its defects are obvious (most notably its mis-
representation of the double-scattering poles)
more extensive calculations would be interesting
for several reasons' and these calculations are
in progress. '

It is not our intention to explore the relative
virtues of either Brayshaw's model or the K-
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matrix approach (either in its minimal or gen-
eral forms) any further. In view of the importance
of the 3' system it is of considerable interest
to explicate the general features of the 3~-to-
3n scattering amplitude and of a generic class
of integral equations which are used to generate
this ampl. itude.

We have specific reference, first, to a natural,
or at l.east standardized, definition of the various
total-isospin amplitudes and the implications of
Bose statistics upon them, particularly for total
isospins I=1, 2. In the latter case because the
relevant representation spaces are reducible the
choice of these amplitudes is hardly unique and
several choices have appeared in the literature. '

In Sec. II we devel. op a Cartesian-tensor anal. ysis
of the 3r-to-3n scattering amplitude which is a
(nontrivial) generalization of the formalism fa-
miliar in the two-pion problem. Using this we
are able to deduce canonical forms for the com-
pl.ete amplitude as well as its total-isospin pro-
jections and for which the consequences of Bose
statistics are explicit. It is found that the com-
plete amplitude is characterized by only two iso-
scalar functions and various permutations of their
arguments. Also the tensor analysis is exploited
to obtain in a very simple and explicit manner
the total-isospin projections of any sort of 3n-to-
3n' scattering integral equation without explicit
recourse to is ospin r ecoupl ing schemes.

This formalism is applied in Sec. V, by way
of example, to the E-matrix integral equations
for 3n-to-3n scattering. Before doing this we
give in Sec. IV a somewhat more satisfactory
derivation of this formalism in which the pion
identity is properly taken into account throughout.
This avoids the usual benign artifice of assuming
particle distinguishabil. ity initially and then im-
posing the symmetries required by identity after-
wards. In multipartiele scattering problems this
device is resorted to primarily to define the vari-
ous Faddeev decompositions' of the full scatter-
ing amplitude. Essentially, we show how to carry
out this decomposition in three-particle scattering
without the introduction of particle-indexed scat-
tering operators. The latter do not arise in any
natural fashion in field-theoretic representations
of the scattering amplitude, for exampl. e; how-
ever, the present technique can be directly related
to such representations.

We do not consider the partial. -wave analysis
of the 3n-to-3w amplitudes or of the corresponding
integral equations. This has been done most
recently by Lock' who has introduced a new rel. —

ativistic partial-wave decomposition which in-
volves a consistent definition of the two-particle
relative momentum in the arbitrary Lorentz

frames required to describe the various two-par-
ticle scatterings in the over-all three-particle
c.m. frame.

II. THREE-PION TENSOR ANALYSIS

Let «s outline the general problem of extracting
the consequences of charge independence upon
the structure of the 3n-to-3n scattering ampli-
tude, (3~)T~3m). The complexity of the problem
arises from the fact that the irreducible subspaces
resulting from the reduction of the direct product
of the single-pion spaces are not uniquely labeled
by the total isospin I:

[ 1) &&[ I) "[ 1]
= [ 0] + [ 1) + [ 1]' + [ 1 J

"+ [ 2] + [ 2]' + [3].
Charge independence does not forbid transitions
from, say, [1J to [1]'. The subspaces degenerate
in I are distinguished by their transformation
properties with respect to S~, the permutation
group on three objects. It is elementary to deduce
from charge independence that there are 15 in-
dependent isoscalars appearing in the reduction
of ( 3m~ T~3v) onto subspaces of I, one each for
the irreducible spaces I =0, 3, nine corresponding
to I= 1, and four to I = 2.

Severa, l different approaches for excuting the
isospin reduction of ( 3w~ T(3n) exist, and they
all depend upon one isospin recoupling scheme or
another. "The present treatment, which differs
markedly in style to these, is based on the gen-
eralization of the tensor technique which is well-
known in standard treatments of two-pion scat-
tering. ' In the two-pion case this technique is
introduced to explicate the implications of gen-
eralized Bose statistics (including crossing) while
the aspects of the isospin reduction are entirely
trivial. In the three-pion case the results of the
application of this technique to the isospin re-
duction problem are far from obvious. We will
find, as in the two-pion case, that this approach
readily lends itself to the explication of the sym-
metries implied by Bose statistics. Overall, this
method appears to possess several. advantages
in simplicity and generality over the standard
recoupling techniques.

We chose a Cartesian basis for the single-pion
isospin states, ~ n), a = T, 2, 3, where
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@~i = Q~, CR~~ = Q~", N~~" = Q,

which define the multiplication rules for the per-
mutation indices, namely jk=kj, jl =j, jj=j,
jj =1

We will deal solely with what we term three-
pion operators, 8. Suppose we have an arbitrary
operator, 8~, such as the S or T operators, de-
fined on the entire hadronic space. Let P„be
a projection operator on the three-pion (in or out)
space. ' Then the three-pion operator 8 corres-
ponding to 8~ is defined by 8=P3 8„P3,.

The full content of charge independence of an
arbitrary three-pion operator 8 is contained in
the stipulation that its matrix elements satisfy
the transformation l.aw for a tensor of rank 6:

(r, p, vl8ln, P, p)

D iD q'D vc'

x(a', b', c'I8la, b, c)D, D» ((D, &, (2.1)

where the sum is over repeated indices and D
for instance, is an element of a real unitary ro-
tation matrix. In view of our previous discussion
it is evident that there are at most 15 linearly
independent solutions of (2.1).

Let us introduce the operators, which are taken
to act like the identity with respect to the kine-
matic variables,

( y, p, vI (((j )In, p, p) =-5& 5~~ 5"„=5„' 5((~ 6„',

(2.2a)

and where we have introduced bars over the in-
tegers to avoid confusion with the notation used
below for the enumeration of the elements of S,.

We denote a three-pion ("in" or "out") state
by ln, p, p,). In this section we completely sup-
press any explicit dependences upon the single-
pion kinematic variables (such as momentum);
in later sections + will be taken to be a complete
set of single-pion variables.

The simplicity of our entire formalism depends
crucially upon the introduction of a convenient
notation for the permutations on the single-pion
variables n, P, p, . The triplet (n, , P, , p., ) refers to
the cyclic permutation j (= 1, 2, 3) of the ordered
set (n, p, ((), where j =1 will be taken to corre-
spondtothe identity permutation. A caret over
an index, e.g. , j, will denote the permutation
(cyclic) inverse to the permutation denoted by
that index. Remembering that n, e.g. , is a mem-
ber of an ordered set, we define

n~» = (n~)» = n»

and then note that

( y, p, vl p(j )I n, p, p) =-6'., &„',. 5",, = &.' & „"6,',
(2.2b)

(y, p, vl~;, , In, p, p) =-5„',. 5 ' '5, „,. (2.2c)

Evidently (((j ) [P(j )] introduces a cyclic [anti-
cyclic] permutation of the isospin variables while

&;, induces a pair-wise trace." It is trivial to
verify that [(((j),P(j), ~, , ] constitutes a set of
15 linearly independent operators each of which
satisfies (2.1).

Thus, for any 8 which satisfies (2.1) we have
the general decomposition into the fundamental
tensor operators (2.2):

8 = QA, , T, , + Q [B,. p(i) + C,. K(i)] . (2.3)

I'=+I ' '+I' (2.5)

where I ' is the isospin operator of the ath pion,

&
nliy~'(I p) =i&„y„and

r =-2p [p(i) —r, ,].

Using (2.5) it follows from Eq. (2.4) that

[I(I+1)-6]8,=r8, =8,r,
which in turn implies that

[I (I + 1) —2] 8~ T, , = 0,

[I(I + 1) —2] T(,8i = 0,

(2.6)

(2.7a)

(2.7b)

and that &, , is an 8i-type operator corresponding
to I= 1. Clearly

81~',s =7',. &8r =0, for I+1. (2.7c)

Equations (2.6) and (2.7c) together imply the
following relations:

80K(j ) = (((j )80 = 80, 8,(((j ) = (((j )8, = 8„ (2.8a)

8.p(j ) = p(j )8.= —8., 8,p(j ) =p(j )8.= +8„
(2.8b)

Let 8, be an operator which satisfies

& r, p, vlI'8, ln, p, p& =(r, p, vl8, I'ln, p, p)

=I(I+ 1)(y, p, vl8yln P p)

(2 4)

where 8, need not necessarily satisfy (2.1) al-
though later we will confine ourselves only to
those operators that do. The square of the total
three-pion isospin operator I ' can be expressed
as
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p p(f)e, =e,p p(f) =0,

zi 6, =6, Ki =0.

If e, satisfies (2.1), it of course has the de-
composition

(2.8c)

(2.8d)

P, = —,Q(1 —36; „)T;, + Q (6„,——')z(i),
i,i

P, = —', Q [P(i)+](:(i)]——„Q&...

(2.12c)

(2.12d)

. + &"'P(i)+QC"]~(i), (2.9)
5 g2

which can be regarded as the projection of (2.3)
onto the subspace of total isospin I. Equations
(2.6)-(2.8) are constraints on the coefficients in

(2.9), and we find with a convenient regrouping
of terms

where we have from the definition of 6 in the Ap-
pendix)

It is evident from E(ls. (2.12} that

P, =~(l)
=0

5 yJ

(2.10a)

(2.10b)

and that all of the P, 's are Hermitian.
With the aid of the explicit expressions (2.12)

for the PI we can relate the isoscalars appearing
in the decomposition (2.3) for e to those in the
decompositions (2.10) for e„where

where

«C[" «(i) —-', Q «,.-, , I, (2.10c)

6=/ 6„

One finds that

(2.13a)

(2.13b)

~(2) C (2) P (2.10c')
C(o) ) g(C fI ) (2.14a)

A5, =A5 i+ B~ 0 '
& I ~" +C

8, =A'" I «;. , ——,'I, [p(«')««(i)]I.
5

(2.10d)
(2.14b)

We note that in the I =2 case because of the con-
straint (2.10c') only four independent isoscalars
enter into (2.10c). In connection with (2.10a) it
is interesting to note that A" ] = —,Q(8, +C,).

(2.14c)

(2.14d)

(' «» EI«(o-((o] «, &, «) =«„,.«.«„.
5

Now the projection operators P, on the sub-
spaces of total isospin I must have the form
(2.10) but in addition they also satisfy

(2.11}

Conditions (2.10) and E(I. (2.11) yield the explicit
projections

(2.12a)

E(luations (2.3) and (2.10) represent the com-
plete isospin structure of a charge-independent
three-pion operator 6 and its projections 6I in
terms of the independent isoscalar amplitudes
and the 15 fundamental tensor operators. Equa-
tions (2.14) provide the connection between the
two sets of isoscalar amplitudes. This is all
we require for the isospin analysis of the three-
pion scattering amplitude as well as the various
three-pion scattering integral equations.

Let us consider a generic example of the latter
which we write in the condensed operator form

T =II+AT, (2.15a)
(2.12b) where all (Iuantities in (2.15a) are three-pion
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operators; in particular, the sum over states
implicit in the product AT is restricted to only
three-pion states. The total isospin projection
of (2.15) is [cf. Eqs. (2.13)]

mutations.
Bose statistics implies, then, that for all j

and g

T =U„(j)T=TU„(j), (3.1)
(2.15b)

The structure of (2.15b) is trivial in the (irreduc-
ible) I= 0 and I = 3 cases. In the I= 1 and I = 2

cases let us introduce a notation for the isoscalar
amplitudes such thatAP~)(T), for example, denotes
the isoscalar coefficients of the operators 7, ,
in the decomposition of TI. Then we find that
(2.15b) leads to the integral equations

A'."(T)=XI"(H)+ A'"(B)&, ,A"'(T) (2.16)

namely, the Sn-to-Sm amplitude is invariant with
respect to permutations of the initial. - or of the
final-particle indices. The general class of am-
plitudes which result from the Faddeev decom-
positions of T, which are introduced to obtain
connected-kernel equations, will. not, of course,
possess the full symmetry (3.1).

We can.define a generalized, albeit nonunique,
Faddeev Cbcomposition for the case of three bo-
sons by relating T to another three-pion operator
T by means of

in the I = 1 case and to
T= U, (j)T. (3.2)

+c,'(&)B,'" (T)],
We infer from (3.1}, then, that for an operator
related to T by (3.2) Bose statistics requires

C'"(T)= C"'(.H) + g [B-.', (A)B'"(T)

(2.17a) T =U.(I)T

=TU~(i )

Let us write T in the form (2.3):

(3.3a)

(3.3b)

+ C"-'(R)c'"(T}], (2.17b) T=QA, , r, , +Q [B~p(k}+C„~(k}]. (3.4}

for I=2. We will give explicit realizations of
these integral equations in Sec. V.

III. BOSE STATISTICS

It remains to investigate the implications of
Bose statistics on the isoscalar coefficients ap-
pearing in the decompositions (2.3), (2.9), and

(2.10) of the 3n to 3v sca-tte-ring amplitude
(y, p, v~T~o.', P, p) or its total isospin projections
( y, p, v~ T~~a, P, p). In this section the index n,
e.g. , refers to a complete set of single-pion ob-
servables including, of course, the (Cartesian}
isospin index.

We recall that the unitary operators ~(j ) and

P(j ) induce even and odd permutations, respec-
tively, on the single-pion isospin indices. We
denote by e(j ) and o(j ) the unitary operators
which induce the corresponding even and odd per-
mutations on the single-pion kinematic variables;
the product rules for these operators are tabu-
lated in the Appendix. We see then that S, is
realized on the three-pion space by the set of six
unitary operators, U„(i), which are defined by

U, (j ) -=e(j )~(j ) =U', (j ),

Then Eqs. (3.1) require the following transforma-
tion properties with respect to e(j) and o(j):

&of,&
=e(j)&., , =&a, ~re(j),

B» =e(~ }B~=B.e(i ),

c„=e(j)c„=c,e.(i ),

&» &
=o(j)&a,i =&a, Igo(j),

C. =o(j )B =B--o(j),

B„.=o(j )c,= c;o(j ).

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

A, , = [ I+o(1)]8[1+o(l)], (3.7)

where 8 has no constraints with respect to per-
mutations. We obtain, then, from (3.7)

Equations (3.5) have several interesting con-
sequences. It is obvious from (3.5a) that aH of
the A. » can be generated from A, , by cyclic per-
mutations on the initial and final variables. From
(3.5d) we see that

A, , =o(1)A, , =A, ,o(1), (3.6)

from which we infer that A, , has the general
form

U, (j)—= o(j)p(j )=U, (j), A» —[e (k) +o(k)] 8[e (I) +o(l)], (3 6)

where q =e, o refers to even (e) or odd (o) per- which in matrix form provides a canonical ex-
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C, =e(j )C,e(j ) =o(j )C,o(j ), (3 9)

pression for all of theA„, in terms of a single
isoscalar amplitude, 8.

One can deduce similar canonical forms for
J3~ and C,. We note that all of the B„and C, can
be generated from C, using Eqs. (3.5). It follows
from (3.5c} and (3.5f) that

=v e(j)
= +o(j)v,

=+7,o(j)

[e (k) +o(k)] 8[e (l ) +o(l )] . (3.14b)

namely C, is invariant with respect to S,. Equa-
tions (3.9}have the trivial consequence

(3.10)

What is not trivial is the observation that Eqs.
(3.9) are satisfied identically using (3.10) for C,
without the use of any of the properties of the
C, which appears on the right-hand side of (3.10).
This along with Eqs. (3.9) implies that C, has the
general form

C, = g [e(J)8e(j )+o(j )8o(j )] (3.11)

where 8 is an arbitrary isoscalar. Then from
(3.5) and (3.11) we obtain

B,=g [o(kj)8e(j)+e(kj)8o(j)],

C, = g [e (kj )8e(j ) +o(kj )8o(j )],

(3.12a)

(3.12b)

This can be written in the forms given by Eqs.
(2.10). Relative to the latter we introduce the
following changes in notation pertinent to (3.13),

6C(0) y ~(.i) F ~(2) G C(2)

= -15''. We find using Eqs. (3.5), (3.8), and
(3.12) that in the 1=0, 3 cases

7, =e(j )7,

=7e(j)

the matrix forms of which yield canonical forms
for all of the B~ and C~ in terms of a single iso-
scalar amplitude. This completes our deduction
of the consequences of charge independence and
Bose statistics upon the full 3n-to-3n scattering
amplitude.

It is of considerable interest to apply the pre-
ceding results on the full amplitude to the pro-
jections, T» on the total-isospin subspaces. T»
of course, has the decomposition

For I =1 we see that the T» satisfy Eqs. (3.5a)
and Eqs. (3.5d) so

T„,= [e(k)+o(k)]R[e(l )+o(l }], (3.15)

where

8=8+-,' o j Co j
[e(k) +o(k)] 8[e(l ) +o(l )].

Finally for I =2 it is easily seen that

E,, =e(j )F =E e. (j ).
G- =o(j)F =E, o(j".),

F]= G]=0,

(3.16a)

(3.16b)

(3.16c)

where (3.16c) is entirely independent of the im-
plications of Bose statistics. Evidently, both

F; and 6; are expressible in terms of 6, e.g. ,

F, =g [o(ij )8. e(j )+e(ij )8o(j )]

o 4 ee j +e k t o j (3.16d)

70 e j 70~ v, = ge(j )7„ (3.17a)

(3.17b)

(3.17c)

(3.17d)

and the corresponding expression for G; can be
obtained by using Eq. (3.16b).

Next, we investigate the consequences of Eqs.
(3.3) on T. We employ the same notation for the
various isoscalar components of T as we have
for those of T except for the addition of an over-
bar. First of all, from Eq. (3.2) we deduce the
connection between the various full amplitudes
and the Faddeev-type amplitudes for the various
isospin states:

= -o(i )7,
= —zoo(j )

=g [e(k)-o(k)]8[e(l) -o(l)], (3.14a)

The consequences of Eqs. (3.3) which lead to
relationships similar to Eqs. (3.5) are rather
easily derived. It shoul. d be noted that these trans-
formation equations are not as extensive as Eqs.
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(3.5) because of the limited symmetry (3.3a) nor
do they have as many interesting implications.
Of the latter only the following will be of any use
to us:

Vo = —o(1)70, 7, = +o(1)7„

T, ( = T(, (e (l ),

T(- ( =o(1)T(, (,
G, =o(1)E(.

(3.18a)

(3.18b)

(3.18c)

(3.18d)

The demonstration of how one exploits Eqs. (3.18)
will be deferred until Sec. V. Of course, we must
have the I=2 constraints for these components
of T,

which contains, in a plane-wave representation,
a 6 function arising from two-particle energy-
momentum conservation, and 5(yz, a( } is the
Dirac-Kronecker 6 function in the indicated single-
pion variables corresponding to a freely moving
particle. The normalization in (4.1) is chosen
so that the no-scattering term in the complete
3m-to-3n S matrix is

& y, p, vl&, P, u} = g—~(y(, ~)[~(p;, 13)5(v(, p)
3 )

+5(v(, P)5(p„p}j
It will prove convenient to write (4.1) in three-pion
operator form (see Sec. II) as

(3.19) TD = 3 U, (f )t U, (i), (4 3)

and as with (3.16c) this is merely the rephrasing
of the consequences of charge independence, rather
than Bose statistics, in terms of our new notation.

IV. K-MATRIX FORMALISM FOR THREE-PION

SCATTERING

Our development follows along the lines of that
in Ref. 5 except for the incorporation of Bose
statistics. This is done, however, without the
usual artifice of assuming, initially, that the par-
ticles are distinguishable and, thus, also without
the introduction of unphysical operators (or am-
plitudes) which are defined in terms of the inter-
actions of two specific particles x-4,8,&2-ie The
initial assumption of distinguishabil. ity was used
in Ref. 4 for the special case of the minimal K-
matrix formalism; we present an alternative
derivation in that case as well as the treatment
of the full K-matrix formalism. It should become
evident in the course of our discussion that the
present procedure of generating connected-kernel
three-particle scattering integral equations can
be easily adapted to any of the standard off-shell
definitions of the three-particle scattering oper-
ator.

The disconnected portion TD of the 3n-to-3n
scattering amplitude can be written as

(y, p, vlr, l(x& Pp p')= 3 +6(yap u()t(pf 1 vf(P($()$((

—i((g 5(y, c}k(p, v(a, b)6(c, c()t(a, b~P, p)

(4.4)

and an equation identical to (4.4} except for the
interchange of k and t under the summation sign.
The sums in (4.4) are over the repeated indices
and represent discrete sums and integrations over
the three-pion states. Equation (4.4) is defined
for arbitrary two-pion relative energy, but below
the four-pion threshold, in this energy, two-par-
ticle unitary requires that

k(p, vlP p)*=k(P, ((lp, v).

Evidently, k(p, v[P, (() also satisfies Eqs. (4.2).
Corresponding to the relationship between (4.1)
and (4.3) we write instead of (4.4) the three-pion
operator equation

t = k —in'kt,

and similarly

(4.5a)

which will also serve to define our notation for
the two-particle transition matrices on the three-
pion space.

The two-pion t and k matrices are related by
the on-shell equation

6(y, o')t(p, v(P, (()

=~(y, &)k(p, vIP, V)

t =k —intk. (4.5b)

(4.1)

where a, e.g. , refers to a complete set of pion
variables as in Sec. III. t(p&, v&~P(, p() denotes
the properly symmetrized two-pion elastic scat-
tering amplitude,

Tg = Kg —an'K~T~

=K~ —g n'TgKH (4 6)

The general (hadronic) T„ and K„operators are
related by

t(py, vylP(, p() = ( y, pylP(, p;)
= t (py v~l p( t3( ) (4 2)

and, unitarity implies and is implied by the Her-
miticity of K~.' Evidently, we are only interested
in the three-pion projection 1'= P„THP„which
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satisfies

T=K —irrKT —irrP~KKrr(1 —Ps„)T„PsK, (4.7)

K, =QU, (f)K, , (4.10)

where

K=P K P =K~.

For energies below the 5rr t-hreshold, (4.7) re-
duces to T=K(1 —irrT), (4.11)

which can always be done since a possible choice
for K, is simply 3 K, . We note that K, satisfies
Eqs. (3.3).

We now define

T =K- iAT. (4 8) where

K=
U P U, (f)kU, (i) +K, , (4.9)

we see that K, satisfies Eqs. (3.1) as well. Next
we introduce a Faddeev-like decomposition of K, ,

One can, as in Ref. 4, use (4.8) above the inelastic
threshold but if K is Hermitian T will not satisfy
the unitarity constraints unless one also accepts
rather specific models for the other amplitudes
which then become coupled to T by unitarity. '
Henceforth, we will work only with (4.8) without
any stipul. ation as to whether we are above or
below the three-pion inelastic threshold. We
comment upon the treatment of the general. case
represented by (4.7) at the end of the section.

Clearly, Bose statistics requires that K satisfy
Eqs. (3.1). Since we can decompose K into dis-
connected and connected parts, '

K—= —,
'
@AU, (i)+K, . (4.12)

It follows from Eqs. (4.9)-(4.12) that [cf. Eq.
(3.2)j

T= U, T (4.13)

so that T satisfies Eqs. (3.3).
With the aid of the group multiplication laws

for U, (f) (see Appendix), Eqs. (4.5b) and (4.12),
and the fact that K, satisfies (3.3b), it is easily
demonstrated that the identity

(1 —i rrt )7= (1 —i jrt)K(1 —i rrT)

reduces to the on-shell, connected-kernel equa-
tion(5( j—- 1 —&, j)

(4.14)

or with the choice K, = 3E, ,

T — gtU (t')+K —t=t .t gtI, ,U, (j) +KI T
S

where K=(1 —irrt)K, . Reverting back to our matrix notation, (4.14') can be written as

T(y, p, vln, P, )(() =&(y p vln, P, (u) + pit(y, p, via, b, c)T(a, b, cln, P, p),

where

(4.14')

(4.15)

1
t (y, p, vl n, , P, , pj ) + K, (y, p, vln, P, Jj,) —in+ t (y, p, via, b, c)K, (a, b, cl n, P, p), (4.16a)

8 = —i rr t (y, p, v
l P, p, n) + t (y, p, vl p, , n, P) +K, (y, p, vln, P, p) —i)re t (y, p, via, b, c)K, (a, b, cln, P, p) .

(4.16b)

The minimal equations" are obtained by setting K, =0 in the preceding relations. For the kinematical
properties of Eq. (4.15), in particular the fact that after a partial-wave analysis one obtains on-shell,
finite-domain integral equations, we refer to the previous literature. "8

The major complication involved in carrying out a similar analysis in the general case represented by

(4.7) is the presence of additional disconnected structure arising from the (1 —P„) term on the right-
hand side of (4.7). A consistent treatment, which will be given elsewhere, involves the generalization
of the disconnected two-particle Heitler equation (4.4) to include sums over the (1 —P„)states.
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V. ISOSPIN ANALYSIS OF THE E-MATRIX EQUATIONS

We now apply the formalism of Secs. II and III to the 3v-to-3w integral equation (4.15). This is done
in full detail for the minimal case, E, =0; it then suffices to outline the procedure for E,4 0.

We require, first of all, the (three-pion) isospin projections of the two-pion amplitudes. The isospin
structure of these amplitudes is well-known, '

t(j)-=(r, p, ~ltI~, , P, , v, &

=5(r, ~, )5'., [A(p, ~IP, , F, ) 5', 5"„+B(7&,~II, , P, ) 5. P'5, „+C(P, ~IP, , P,, ) 5„5;]. (5.1)

In (5.1) we have distinguished the single-pion
Cartesian isospin indices + and the corresponding
kinematic variables n. Then, for example,
5(y, a)5~ is the product of a & function in the kine-
matic variables and a Kronecker ~ in the isospin
indices. The isoscalars A. , B, and C are related
to the two-pion total-isospin amplitudes MI by

where

Dlt, , (j ) =A. (j )(5 ')„,+C(j )(5 ')„,
+B(j)5a i5i ~

and

t (j ), = A (j )Q (&a, —3) &(k) —~a Q &Zi, i

A = —,(M, +M, ),

B= —,(Mo —M2),

C = 2(M2 —Mi).

(5.2) +C(j )g (5 ' ) p(k) g g Tyg

(5.6c)
Our definitions (5.1) and (5.2) for A, B, C, and
M, are unconventional' in the sense that they in-
clude the ~ function corresponding to two-pion
energy-momentum conservation. Actually, for
notational brevity it is convenient to reabsorb
the factor 5(y, a, ) which appears in (5.1) back
into the isoscalars so that (5.1) can be written
in the compact form

It is clear from Eqs. (5.2) and Eqs. (5.6) that
t (j ), and t (j ), involve only the I = 1 and I = 2 two-
pion amplitudes, respectively, while t(j ), does
not contain the isoscalar two-pion amplitudes.
t(j )„ofcourse, incorporates all of the possible
two-pion isospin states.

Using the notation (5.1) we can rewrite (4.15)—
(4.16) as

t (j ) = A (j )z(j ) +B(j )v; „+C (j ) P(j),
where, e.g. ,

A(j)=-5(~, ~, )A(p, ~IP, , ~, ).

It is useful to note that by definition

(5.3) 1
T = — g t (j ) +K, —i rr t (1)K,3

—in+ ,5, t(j )+K, —int(1)K, T, (5.7a)

A(j ) =A(1)e(j ),

B(j ) =B(1)e(j ),

C(j ) =C(1)e(j ),

and, in addition, from Bose statistics

B(j ) =o(1)B(j) =B(j )o(1),

C(j) = o(1)A(j) =A(j) o(1).

Let us define

t(j )s=-Pz t(j )PI.

(5.4)

(5.5a)

(5.5b)

which in the miminal case becomes, simply,

(5.7b)

Now using Eqs. (2.15)-(2.17), Eqs. (5.6), and
the notation introduced in connection with Eqs.
(3.17), we see immediately that the minimal equa-
tion (5.7b) reduces to

7o = —,'Q [A(j ) —C(j )] —iwQ 5, ,[A(j ) —C(j )]70,

(5.8a)

(5.6a)

Then using Eqs. (2.9), (2.10), (2. 12), and (2.14)
we easily see that

t (j )o
—[A(j ) -C(j )] Po,

t (j ) = [A (j ) + C(j )]P,

73 = ~gQ [A (j ) + C (j )] —t 1fQ 5~ ~ [A.(j ) + C (j )] 7,

(5.8b)

for I=0, 3. For I=1 we obtain the nine coupled
equations

t (j ), = Q sit, , (j )7. . . (5.6b) T;,, = ~ +6iI;, (j ) —i n +R,",' T. . . (5.9a)
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where

A&', =—Q &k, [A(k)6&„0+C(k)60) 0,+6(,B(k)50 j]. (5.9b)

Finally, for I =2 (5.7b) reduces to the six coupled equations

F,. = — C(i) —l+C(j) —j~ i! ,C.(.ij) —-', Pk, , c(k) G;+ 2(;,,A(jj) —-.'PI, ,,A(k) Fi),
k

I

G~- A(k) PA(j ) Illa' kj C(jj) — g II C(k) FI+ ki A(ij ) P A(k) G').j

(5.10a)

(5.10b)

The uncoupled Eqs. (5.8) for the amplitudes
T,(r, p, &[(w, p, lj) and T,(y, p, Tj[a, p, p) are ready
for the appl. ication of a partial-wave anal. ysis as
in Ref. 8. The constraints (3.18a) are clearly
satisfied.

The nine coupled Eqs. (5.9) can easily be re-
duced to the solution of two coupled integral equa-
tions. By virtue of Eq. (3.18b) we need only con-
sider I= l. Also from Eq. (3.18c) we can elimin-
ate, say, T» [= o(1)T, ,]. Then, using the fact
that

A('|o(1) =8"1

F = — C(2) ——,2+ C(j ) +2iw[A(2) -A(3)]F,3

+ 2i))A (3)E,. (5.13b)

Our irreducible sets of minimal equations (5.8),
(5.11), and (5.13) simplify further if the scattering
in some of the two-pion isospin states can be
neglected. If M, =0, then from (5.2) and (5.5b)

A(j) = -C( j)= -A(j)o(1). (5.14)

Then T, =0 and Eqs. (5.13}reduce to the two un-
coupled equations

we obtain as our irreducible system of I=1 equa-
tions in the minimal case

(1) (1)T, , = —,
' ~On, ,(j ) —i w Ii, ', T, , —2iw 8,', T, „

E, = — C(1) ——,
' Q C(j ) —2iwC(3)F„3-

)

F, = — C(2) —-', PC(j ) —2iwC(3)Fw,
3

(5.15a)

(5.15b)

(5.1la)

T, , = ', ~OR, ,(j ) - i Aw, , T, , —2iw R, , T, ,(1) (1)

Ej —— C(i) ——,'QC(j) —iwQ A(i02) F, , (5.12a)

where

j(;',I =2 II,.;,A(ij) —-',g k, ,A(k), (5.12b)

and we have made use of Eq. (5.5b). It is evident
from Eqs. (5.12}that the constraint (3.19) is sat-
isfied as it must be. Wecanuse(3. 19)to eliminate
E„say, from (5.12a) and we obtain, finally, our
irreducible I=2 equations for F, and F„

E, = — C(1) ——,'Q C(j ) +2iwA(2)F,1

—2i w[A (2) —A (3)]E„ (5.13a)

(5.11b)

The I =2 equations (5.10) simplify to a system
of two coupl. ed equations as well. We can eliminate
G, , say, with the aid of (3.18d). Equations (5.10b)
are then superfluous and Eqs. (5.10a) reduce to

and we note that F; = —G; in this case. No essen-
tial simplification of the I= 1 equations, (5.11),
occurs as a consequence of (5.14).

If in addition to (5.14) we also have M, =0, then

B(j ) =0. (5.16)

No further simplifications over that implied by
(5.14) obtain for Itl but in the isovector case
we see from (5.11) that (5.14) and (5.16) imply

(5.17a)

70, =—' [C(2) —C(3)] —2iwC(3)T, „(5.17b)

namely a single integral equation for T, , In
this case we observe that the kernels of the I=1
and I=2 integral equations are identical.

In the general case (5.7a) it should be clear
that as a consequence of the Bose symmetry and
isospin constraints (3.18}and (3.19), respectively,
we must obtain equations of a complexity no
greater than (5.8), (5.11), and (5.13). Namely,
for I =0 and I =3 we obtain a single integral equa-
tion in each case. For I =1 we get two irreducible
coupled integral equations and similarly for I =2.

In order to write down some of these equations
in the general case we need a notation for the
various isoscalar components of K~. Let Eo and
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K, bear the same relation to K. that 70 and T, do to T. Then, it follows by inspection of (5.7a) and (5.8) that

(5.18a)

T3 A j +C j +K, —im A 1 +C 1 K, —in &, , A j +C j +K, —in A 1 +C 1 K
1
3 J J

(5.18b)

, l H, l 27K~ Ai J TJ'
g )j

where

(5.19a)

H» ~ 3 &i y j +K;, —in 5K;, 1 ~; &K~ »

(5.19b)

The l = 1 case is interesting in that it provides
another application of the product rule implicit
in Eq. (2.16). One finds, with K;, bearing the
same relation to K, that Ti, does to T,

Faddeev subamplitude, satisfies a linear integral
equation of the form (4.15) where H and R are
three-pion-type amplitudes which possess sym-
metry properties which suffice for the satisfaction
of Eqs. (3.3). No special kinematical conditions,
such as the on-shell constraints which appear
in the K-matrix formalism, entered into the dis-
cussion of Sec. V. Correspondingly, whether or
not (4.15) is an off-shell equation plays any role
in our general results concerning the isospin
analysis
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4,1,m

(5.19c)

VI. GENERAL LINEAR THREE-PION INTEGRAL
EQUATIONS

The preceding section consisted of the applica-
tion of the general formalism of Secs. II and III
to the K-matr ix formulation of 3~-to -3 Tl' scatter-
ing. The general forms of the equations in each
isospin state and the number of independent in-
tegral equations in each total-isospin state have
an applicability which obviously transcends the
K-matrix model.

The essential ingredients of our discussion in
Sec. V were the general properties of the quite
arbitrary Faddeev decomposition defined by (3.2)
and (3.3) and the fact that T, which is the seminal

Again the nine coupled equations (5.19a) can be
reduced to two coupled equations with the same
general form as Eqs. (5.11). So long as K, , ~0
we obtain no simple case such as Eqs. (5.17) when

MO=M, =0; similar remarks apply to Eq. (5.18).
The same general form of equations as (5.13)

obtain in the I = 2 case after the use of the Bose
and isospin constraints on F,. and G, .

It is worth pointing out in connection with the
use of the general K-matrix equations that since
K, is fully symmetric, i.e. , it satisfies Eqs.
(3.1), its isoscalar amplitude in each of the total
isospin states can be placed in the canonical. forms
(3.14), (3.15), and (3.16d).

It is a pleasure for the author to thank Dr. J. A.
Lock for many stimulating conversations on the
subject of this paper as well as the Aspen Center
for Physics, where portions of this work were
carried out, for its hospitality during part of
the summer of 1975

APPEN DIX

7i,l 74, l J,k 7i, l,
where

6J. „=2&i J- + 1

T,a ~(j ) = T],~]

&(j )~;.a = T;I, ]

"(i)]]'(j) =~(ij ),

p(z)~(j ) =p(zj ),

~ «P(&) =~

P(& )~; a=rr~

P(f)P(& ) = ~(fi ),

~(i)p(j ) =p(fi ).
The operators e(j) and o(j ) also constitute a
representation of S3.

e(i)e(j)=e(ij)=e(ji), o(i)o(j)=e(ij),
o(f)e(& ) =o(f & ), e(f) o(j ) =o(~i).

The products of the operators ~;, , ~(i), and

P(i) are easily derived from their definitions
(2.2). Our primary purpose in displaying them
in detail is to make explicit our index notation
for permutations in relation to manipulations with
these operators. We see, not unexpectedly, that
the {e(i), P(i) ) constitute a representation of S,.
We find from (2.2) that
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