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We investigate the second-order corrections to quantum-soliton solutions in the scheme
proposed by Goldstone and Jackiw and expose the systematics as well as the self-consistency
of their approach. We find exact agreement between our results and the corresponding pre-
dictions of the collective-coordinate method provided we take into account the modifications
found by Tomboulis to the original results of Gervais and Sakita and of Callan and Gross.

I. INTRODUCTION

A considerable amount of interest has recently
been paid to the quantization of certain field theo-
ries which, as has been known for a long time,
possess exact nonlinear wave solutions. The main
interest that these theories present to particle the-
orists is the possibility that such solutions (which
are usually called solitary waves or solitons)
might, in the quantized theory, correspond to ex-
tended hadrons.

There have been several different approaches to
this problem. In particular, Goldstone and Jackiw'
used two techniques: a variational calculation
using the effective action formalism' and the so-
called Kerman-Klein method. Gervais and Sakita'
and Callan and Gross~ used the method of collec-
tive coordinates to quantize the classical theory
by a functional integral. Subsequently, Tomboulis'
showed that their results could be obtained by
means of a canonical transformation' and noted
that, owing to operator orderings, certain terms
appear in the quantized theory that seem to be ab-
sent in the functional approach.

To lowest order, calculations using the Kerman-
Klein method agree with the corresponding collec-
tive-coordinate results' and, at least formally,
also with the static effective action results of Ref.
1 (there are certain difficulties in this approach,
discussed in the text, which make certain results
ill defined. )

In the present note we extend these investiga-
tions by including higher-order terms in the cou-
pling-constant expansion. Our main goal is to es-
tablish the self-consistency of the Kerman-Klein
method as well as its compatibility with "orthodox"
perturbative techniques. To this end, we compute
the rest energy of the quantum soliton (baryon) in
three different ways: (i) a variational calculation
with the static effective action, (ii) ordinary per-
turbation treatment of the effective Hamiltonian

of Ref. 5, and (iii) the Kerman-Klein method de-
veloped in Ref. 1.

We work in a class of theories in one space di-
mension and one time dimension described by the
Lagrangian

Z[~; e]= ,'s, C-s'O —U[~; C]

with C (x, f) a real, spinless field and U[X; C ] scal-
ing with respect to A. as

U[~; e]=—U[1; X'~2C ]. (1.2)

Although our results do not depend in any impor-
tant way on the explicit functional form of U[A.; 4 ],
we shall often carry out our computations in a XC4

theory with

U[X;C]=, (6m'-XO')' .1

II. THE STATIC EFFECTIVE-ACTION APPROACH

The use of the effective action as a means to de-
termine the ground state of a theory consists, as
is well known, in finding the expectation value of

This breaks the symmetry 4- -4 in the vacuum
states C, ,=+(6/Z)'~'m.

To third order in X [O(X')] we find that the static
effective-action approach does not give the full re-
sult (which is not a surprise, since the first kine-
matic corrections appear at this order).

The results obtained by the Kerman-Klein and
collective-coordinate methods are shown to be
equivalent to this order by making use of consis-
tency sum rules derived from the equations of mo-
tion and the field commutation relations. We point
out that the fact that the Kerman-Klein method re-
produces the "ordering terms" found by Tomboulis
to be essential for the Lorentz covariance of the
theory provides another proof of the correctness
of the relativistic interpretation of Ref. 1.
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real) in terms of which G ' has the spectral form

(b)

FIG. 1. Graphs that contribute to I' to 0 (A,). The
quartic vertex is proportional to A, and the cubic vertex
is proportional to AQ.

G '(x, y) = Q (2(o„)'g„(x)g„(y),

hence,

G((d; x, y) = dx, e '""OG(x„x,y)

=z P4.(x) „. „.„.,4.(y)

(2.7)

(2.8)

the Hamiltonian

E[0 G]= &sl Ills&

between normalized states constrained by

(sle(x, f)ls& = y(x) (2.1)

Using (2.8) in (2.5) we obtain

r("=— dx, ', dxdyy(x)y(y) gg„(x)g, (x)4„(x)
nlm

„4.(y) P, (y) k.(y)
co,ur v„„+(0 +,

(2.9)

&slC'(x f)e(y f')Is&z=z = P(x)P(y)+ G(x, y). (2.2)

Then, the minimization condition for the effective
action

Therefore, the contribution to the energy func-
tional from this graph is given by

5r[y]
5y(x, t)

is equivalent to'

5E[g, G] 5E[g, G]
5y(x) 5G(x, y)

(2.3)

(2.4)

where'

d»" (4(x))4 (x)4(x)4.(x).

(2.10)

(2.11)

The loop expansion for E[g, G] is an expansion in
powers of A.. The terms of order X' and A,

' have
been previously computed. ' The graphs that con-
tribute to the effective action (and hence to
E[P, G]) to order X are shown in Fig. l. Of these,
the graph in Fig. 1(a) has also been given. To
complete the calculation to O(A), we now include
the contribution from the graph in Fig. 1(b). This
is given by

E.[e]= dx[-'(e')'+ U(e)] = dx(e')', (2.13a)

E,[P, G] = (( dx G '(x, x)

The full expression for E[g, G] to O(X) is thus

E[y, Gl =E,[y].E,[y, G].E,[y, G], (2.12)

where"

I' =12 d d y P( )$(y)G(x —y;x, y)

x G (x —y; x, y) G(x —y; x, y),

where

~ 00

G(xo —yo;x, y) =i —e'"("o 'o'G((d;x, y)
4 mOO

(2.5)

+-.' ' dxdyG(x, y) + +U"(y) 5(x y),

(2.13b)

E [y G] (Ea)+ E( )z

dx U'"(y(x))G(x, x)G(x, x)

with

G (x, y) —= G(0; x, y) .

(g~ ef Cd (Xp Pp)
=z 2, ,G, (x, y), (2.6)„„2K (0 —4G

((z( .)'
lmn (d ~(Omh) „

brmn

(d +(0 +(dl' m n (2.13c)

To compute I',"' in terms of G(x, y), we use a
complete, orthonormal set of functions Q„}(which
we choose, without any loss of generality, to be

To obtain the energy of the physical state ls&

from E(ls. (2.13), we must impose the stability
conditions, E(ls. (2.3), on the energy functional.
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Expanding E[Q, G] in powers of X with

Q = P, + Q (f) q, G = Go+ Q Gq, (2.14)

we obtain

E[P, G]=E,[P,]+—' dzdz'P, (z)G, (z, z')P, (z')
~l

and p, -o(X't'), G, -o(X'), the condition 6E/6&f&=0

implies
+ ED[/„co]+ g dz P, (z)GO(z, z) U"'(Q,)

1 6 b, „-p" + U'(p)+-'U"'(p)G(x, x) =48
lmn

(2.15)

+E,[y„c,]+ O( '}. (2.21)

Writing P, in terms of Q, and simplifying we find
for the mass of the state !s) to O(X)

Expanding and keeping terms to order A.
' ' and

using 6E,[g,]/6P =0 we obtain e, (x) = -2 dy U"'(%.(y)}c.'(x, y)c.(y, y),

-P,"+ U'(Q, ) =0,
d2

, + U"(y, ) y, =--,'U"(y,)c,(x, x),

(2.16a)

(2.16b)
M =M, + tan, + ~,+ O(X'),

(2.22)

(2.23)

, + U"(y,) y, = ——,'U"'(y, )G,(x, x) ——,'y, 'U"'(y, )

1 ~ (6/6y)&, „.[y., sj

where P, and G, satisfy, respectively, Etis. (2.16a)
and (2.20); M, =E,[P,]= f dx(P, ')' is the classical
mass, and

~,=-,' ~ dxc, -'(x, x)

—,'y, U'"'(y, )C,(x, x).

Varying now with respect to G, we obtain

(2.16c)
- o(xo),

dx U""(y.(x))c,(x, x)c,(x, x)

(2.24a)

—,'G~(x, y) =
2

++ U"(y)+ -,'U""(y)c(x, x) 6(x -y)

x, y)
(2.17)

d2
—,'G,~(x, y)= —~+ U (y,) 6(x-y). (2.18}

This implies that the set Q„j is formed by the so-
lutions of

d2
, + U"(@,) g„=e„(„. (2.19)

We have, until now, said nothing about whether
G ' can be inverted or not. As is well known,
the formalism, as it stands, leads to an unavoid-
able infrared singularity in G and hence in E[P, G].
Indeed, from Eg. (2.16a), it follows that

—+ + U" (Q,) g, '=0, (2.20)

so that Eq. (2.19) has an eigensolution go =1VQ,'
with eigenvalue ~ =0. This is a consequence of
translational invariance and is therefore referred
to as the translation mode. ' We shall, for the
time being, forget about this problem and proceed
to calculate the energy. Using Eqs. (2.16)—(2.18),

However, since, to order X, neither Q, nor G, ap-
pear in E.[Q, G],' we need determine only G, . This
is given by

dxdy U"'(y, (x))G,(x, x)G,'(x, y) G,(y, y)

x Uin (Q ( }}—1 imn[4ct ~]b

„(di+ (d + (d„

(2.24b)- o(x').

III. PERTURBATION THEORY

@(x,t) - y,(x-X}+X(x-X,t),
p+ f d X'v

(x t) +( t) M (I (/M )

(3.la)

(3.1b)

where g and g represent the meson degrees of
freedom of the original fields and g = f dxX'P,!
Here X(t) stands for a new dynamical variable (the

In this section we compute the baryon energy to
O(X) as well as the matrix elements of C between
one-baryon-one-meson states and between one-
baryon-two-meson states to lowest order [O(x'~')],
by ordinary perturbation treatment of the effective
Hamiltonian of Ref. 5.

The method for obtaining an effective Hamilto-
nian for the theory given by Eq. (1.1) consists in
separating the original Hamiltonian into a free
meson and baryon part plus a meson self-interac-
tion part and a meson-baryon interaction. This
separation can be accomplished by means of a
canonical transformation on the original fields
ea drr, .'

The transformation is given by
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center-of-mass coordinate) conjugate to the new
momentum variable p(t).

The transformation is subject to the constraints
I dxm(x, t)y, '(x) =0. (3.2b)

dxq(x, t)y. '(x) =0 (3.2a) The resulting Hamiltonian is given by

1 2

H=M, + ' dx[-,'x'+-,'(g')'+2g'U"(p, )]+ ' dxi —p, li'+41 Z' +2~ i
p+ dxX'w,

2M

M2 1+M dx c

=Ho+ HI, (3.3)

g(x, t) = g ',
2 „„(a„g„e' "E&+H.c.),

/

w(x, t)=g
i

2" i(a~/~'"«-H. c.),

(3.4a)

(3.4b)

where the fields g and m are quantized in the stan-
dard way

and

HI= +
I

dx —tg+P X
Q P p

C C

1 " 1
+ '

Chy. 'w —,i dx(p, ")'
C C 4

(3.6b)

with

[a„,a„]=[at, at]=0;

[a„,a„']=6„„.

[clearly, H z-0(&'i') and H'z-O(l()].
To order X, the energy of the one-baryon state

ip& is given by'

(p'IH. lp&=&.(p)6(p- p'),

Here the expansion is made in terms of the com-
plete set ()I)„] of solutions to the free-field equation
[compare Eq. (2.19)]

E (y) = dd, + —,
' f dx Gy'(x, x),

where

(3.V)

-X"+ U"(P,)X= ~'X. (3.5)

This set includes the eigensolution g, for u& =0,
which must be excluded from the expansions in
Eqs. (3.4) because of the constraint equations,
(3.2a) and (3.2b). Whether the expansion is made
in terms of "in" states or "out" states is of no
consequence for our purpose.

Expanding HI to 0(A.), we obtain

1
Gt= Q'42~ &n

is the infrared-finite part of G, [see Eq. (2.7)].
The terms that contribute to E(p) to O(X) are ob-
tained by a first-order calculation with H21 and a
second-order calculation with H &. The second-
order term is given by

) dq ~ (pIH", Iq;(ij&(q;(I] IHIIp'&

Hr-HI+H

where

Hr=
i

dx4 y (3.6a)

(3.8)

The only nonvanishing terms a.re those with one
and three mesons in the intermediate states, Ex-
plicitly,

This gives

~ (Oly'(x) In&(nip'(y) 10&
&' ~d ~ (Oly'(x) Itmn&(lmnly'(y)IO&

36 Jl dxdy (t'G x (t'G
y) tmn l m n

E,(y)= —,j dxdy G (d, (x))Gy(xx)Gy'(x, y)G"'y(y, y)G"'(d , (y)) ——'I
tmn & ~+ n

The first-order calculation with H21 gives

(3.9a)

1 2 1
E~(p) =2 + (') ' dx U""((t),(x))Gy(x) x)Gt(xy x)+6M 2 dx((t)G )'+6~ t dxdy Gy '(xyy)S„S„G~(xy y), (3.9b)

2M, C C
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and E(p) =E,(p}+E',(p)+ E',(p}. Setting p = 0 we
obtain the baryon mass, M, to order X,

M=M + j&Io+ ddUI~+ 2 dx(g ")
c

son to one-meson matrix element,

&p;n~C(x)~p';m&, = dx e"~' ~'"o
~J n m

with
1

+ —
I dxdy Gy '(x, y)S„B„G~(x,y),

c ~
(3.10)

&".(x) = g 2'„„dy II"'(e.)4.(y)4 (y) (&(y)2(d )
with 2&I, and ~, defined in Eqs. (2.24).

We observe that, aside from the fact that here
M is given only in terms of the infrared-finite 6&,
Eq. (3.10) differs from our previous result, Eq.
(2.23), by the appearance of two new terms. This
discrepancy might be explained from the viewpoint
that kinematical corrections, which cannot be as-
sessed in the direct static variational calculation
of the past section, enter at this point.

One can also trivially compute the energy of the
state Ip;n). Using Eq. (3.3), we immediately ob-
tain

E,(p; n)5(p -p')6„„,= &p; nlH, lp', n'),
(3.11)

E,(p; n) =M, +-.' dx G,-'(x, x)+ ~„.
~J

This result defines e„ to this order, and as we
shall show in the following section, the determi-
nation of &u„ to O(A. ) suffices to determine M to
O(X).

For completeness, and for further comparison,
we now compute the two-meson matrix elements
of 4. The no-meson-to-two-meson matrix ele-
ment is clearly given by

&p~e(x&~p;n &

" dq ~ (plC (x)Iq; (E)&(q; (l}IH zl p'; nm)
2m ~ E(p'; nm) -E(q;(l/)

[ dq ~ (plHr'Iq;(Ik&&q;(I)IC(x)lp';nm)
E(p) —E(q; 9))

(3.12)

Only one-meson intermediate states contribute to
the first sum, and three-meson intermediate
states to the second. After a straightforward cal-
culation, we obtain,

&pic(x)lp'nm&= dx e" ' ~'"o g (x-x )
(2(d„2(d )

where

&..( ) = g '„)"dy II"(e.)(.(y)4.b)( (y)

1 1
(dn+ CO (dl (dn+ (d +(dt

(3.13)

In much the same way, one finds for the one-me-

1 1
X

(d —(d„+ (d,

(3.14)

Of course, for an explicit evaluation of our for-
mulas in a given model, one must still perform a
vacuum energy subtraction as well as a meson-
mass renormalization to render M finite. This in
fact removes all the divergences from the theo-

3, II~ 12lp.

IV. THE KERMAN-KLEIN METHOD

In this section we shall extend the computational
scheme of Ref. 1 beyond the static approximation
to compute all the O(X) corrections to the baryon.

The main goal of this technique is to compute
all the matrix elements of the quantum field 4 be-
tween single-baryon-multimeson states. Such
states we shall label by the total momentum, p,
and a set of labels, 1n), one for each meson, re-
quired to specify the state uniquely. The state
~p; n,n, ' n,) has an energy E(p; (n))
= [(M, +Z&u„)2+ p']' ' with M, the classical baryon
mass and a&„(k) = (p,2+ k„')'~' the meson energy.
Requiring the states to be energy and momentum
eigenstates, from the quantum equations of mo-
tion for C, one finds a set of equations for the
matrix elements the field in these states. In Ref.
1, an approximation procedure for these equations
was developed. Here we shall first show that such
an approximation is self-consistent and then pro-
ceed to extend the scheme to include kinematical
corrections.

Defining first

&p;n n '''~e( )~px'; mm' '),

Emgna2 ~ ~

(p pi. x)
(2(g ~ ~ ~ 2(u ~ ~ ~ )' ~'

ml

(the normalization factors are for later conve-
nience; the subscript "c"stands for connected)
we find

(IE(p;( k)P -(p-p')'k
(2(d '' 2(d ''')

ni mI

= &p;En) (H'(~}[p';(m)&.. «.1)
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We shall now derive and solve all the equations
that result from Eq. (4.1) to order }(.'i'.

A. Lowest-order equations

To lowest order, Galilean invariance for E is
exact. (This amounts to the static approximation
of Ref. 1.) Then, defining the Fourier transforms

F.„( ) =g, 2'„eU"(e.)C,(y)0.b)0.(y)

1
X

+m+ +n —(dS &S+ m+ +n

(4.8a)

F,}„},(P' —P; x) = d," ' '"oE,'P'}( —x,), (4.2)

one gets (at first explicitly for the 44 theory)

2

+ Q ((}„—Q (d~ + m E()(„}(x)
(ff} (m}

(m} "{g (r}
o}}(}FO}}}Fo}n} ~(., i}

so that the no-meson function obeys the classical
equation,

Eo + U'-(EO) = 0, (4.4a)

with solution E, = P, . For the one-meson function
we have

F:(x)= g 2' e U"(e.)t,b)t.b)0.b)

X
(d —(d„—CO i (d —(d„+ (Or

(4.8b)

Thus the functions E„(x) and F (x) coincide, re-
spectively, with the functions 6„and 6„of the past
section [see Eqs. (3.13) and (3.14)].

B. Higher-order results

The first correction to E is of order A.'i and is
given by'

d + U" ((}(},) (}((,(x) = -2U"'(y, )Gq(x, x), (4.9a)

with solution

(4.4b)
y, ( ) =2 dyG, '(, y)G, (y, ~)U"(y.) (4.9b)

g x $
5 x g 0 x (4.5)

with

This is Eq.(3.5) once more. We choose the solu-
tions of this equation to be the members of the set
(g„jused in the past sections. Here, however,
this set does not include g„ the zero-frequency
solution, since the state with & = 0 does not corre-
spond to a physical, state. ' The completeness re-
lation for this set then reads

[compare Eqs. (2.16b) and (2.22)]. In this case,
Galilean invariance is still an exact statement for
E, since the first deviations [coming from the en-
ergy differences in Eq. (4.1)]would be of the form
(~)'E„which is of order X'i'.

The equations for E„to order A. are slightly
more complicated than the previous examples due
to the fact that here there will be a term
[(p2 —p'2)/M, ]u&„E,„in the left-hand side of (4.1)
that spoils Galilean invariance. However, de-
manding Lorentz invariance for E„, it is not dif-
ficult to see that it must be of the form

y =(M) ii2y
'

For the two-meson functions we have

(4.6) 6,6'„(p' —p; x)+ (P'+P)5,S„(P' —P; x),

to order X. Using this result, one finds

(4.10)

d2
+ U (p,) E„"=((d —(d„)'F„"—U"'(Q,)E F„,

(4.Va)

d2
+ U" (p, ) —e„' 62(„'=—2

C

(4.11a,)

d2

2
—+ + U"(P,) E = ((d„+ (d ) E — U"'(g,)F„F„. where

+ U" (Q,) 5~)„=J„, (4.11b)

(4.Vb)

Using the completeness and orthonormality of the
set Qj, one can easily solve Eqs. (4.Va) and (4.7b)
in terms of g„and (t(,. The solutions are

J„=M"g„"—2U'"(P, )G&g„—U"'(@,)P g„+ 2&(}„6((}„P„
C

(4.11c)
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where we have written 5&@„[O(X)]as the first (and
as yet, unknown) quantum correction to the meson
energy. It is easy to show, however, that I',„ is
in fact independent of 6e„." The full correction
can thus be written as

(P;~~4(x)~P'&"'= „.I dx, e*"' ""~e,„(x-x,),

with

(4.12)

6,6:„(q;x) = 6,S„(q;x)+ 2p6, 6:„(q;x)

=
)I dx, e*''"o&,q„(x-x,) (4.13a)

4,„(x)= 5~(1)„(x)—i5,(„'(x). (4.13b)

To solve these equations we again use the spectral
form for the operator [-d'/dx + U"(P,)]5(x-y).
Eq. (4.11b) gives

e,„(e;e)=Q,', eee„+ e„'), (4.1ea)1n 0 ~ 2 ~ 2 lt tl ~ 5

with

(4.16b)

This implies the necessary condition

(4.17)

For the kinematical analysis of the second cor-
rection to the no-meson function, notice that Lo-
rentz invariance demands that it be a function (to
all orders in A) of the difference v —v' where v is
the rapidity associated with the momentum p.
This suggests an elegant and practical way of de-
riving the equations of motion'o (this result can
also be obtained, although in a somewhat more
cumbersome way, by using the same method we
used for E,„). These are obtained from the gen-
eral equation

((0&'- ~.')(0&, ~,)I).) = ((I)g ~.) (4.14) (4.18)

andp for / +
/gal

Spr/)„(x) = Qc„,(I)g(x), (4.1s)

with c„,=((l)„J„)/((d, —u„). However, since, for
any constant n, (5~(„)=—5~(„+c(g„ is also a solution
of Eq. (4.11b), we can always choose o. such that
((6~$„),g„)=0. With this choice (which only affects
the normalization of 5~(„), one has c =0. Using
a similar argument for 5,g„', we obtain

where A is the part of (p~U'(4)~p') that includes
meson intermediate states. The equations for p
to a given order in A. are then obtained by expand-
ing the left-hand side of Eq. (4.18) in powers of
1/M, [which, as we have seen, is O(A)] and then
expanding P as usual. To O(X'~') after using Eqs.
(4.Sa) and (4.9a), we get

(4.19)

where

6(d 1-T=» .4.'"+-'.~'"(4.}4,G~+-'4.'~"'(4.)+-'~"'(4.} g (, '... %A+ g 2, (6+5 ")~ g 2'"2'"12',' '
y2M& ~2 2A

ln

(4.20)

The term in square brackets corresponds to the
order-X term in the expansion of (Pl@4 lP) —Q(()),

that is, to the infrared-finite part of the function
we called G, in Sec. H [see Eq. (2.2)]. Using the
explicit form for the two-meson functions, o„and
8,„, given by Eqs. (4.8a) and (4.8b), the last term
in the above equation can easily be shown to be
equal to

(6/64)& ..[4. 01
48 ~ (0~ +(d + co„

l Nlti

So that, apart from the first term in Eq. (4.20),
Eq. (4.19) agrees with our previous equation for

(t)„Eq. (2.16c). This discrepancy is of the same
nature as the one encountered in the mass calcu-
lation of the previous section and may be ex-
plained by the same argument about kinematics
which we used in that case. Thus, provided that
(q„T)=0.

(4.21}

With these results, we can now compute the baryon
energy

E0 ) =(ulcc(0) lu&,
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where, in our 44 theory,

3e=-', w'+-', (4)')' — 42+ —4 +—' -2 41 2X ~

(4.22)

Expanding as before with single-baryon-multi-

meson states, we can express E(P) in terms of
the functions we have calculated above. For the
quadratic parts one needs up to two-meson inter-
mediate states; for the quartic term we need one-
and two-meson matrix elements as well as the
disconnected parts of one-to-two-meson matrix
elements. For exampl. e,

I

l(pl~'(o)lp)= ~, (0') dx —,&, J ((. ) dx+-„' Gz '(x, x)dx+'; p v„Jdx((„4," +c. )„f
C C n

I 4)„+(d I

n ln

(4.23)

The other quadratic terms are also trivially ob-
tained. For the quartic term, a straightforward
but somewhat lengthy calculation is needed.
Collecting terms and using the equations of motion
as well as Eqs. (4.16) and (4.17), one sees that the
terms proportional to (t)2, ~P,„and 6&v„do not con-
tribute to this order. Notice that the fact
that E(P) is independent of the corrections to
v„of the same order is an obviously essential
self-consistency requirement, for we would have
no way, within the formalism, to calculate 5cu„

without knowing Z(P) as well as E(P; n) to the same
order. It is expected that such a result will ap-
pear at each new order in the calculation.

After some rearranging and with the aid of
Eqs. (4.8a), (4.8b) and (4.9b), we arrive at the
following result for the baryon mass:

dx, &'(~'-»"Os„s, G, (x —x„y —x,); (4.26b)

(iii) O(X) corrections to the one-meson matrix
elements,

dx,e's' ""o Q [y„(x-x,)e,*„(y-x,;P')

+ q„(y —x,)+,„(x—x,; P)

+(x-y)] ' (4.26c)

fi
i(p' -p)xO n m g & & g

nm

(4.26d)

(iv) two-meson terms coming from the lowest-
order (X'~') two-meson matrix elements,

M =M, +&MD+&M, + 8, dx((t), ")'
BM,'~

1 ~ 4')(~m+~n) (( g )2
n m

(4.24)

However, since the left-hand side of Eq. (4.25) is
of order X', the sum of these terms must vanish.
After multiplying by g, (x)(t), (y) and integrating over
x and y (shifting by xo), this sum rule leads to

with b, Mo and b M& defined as before [see Eq.
(2.24)]. Equation (4.24) will be shown to coincide
with our previous result, Eq. (3.10), by using a
consistency sum rule derived from the canonical
equal-times commutator:

dxdy[s„e, G, (x, y)]G, -'(x, y)

(d)((d. +&J
(~

lmn n m

(4.27)

Using Eq. (4.27) in Eq. (4.24), we reproduce Eq.
(3.10), thus completing our proof.(4.25)

P C(x, t), ' P' =2«5(x-y)5(P P'). -~

~

sc(y, t)'
t=o

This relation has been computed within the form-
alism to lowest order. ' The O(X) corrections come
from four places: (i) O(X') ') corrections to the
no-meson matrix elements; these give

(dx,e'"' ""'[(t),'(x —x,)(P, '(y —x,)+ (x—y)];

(4.26a)

(ii) O(A. ) kinematical corrections to the one-meson
terms,

V. CONCLUSION

The main goal of this calculation has been to
establish the self-consistency and systematics
of the Kerman-Klein method developed in H, ef.
1 to O(X). This we have accomplished by com-
paring with the corresponding results obtained by
collective-coordinate methods. %e found, more-
over, that the last term in Eq. (3.3) is crucial
for the equivalence. Although we were unable to
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obtain this term from the functional integral
directly, we believe that its absence can be ex-
plained along the lines of the discussion of
Rajaraman and Weinberg, ' who find that a naive
change of variables in the path integral can lead
to erroneous results.
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