
PH YSICAL REVIEW D VOLUME 13, NUMBER 8 15 APR IL 1976

Extended-hadron model based on non-Abelian superconductivity
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A non-Abelian, relativistic Ginzbur'g-Landau-type Lagrangian is derived from Heisenberg-Nambu nonlinear

spinor models. In this Lagrangian, for self-consistent mass fields, two gauge fields are coupled to a complex
scalar field through a special type of covariant derivative.

Nielsen and Olesen noted' that the Higgs-type
Lagrangian is essentially a relativistic generaliza-
tion of the Ginzburg-Landau Lagrangian used in
superconductivity and proposed an analogy between
dual strings and Abrikosov vortices.

Eguchi and Sugawara (ES)' have succeeded in

deriving an Abelian Higgs-type Lagrangian from a
fundamental Lagrangian comprising only massless
fermions. They generalize the ideas of Nambu-
Jona-Lasinio'4 by letting the self-consistent mass
be space-time-dependent. Their Lagrangian is

Z(x) = ig(x)y eg( )xg+[(gq)'+(qiy, g)']

g'[(Ttr -„4)'+(0r,r „g)'] .
Here the gauge bosons do not have to be introduced
externally. They arise as collective excitations of
quasiparticle pairs just as the scalar and pseudo-
scalar densities do. This provides a dynamical
basis for the Higgs-type Lagrangian.

The following question arises: Can one use a
non-Abelian nonlinear spinor model, as a source,
to extract a corresponding Lagrangian, providing,
possibly, a more adequate model for hadronsV
Thus we are led to extend the ES formalism to the
non-Abelian case.

In this paper we derive a non-Abelian Ginzburg-
Landau-type Lagrangian, which exhibits an inter-
esting group-theoretical structure. Physical im-
plications of this model will be studied in ensuing
publications.

In order to derive our results in a fairly general
form, let us take SU(n) 8 U(1) as the internal-sym-
metry group and let us consider the following
(chiral-invariant) Lagrangian:

Z(x) = iq(x)y sy(x)

+g ([$(x)cotlr(x)1 +[4(x)c iy g(x)] ]

+g,([P(x)c;0(x)]'+[4(x)C ir 4(x)]']

+g.([g( ) xrC„g( )]x' [(+( )c.xr,r "g(x)l']

+g,QqC;r „0(x)P + [4(x)c;r.r "y( )]x'], (2)

where C„C, are the generators (nxn Hermitian

matrices) satisfying

C, = (2/n)'I' I&„~,

TrC; =0, Tr(C;C&)=25;, (i, j=1,2, . . . , n' —1)

C;C) = (2/n)'I'C, + (d;)»+ if;q»)C» .
The d's and the f's are the usual symmetric and
antisymmetric structure constants for SU(n).

For certain purposes one might prefer to intro-
duce a chiral-symmetry-breaking mass term and
even an explicit symmetry-breaking term" by
adding to (2) a mass term

-g(x)p, g(x) .

Thus for n = 3, one may take

i» = [diag(m» m„, m, )]III«&.

It will be seen that the structure of our Lagrangian
remains unaffected except for the mass terms in it.

Let us note that

1
5n~byg= &C„gCya+ —5„goya

1; ) 2
Can

'
g

= ——
CfxgCy 8 + 2 ——

2 5ng 5yn n

(i=1, 2, . . . , n' —1).
Combining these results with the corresponding

well-known results for the y matrices, the Fierz
transform of the interaction Lagrangian is found
to be

f,'[Tt(x)C,y„q(x)]' +I,'[q(x)C.r.r"0(x)]'

+fl[4(x)C y „4(x)]'+&l[0(x)c y,r "4(x)]', (5)

1 n' —1 1 n' —1
~n g' ~n g"ng" n

n'-1
"3 2ngi' 2n g"ng" n ~4

1 1 1 1

1 1 1 1
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Thus it is seen that in our model the tensor
terms do not enter through the Fierz transforma-
tion. Further simplification may be obtained, if
so desired, by introducing, for example, restric-
tions of the type

g3 =g4 ~

when the total U(n) symmetry is evident in (2).
Let us define

f, =f,' ~g3 3 3 ~g3 f4 =fc+g4, h4 ——h,'+g4.

(8)

Using (2) and (6) along with definition (8), the self-
consistent mass is given by the (nxn)8(4x4) matrix

m(x) = (i 2g„)[CO Tr(C OS+(x, x)) + iy, CO Tr (Coiy, Sz(x, x))]

+ (i2g, )[C;Tr(C; Sz(x, x)) + iy,C;Tr(C, iy, Sz(x, x))]

+ (i2f,)C,y"Tr(C,y& Sz(x, x))+ (i2h, )C,y,y"Tr(C,y,y&S1,(x, x))

+ (i2 f4)C;y "Tr(C&y„Sz(x, x))+ (i2h4)C;y, y"Tr(C;y, y&S1,(x, x))

= m (x) + i y,m (x) + y "m &(x) + y, y "m
& (x), (9)

m„= l1, + [g, C,Tr(C, S~(0))]III(,)
+ [g, C;Tr (C; Sz (0))]I8I I«) .

Thus for SU(3) setting p = [diag(m1„m„, m, )]48)I«)

(10)

2
m„=i1+~& g, ))(I~ +I„+I,)

1
+g1 =)).8(IP+I„—2I, )~2q2 8 P

+g, (-', )"),(I,- I, ) e I(,),

where

(21() p —m(p)~ + 1, E'

and so on, where A is some cutoff.
In particular, for g, =g, =g

(12)

where m~(x), etc. , are general (n xn) matrices
and Tr in (9) implies traces of the y's as well as
those of the C's. The term p, has been included
in m (x). Henceforth, we will implicitly assume
that, at least for a suitably restricted set of cou-
pling constants, the masses are real, i.e., the
mass matrices are Hermitian. And we will first
derive the equations of motion for these matrices
without separating from the beginning the SU(n)
and U(1) components.

The Nambu mass (denoted by m„by ES) is given
by (denoting the corresponding propagator by S~)

Now we can write the ES perturbation series for
the propagator in the matrix form as

S,(x, x) =S,"(x, x)

+ S+ x, x' m x' -m„s& x', x dx'

+ ~ ~ ~ (14)

Our procedure will be as follows. We will calcu-
late Tr(&)(Sz(x, x)), Tr( )(iy, Sz(x, x)), and so on

(Tr(&) meaning the traces over the y matrices
only) to obtain the equations for the (nxn) matrices
m (x), m (x), . . . . Like ES we will collect the co-
efficients of the singular terms arising from the
one-loop integration. Owing to noncommutativity
of the matrices our calculations are even more
lengthy than those of ES. But the final result can
again be exhibited in a condensed and elegant form.
It is this final form that we will present. But let
us start by giving a few definitions and by fixing
our notations.

When symmetry breaking is explicitly introduced
through p. , S~ is a diagonal matrix corresponding
to propagators of different masses. In this case it
turns out to be most convenient to develop the di-
vergent integrals in powers of the masses retain-
ing only the ultraviolet-divergent parts (see Ap-
pendix).

Let us now come to the necessary definitions
concerning the fields. Let

m„= [diag((m~+2gi~), (m„+2gI„), (m, +2gi, ))]I«)
=—[d).ag(m(1, )„,m(„)„,m(, ) )]ISI(4).

These give Nambu-type consistency conditions.
The mass matrix m(x) is, of course, not in gener-
al diagonal.

P(x) -=(m' (x) + im (x)),

4 ~(x) =-(m'(x) —im~(x)),

and

B,"(x)=-(m "(x)+em""(x)) (~ =+1) .

(15)
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Let us also define

(a)"P) = &-"y + i (B,"P —PB"),
D~~B )=suB +i[Be B~~]

(16)

(17)

The transformation laws are taken to be

y(x)-U, (x)y(x)U (x)-',

B~(x)-U, (x)B,"(x)U, (x)-'
(23)

and

=-; D, „F&' +a[(n~y)y' —y(u~y)'], (20)

(2I, ) '[Tr( )((1 —y, )y"S~(x, x)) +2IB "]

'.D .F"-'+ ~[(~"e)'e e "(~"-e)] (»)
(I, and I are defined in the Appendix).

Thus it is seen that though we have considered
the broken-symmetry case, all the explicit depen-
dence on nz„has disappeared from the right-hand-
side members of (19)-(21). (Some m„dependence
is implicit in the left-hand-side members, as will
be seen later on. ) This is a consequence of per-
turbing precisely about the point m„, but shows up
in this straightforward calculation only on adding
together terms of all orders. When we have only
U(1) symmetry the ES equations are recovered,
taking care to introduce the Abelian Fierz-trans-
formation coefficients.

Let us first consider the right-hand sides of
Eqs. (19), (20), and (21), ignoring (for the time
being) the left-hand sides. These equations, writ-
ten in the form

(right-hand side) =0,

can all be obtained from the Lagrangian

L(x) =- x ,' Tr(F+„,F+"" +F —&„F—"')

+'»((~„y)'(~"y)) —-'»((y'y)') (22)

(considering P, P, B„B as independent fields).
[The factor —', can be absorbed by rescaling P- (—,')' 'Q and introducing a scalar quartic coupling
constant A. = 2 in the last term. ]

This Lagrangian is invariant under the following
local gauge transformation laws. Let us consider
the local chiral transformation group

U, (n) 8 U (n) .

F,"'=B&B—', —s'B,"+i[Be B']
The self-consistent equations for the masses

(m (x), m (x), m "(x),m""(x)) can now be written
as

(2I2) '[Tr& ~((1 —y, )Sz(x, x)) —4IP]

=n~a„y+2(yy'y) (19)

(with a corresponding equation for Q~),

(2I, ) '[Tr& &((1+y,)y" Sz(x, x))+2IB+]

P =O~ g1. =R2 =g~ g3 =8'4 =g

In this case we obtain

Tr(), )((1 —y, ) S~(x, x)) = (i4g) 'y,
and from (13)

(1 —i 16gI, ) == 0 .

(26)

(27)

Thus the left-hand side of (19) reduces (as for
the Abelian case) to

2m„'Q

and leads to the same type of mass term in the
Lagrangian (+m„'Tr(P~P)).

As regards the gauge fields we obtain

(28)

+i[»U, (x)]U, (x) ' (e =+). (24)

Thus P transforms as the representation (n, N),
while 8," has the usual vector-gauge-fields trans-
formation law under U, (n). Thus D," and F,"' have
the usual covariance properties, and one obtains,
as required,

(Spy(x))-U, (x)($„$(x))U (x) '. '
(25)

Now that the vector-mass field is no longer de-
coupled for the non-Abelian case, the correspon-
dence between the charge-conjugate pairs and
chiral pairs is fully exhibited.

We have the situation that two otherwise indepen-
dent gauge fields (B,") are coupled to a non-Hermi-
tian scalar field (P) through the "chiral-covariant
derivative" (S„P). Let us note also that the last
term in this is Tr((gag)') and not the more fre-
quently introduced quartic term (Tr(P~P))'.

The contributions of the left-hand side in each
case provide possible mass terms. These terms
depend on the nature of the symmetry breaking in-
troduced and also in general depend on the cutoff
or some other regularization scheme adopted.

In their case ES suppress the terms (IB,") on the
left-hand side by appealing to gauge invariance. It
will be noted that this has the same consequence
as the convention used in dimensional regulariza-
tion [Eq. (A5) of the Appendix]. As for (19) the use
of the Nambu- Jona-Lasinio-type consistency con-
dition reduces the left-hand side for the Abelian
case to (2m„'Q). The Abelian gauge fields exhibit
cutoff -dependent masses.

For the non-Abelian case we will not attempt any
systematic exploration of the various possibilities
for the left-hand-side members. As an example,
let us consider the simple case without explicit
symmetry breaking and set
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and

(i4g'}Tr& &&(y "SF(x, x}}= m""(x) —in(2g' -g)C, Tr(C,y" SF (x, x))

(29)

(i4g')Tr& &(y,y&Sz(x, x)}= m "(x)+ in(2g'+g)Co Tr(Coy "ysSF (x, x)) .
Thus, again, not only do we get masses dependent on the regularization parameter (as in the Abelian

case), but the U(1) components play a special role and complicate the chiral picture.
One possible point of view would be to use the spinor model to extract this Lagrangian and then use the

gauge-invariant terms (neglecting the cutoff-dependent masses) as a new starting point. That is, at this
point one may choose to consider a Lagrangian of the form'

L(r)==', Tr QF, r, Fr") r-,'Tr((TLL)r(Sr())rm'Tr(Fr/) —-', Tr((( F)').

A Higgs shift of the scalar fields can then be intro-
duced to give the gauge fields masses leading to a
suitable spectrum generalizing, if necessary, the
scalar interaction terms.

Nielsen and Olesen' introduced (for the non-
Abelian case) two scalar fields coupled to a single
gauge field. Here we have obtained a different
picture —two gauge fields coupled to a single com-
plex scalar field. In a different context the possi-
bility of introducing two Yang-Mills fields has been
mentioned by Mandelstam. '

In this paper we have extracted the mass field
Lagrangian. In works to follow we intend to study
classical solutions, possibilities of quark confine-
ment, particle spectra, the introduction of mag-
netic monopoles, quantization, and the reformula-
tion of the model using the "boson method. "' We
will also study the situation in two dimensions.

Meanwhile one can contemplate the fact that had
one been completely ignorant of the Yang-Mills
formalism, one could have extracted it (in a gen-
eralized form) from the nonlinear spinor models,
which have so many other interesting features.

where

d 4p 1
(27))4 p' ' (A3)

2-gm = 2I,(m, )=, =m, I, ,See (A4)

and as a consistency condition one has to set

(A5)

However, we will keep I in our formulas in order
to make contact with other regularization proce-
dures involving cutoffs. (The nature of the regu-
larization procedure will be left implicit in the
symbols I„I„I.) In the matrix notation we will
write

and we have dropped the argument (m;) in I„since
the singularity is now independent of m;, from this
point of view.

In the dimensional-regularization procedure' one
has (with e =4 n, w-here n is the number of dimen-
sions)

It is a pleasure to acknowledge interesting dis-
cussions with Professor E. Brezin, Professor
Z. F. Ezawa, and Professor L. O'Raifeartaigh.

I,(m„) =I+(m„')I, . (A6)

Defining

APPENDIX

J (2n)4 (p'-m '+ie) ' (A1)

I, = I +m]'I, , (A2)

we may write, developing the integral in powers
of the mass,

This may be considered as the definition of I, and
in the final formulas I, can be considered as a
(divergent) number without confusion.

We have taken the trouble to state these points
in detail in order to avoid misunderstanding and
since this point of view is particularly suitable for
the broken-symmetry case. Thus, for example,
in calculating the second-order perturbation terms
one obtains an integral (writing m, for m;„and so
on)

~
~

d'p p (p —q)+m, m~,4, , „„,»~ = I,( m~') +(m,
'

m+, m~ ——,q')I, +nonsingular terms

= I + (m, '+m~'+m, m. ——,q')I, + ~ ~ ~ .1 2

(A7)

(AS)
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In the form (22) the mass dependences are displayed in a symmetric form and the total final results can be
expressed compactly in terms of commutators and anticommutators.
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