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Resonance states as solutions of the Schrodinger equation with a nonlocal boundary conditions
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Resonance states of a system consisting of a particle interacting with a finite-range potential are introduced in

a novel way, independent of the notion of scattering. It is shown that a resonance wave function satisfies a
certain nonlocal boundary condition on the surface that delimits the range of the potential. With a central

potential our general boundary condition reduces to a set of local ones that are identical with those obtained

previously by Humblet and Rosenfeld by different methods.

There exist several definitions of resonance
parameters and resonance states of a system con-
sisting of a particle interacting with a potential.
Some of them are related to singularities of the
scattering cross section, of a Green's function,
or of the scattering matrix. ' When the potential is
spherically symmetric and of finite range, some
of the definitions have been shown to be equivalent
to a boundary-value formulation that involves the
boundary values of the radial wave function of a
resonance state and of its normal derivative on
a spherical surface delimiting the domain through-
out which the potential is effective. ' 4 This bound-
ary-value formulation is a refinement of a pro-
cedure introduced by Kapur and Peierls in a well-
known paper' dealing with the dispersion formula
for nuclear reactions. All these definitions have
one feature in common, namely that they intro-
duce the resonance state as a, kind of extrapola-
tion or as a limit of scattering states. Mittleman'
has stressed the desirability of defining reso-
nance states without using a "preconceived notion"
of its structure.

In a recent paper' we have reformulated in a
novel way the problem of determining the scatter-
ing states and the bound states of a nonrelativistic
particle interacting with a finite-range potential.
We showed that such states are represented by
solutions of the Schrddinger equation that satisfy
a certain boundary condition, which is nonlocal
in general, on the surface that delimits the ef-
fective range of the potential. In the present
paper we use the same approach to introduce res-
onance states in a new way. Our definition of a
resonance state will be seen to be entirely in-
dependent of the notion of scattering and applies
to a particle interacting with any finite-range
potential, central as well as noncentral ones.
%Kith a central potential our definition will be
shown to reduce to the boundary-value formula-
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U(r)= S, &(r).

%e have shown in Ref. V by an elementary argu-
ment involving nothing more than the use of
Green's theorem that the following four equations
(not all independent of each other) are a necessary
consequence of the fact that Ps(r) satisfies the

Schrodinger equation:
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In these formulas r& represents any point inside
V, r& represents any point outside V, and

tion of Siegert, 2 Humblet, ' and Humblet and
Rosenfeld. ~

Consider a particle of mass m intera, cting with
a finite-range potential 'U(r), which vanishes out-
side a volume V bounded by a closed surface S.
The time-independent part $8(r) of the wave func-
tion g~(r, f) =g~(r)exp(-iEtlS) then satisfies,
throughout the whole space, the time-independent
Schrddinger equation

(V'+u')g, (r) =U(r)g, (r),
where
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The relation (5) then reduces to

Z(r&) =0,

or more explicitly
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We interpret the formula (12b), which must be
satisfied for every point r& situated in the volume
V, as a boundary condition fox natural modes
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with S„ in (10) denoting a sphere of radius R cen-
tered at any convenient point in the region V.
Further, B/Bn in Eq. (9) denotes differentiation
along the outward normal to S and B/Bns in (10)
denotes differentiation along the outward radial
direction. In Ref. 7, where the energy E was as-
sumed to be real, k in Eq. (8) represents the
positive root of the right-hand side of Eq. (2) when

E & 0 and the root with positive imaginary part
when E& 0. However, the relations (4)-(7) retain
their validity whether or not E is real. When E
is complex we interpret k in Eq. (8) as that root
of the expression on the right-hand side of (2)
that has a non-negative real part.

By analogy with classical electromagnetic theory
we may define natural modes of our system
(particle+potential) as those solutions of the
Schrodinger equation that are well behaved
throughout the whole space and that are outgoing
at infinity. The natural modes may be either ra-
diative (in which case E is complex) or nonra-
diative (in which case E is real). We will identify
the radiative natural modes with xesonancesa and
the nonradiative ones with bo~nd states of the
system. Let us consider the implications of Eqs.
(4)-(7) when (z(r) is a natural mode.

The requirement that natural modes are so-
lutions of the Schrodinger equation that are out-
going at infinity implies that Z'"~(r), defined by
Eq. (10), identically vanishes (cf. Ref. 7), i.e. ,
that for all points r

1
g, (r, ) = —Z(r, ),

4n

or, more explicitly,
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(13a)

-Gs(r&, r') dS . (13b)

It is clear that the boundary values gz(r') and
Bg~(r')/Bn on S that enter the integrand on the
right-hand side of (13b) may be obtained from the
solution of the interior problem by letting r&

move to the boundary surface S.
Up to now we have only made use of two of our

four relations (4)-(7), namely of Eqs. (5) and

(6) and we have seen that, together with the time-
independent Schr6dinger equation (1), they provide
the complete specification of the (unnormalized)
wave functions of resonance states and of bound
states, as defined in the present paper. We will
now make use of some of the implications of Eqs.
(5) and (6) in the remaining two relations (4) and
(7) and will see that they reduce to a more famil-
iar pair of equations that our wave functions must
satisfy. On substituting from (12a) into (4) we

More precisely the natural modes of our system
are those well-behaved solutionsof the Schrodinger
equation that satisfy the constraint expressed by
Eq. (1') fox every point r& in the volume V. For
similar reasons that we gave in Ref. 7 in con-
nection with a boundary condition of this kind, we
may refer to Eq. (12b) as the extinction theorem

fox natural modes.
We will see shortly that the Schrodinger

equation (1) can be solved subject to our (non-
local) boundary condition (12b) only for certain
values of F„ i.e., we are dealing with an eigen-
value Problem. According to our classification,
those eigenvalues E that are real are associated
with bound states and those that are complex are
associated with resonances. Since we have al-
ready discussed bound states from the present
standpoint in Ref. 7 we may from now on confine
our attention to resonance states, though our main
results apply to both cases.

Our boundary condition (12b) may be used to
solve the interior problem, i.e., to determine the
(unnormalized) wave functions at all points r& in
V. The solution will provide, as a by-product, the
complex energies of the resonance states. ' The
solution to the "exterior problem, " i.e., deter-
mination of the wave function at points r& outside
V may then be written down at once in a closed
form by the use of Eq. (6), as simplified by the
requirement (11)
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obtain the equation

gs (r& ) = —— gs(r')U(r')GE (r&, r')d'x', (14)
4m .v

equation

l(I + I)
, + e —U(r}—, u, (~;k) =0 (18)

and on substituting from (13a) into (7) we find
that

(I=0, 1, 2, . . . )

(e =k' =2mE/k). The Green's function may be ex-
panded as (cf. Ref. 13)

These two formulas will be recognized as the
"interior" and the "exterior" forms of the equa-
tion to which the integral equation of the conven-
tional theory of nonrelativistic potential scattering
reduces in the absence of the incoming wave. "
This is as it should be, since the property of "no
incoming wave" is considered to be character-
istic of resonance states and of bound states. "

We will next show that when the particle inter-
acts with a central potential [U(r) =—U(r), r = ~r~]
which vanishes outside a sphere of radius r =a,
our nonlocal boundary condition (12b} reduces
to a set of local boundary conditions previously
obtained for this case by other authors.

With a central potential the wave function g(r&)
may be expanded in a series of partial waves"

Gs(r&, r') =k P (2l+1)j&(km&)&["(kr')
l =o

x P, (cosO), (19)

g aj, (kr&)P, (cos8) = 0,
l=o

where

n, = (ka) [Q, (a; k)k, + '(ka)

-(1/k) y, (a; k)k,"&(ka)],

(20)

(21)

valid with x&&x', where h,
" is the spherical Han-

kel function of the first kind and order l and 8
is the angle between the directions of the vectors
r, and r'. If we now substitute from (16) and (19)
into our boundary condition (12b) we find (cf.
Appendix A of Ref. 7) that it implies that

q, (r )&= g q, (r&, k)P, (cos8),
l=o

where

( )
u(~ k)

Xl

and u, (r; k) is a regular solution of the radial

(16)

(17)

the prime denoting differentiation with respect to the
radial argument. Because of the orthogonality of the

Legendre polynomials P, (cosB), it follows from
(20) that we must have ot =0 for all I. If we ex-
press these conditions in terms of the functions

u, (x;k}, they are seen to imply that

[hI'~'(ka) + (I/ka)kI'~(kg)] ut (a; k) —(1/k)hI'~(ka)u~'(a; k) = 0 (I=0, 1, 2, . . .). (22)

Equation (22) is a set of (local) boundary con-
ditions on the radial wave functions ul of the res-
onance states. These boundary condtions can only
be satisfied for certain values of k [that then give
the complex resonance energies via the relation
(2)], so that we are dealing with an eigenvalue
problem. More specifically, the eigenvalue pro-
blem is that of determining, for each l, the
solutions of Eq. (18) which are well behaved
throughout the range 0 & x + a and which satisfy
the boundary conditions (22) when r =a. These
solutions must, of course, also satisfy the usual
boundary conditions u, (0; k) =0 (3 =0, 1, 2, . . . )

when x =0.
The set of equations (22) is, except for notation,

precisely the set of boundary conditions for the
radial wave functions of resonance states ob-
tained previously by Humblet [Ref. 3, Eq. (11.1)]
and Humblet and Rosenfeld [Ref. 4, Eq. (1.33)l
by entirely different methods. For the special

case when l = 0 the boundary condition was derived
eariler by Siegert' and it is also implicit in the
well-known derivation of Kapur and Peierls, ' of
the dispersion formula for nuclear reactions, by
the technique of perturbation of boundary con-
ditions.

We may summarize our analysis by saying that
we derived, on the basis of a new definition of a
resonance state (of a system consisting of a
particle interacting with a finite-range potential)
a general boundary condition that the wave func-
tion of such a state must satisfy. Our definition
of a resonance state is independent of the notion
of scattering, and our derivation of the boundary
condition is entirely based on two identities that
follow from the Schrodinger equation. We also
showed that our definition of a resonance implies
that the wave function of such a state is a solution
of the homogeneous integral equation to which the
usual integral equation of potential scattering re-
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duces in the absence of any incoming wave. With
a central potential our nonlocal boundary con-
dition reduces to a set of local ones for the radial
wave functions of the resonance states, which are
in agreement with those obtained previously for

this special case by other techniques.
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