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Massless particles with continuous spin indices*

15 APRI L 1976

L. F. Abbott
Department of Physics, Brandeis University, Waltham, Massachusetts 02154

(Received 8 September 1975)

Massless representations of the Poincare group include states with continuous spin indices. Free field operators

corresponding to these states are constructed and are shown to obey noncausal commutation or

anticommutation relations.

Massless representations of the Poincare group
include states with continuous spin indices as
well as the more familiar integer and half-integer
helicity states. Wigner has argued that the ex-
istence of physical particles corresponding to
these states would give the vacuum an infinite
heat capacity. ' Here we discuss massless par-
ticles with continuous spin indices within the con-
text of field theory. Free field operators con-
necting one-particle states to the vacuum are
constructed. These fields do not obey causal com-
mutation or anticommutation relations.

To construct massless representations of the
Poincare group' ' we first form standard states
with the momentum

%=KZ

and energy

ued" we take for n= I or 2

l~z, l, p+2nn) = la'z, l, Q).

In the limit l- 0 states with different values of Q

become degenerate up to a phase,

lxz, 0, /+8) = e ' "lzz, 0, g),
and according to Eq. (4), X must be an integer or
half-integer. It is of course the usual helicity
quantum number.

States with momentum % characterized by azi-
muthal angle n and polar angle P and a param-
eter

y =ln—

are obtained from the standard states by ap-
propriate Lorentz transformation. Using ordinary
6 -function normalization,

Li =Ki —J2

L2=K, +J„
which satisfy

[L„L,] =0,

[Z, L,] =iL

[Z„L,] = -a,

(la)

(lb)

(2a)

(2b)

(2c)

The standard states are characterized by a fixed
parameter l and a variable angle P with

Lil~z, I, Q) = l cosglxz, I, Q),

L, lvz, l, Q) = l singles, l, Q),

e
' 'l~z, l, p) =l~z, l, /+8).

(3a)

(3b)

(3c)

Since any representation of the Poincare group
can be made either single-valued or double-val-

which transform according to a representation of
the little group formed from elements of the
Lorentz group which leave this standard momen-
tum invariant. Letting J be the rotation gener-
ators and K the boost generators, the generators
of the little group are J3 Ly and L, with

lk, l, Q) = = e '" &e ' 'e '~"&lxz, l, p).
k

(5)

Because of the continuous variation of the angle
massless particles with lw0 cannot be created

or destroyed by any field operator 4,(x~) with a
finite number of components. Instead we intro-
duce a field 4(x", 8„) depending on a set of con-
tinuous variables 8„. Under an arbitrary Lorentz
transformation U(A),

U(A)4(x", 8„)U '(A).=-C(A"„x', I' „(A ')8„), (6)

where a sum over repeated indices is assumed
throughout. The reason for this particular trans-
formation law will be given below. The matrices
I' „ form a representation of the Lorentz group
since

r„,(A,-')r.„(A,-') =r. ,((A,A, )-')
=r. , (A, -'A, -') .

If the 8„ transform according to a representation
of the Lorentz group designated by (A, B), the
rotation and boost generators for the F „are
given by'
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J =g' +8 s X = —z(8(

where the $ " and $ ~ can be written simply in
terms of ordinary spin matrices for the spins A

and B. Recalling Eqs. (1), the matrix generators
corresponding to the Ly and L, operators are

(7a)

Z, =x, +g, =(g~"&+@&'~),

where as usual

g, =g, +i8, .
We take C(x, 8„) to be a free field operator

creating or destroying only single particles. The
one-particle matrix elements can be written as

(0~ C(x, e„)~k, l, y& =
2~&~' (2~k~)z~z

x F(k, l, Q; 8„) .

These are related to the standard state matrix
elements by a Lorentz transformation

fl(A(k)) e-i'&e —i812e-i YKz

Thus from Eq. (5)

(O~C(x, 8„)$,l; y) = = (0~@-'(A(k)) C(x, 8„)V(A(k))~Kz, l, Q).
k

Then using (5), (6), and (8)

F(k, l, Q; 8„)= F(Kz, l, Q; I'~„(A(k))8„),

with

r.„(A(k))=(e "eze-"82e '~3).„.
The function F(Ized, l, Q; 8„) can be obtained by considering Eqs. (3a) and (3b) and writing for infinitesimal

c~ and 62

(0](1-ze,L, —ze,L,)C(x, 8„)(1+le,L, +ic,L,)~Ized, l, y) =(1+is,l c Qos'+,zl sing)(0~4(x, 8„)~zz, l, Q).

Using (6) and (8) this gives

'zj, 9 —
icos/IF(vz, l, P; e) =0,

n

IZ, ] „8 —ising F(lzz, l, Q; 8„)=0,9

(8, -&ile ' I" z~ l, ;8 =0,
98i

8, +&ale' I' Kz l, ;8 =0,3 g8

with the solution

or from the explicit forms of Fqs. (7) after adding
and subtracting

[8~ f „g —-', ile ' IF(uzi, p;9„)=0, ,
n

~

~[g, ] „8„, +-, zle' F(~z, l, y;e„)=0.

These equations cannot be solved for le 0 if
either A. or B is zero. This rules out scalar or
two-component spinor transformation laws for
the 8„. However, if 8 is a four-component spinor

84

the equations read

F(lzz, l, Q; 8) =f(8„8,)exp —,'il —' e ' ——' e'
2 3

(10)

The function f(8„8,) is determined by specifying
the l-0 limit of the particular field theory being
discussed. If for l =0 the continuous-spin states
go over into a state of helicity X, f(8„8,) must
be proportional to appropriately coupled factors
of

with

~=(q -P)/2.
This serves to reproduce the conventional l =0
helicity state "wave functions" of familiar mass-
less field theory, multiplied by factors of 8. As
a simple example, we consider

f(e„e,) = e, = 5„,8„.
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Then, performing a Lorentz transformation as in
Eq. (9),

F(k, 0, (t); 8) = 5„,1'„„(A(k))8„

=u„(k)e. ,

where u (k) is just the usual —~i helicity spinor.
This explains the particular form taken in Eq. (6)
and indicates the connection between l =0 and l0
cases. The properties peculiar to continuous-spin
states are entirely contained in the exponential
factor of Eq. (10). In fact, we can eliminate the
extra factors of 8 in f (B„e,}by introducing the
multicomponent field C,(x, 8) and writing

~-fk ~ x'

«I +.(x, 8)Ik, &, e) -
(2„)v, (2]k])~Q

x u, (k)g(k, I, g; 8), (11)

where u, (k) is the conventional "wave function"
corresponding to the particular helicity state ob-
tained from the continuous-spin states in the l-0
limit. The function g(k, I, (I); 8) is just the ex-
ponential term in (10) Lorentz-transformed ac-
cording to Eq. (9). Explicitly,

g(k, I, (((); 8) =exp(&il[G, (k, 8)e '~"'~~+G, (k, e)e'("' ]]),

where

8 cos-,'3+ — 8 sin-'P
ll")

G, (k, e) =
[kI

g2 cos—,8 — 0, sin&fl

(12b)

94 cosy
G,(k, e) =

8, cos-,ek
K )

—
]

—)' e, sin-'())

+ — 04 sin-',

with e and I3 as before, the azimuthal and polar
angles of k.

The above derivations can be repeated for the
antiparticle states created by 4 „(x,8) for which

ei)i. x

(k, I, $] 4,(x, 8)]0)=
2 .. . v, (k)

xg(k, I, Q +(ie),

where v, (k) is the conventional antiparticle "wave
function. "

The vacuum expectation value of the free field
commutator or anticommutator is obtained by in-
serting complete sets of particle and antiparticle
states and using Eqs. (11) and (13). Thus,

&0]l(e.(», &), o'. (»', ii')1, ]lo&=, ), J J' ~(((~"'* *'ar.(a)u." (k)g()i, i, (;&)g"()i, i, (; ii')]

+[e "" "'v, (k)v*, , (k)g(k, I, (t);8)g"(k, I, Q;8')]] .
The factor u, (k}u*„(k) is a polynomial in the four-vector k and satisfiess

u, (k)u,* (k) =(-1)'"v,(-k)v,*.(-k) .

Then causality in the l-0 limit gives us the usual spin and statistics relationship and requires that

3

(0][4,(x, e), C", (x', 8'}],]0) =u, (ie, )u*, (ie„) }, ~,
[(e"'" "] —e "'" "~)C(k, /; 8, 8')], (14)

with

c(k, I; e, e') = d yg(k, I, y; 8)g*(k, I, y; e') .

Using Eqs. (12) we can evaluate the continuous-spin integral to find, after eliminating an irrelevant con-
stant,

C (k, I; 8, 8') = Q (-'. il)"—
, ([G,(k, 8) -G*,(k, 8')][G,(k, 8) -G*,(k, 8')]}" .

n=o

For examp1e, in the special case

1

1
8 =8' =~
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we have

f ~ ' llC(k, l; 8, 8') = g (-', ll)" —,nI
Pl= P

4IkI

-K + + K cosI3

2 ll

C (k, l; 8, 8') is clearly not in general a polynomial
of finite order in k, nor is it symmetric,

C(k, l; 8, 8') eC(-k, l; 8, 8') .

In order for our field theory of massless par-
ticles with continuous spin indices to be causal,
the integral in Eq. (14) must vanish at equal times,
xp' =xp. Changing a k to —k the integral in question
ls

k- e '"'" "'[C(k, l; 8, 8') -C(-k, l; 8 8')1,

which must vanish for all x' —xc 0. This re-

quires that the factor multiplying the exponential
in the integrand be a polynomial of finite order in
k.' From Eq. (15) we see that this would be pos-
sible only if C (k, l; 8, 8') were symmetric in k.
Since this is not the case, the field commutator
or anticommutator does not vanish at equal times
except in the familiar case t =0. Thus we have
concluded a field-theoretic argument against the
existence of massless particles with continuous
spin indices in nature.

I am grateful to Professor Steven Weinberg for
suggesting and encouraging work on this problem.
I also thank Professor Hugh Pendleton for several
helpful discussions.

*Research supported by a Charles Smith Fellowship and

by E. B.D. A. under Contract No. E(11-1)3230,
E, P. Wigner, in Theoretical Physics (International
Atomic Energy Agency, Vienna, Austria, 1963). For
another discussion of continuous spin states see
A. Chakrabarti, J. Math. Phys. 12, 1813 (1971); 12,
1822 (1971).

E. P. Wigner, Ann. Math. 4P, 149 (1939).
3S. Weinberg, in Lectures on Particles and Field

Theory, Brandeis Summer Institute in Theoretical
Physics, edited by S. Deser and K. W. Ford (Prentice-
Hall, Englewood Cliffs, New Jersey, 1965).

I. M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic, New York, 1964), Vol. II, p. 119.


