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Lattice perturbation theory for gauge theories of strong interactions is studied for (1+ 1)-dimensional Abelian
gauge theories. Strong-coupling expansions for the theory's mass spectrum are carried out to order 1/g ' a '

(a = lattice spacing). These expansions are extrapolated to the continuum limit using Pade approximants.
These high-order results are compared to 1/g a ' expansions reported previously, and convergence to known
continuum theory results is noted. In many cases, agreement between the lattice calculations and continuum
theory results exists to 2-3%. These calculational methods generalize to (3+ 1)-dimensional theories.

I. INTRODUCTION

This paper continues our study of lattice gauge
theories. " In the long run, we want to develop
practical approximate calculational methods which
will yield the mass spectrum of color gauge theo-
ries of quarks and gluons. Our program is well
underway, and some interesting four-dimensional
results will be reported soon. ' Our intent here
is somewhat less ambitious. In a recent article'
by two of the authors in collaboration with Banks,
we formulated (1+1)-dimensional Abelian gauge
theories on a lattice and calculated various quan-
tities in strong-coupling perturbation theory.
Then, using Pade approximants, the series ex-
pansions for these quantities were extrapolated to
zero lattice spacing. The results of this proce-
dure, similar to those used in statistical me-
chanics, were encouraging —good agreement with
known results were found in several cases. It is
the purpose of this article to present higher-order
calculations of the same type and confirm that the
strong-coupling perturbation theory improved with
Pade approximants converges to the continuum
theory. In many cases we shall find that the ap-
proximate calculations lie within 2-3 /o of vari. ous
exact and approximate calculations in the contin-
uum theory. We feel that our numericaL work con-
firms in a practical fashion Ll~e claim that the con-
tinuum limits of lattice gauge theories exist and
agree with the continuum theories —at least for
our (1+1)-dimensional theories. Furthermore,
the calculational methods are simple and can be
applied in more realistic settings.

This paper is a continuation of the study begun
in Ref. 4 and is not meant to be self-contained.
The reader should consult Ref. 4 for the funda-

mentals.
This article is organized into six sections. To

begin, we review briefly the (massive) Schwinger
model formulated on a lattice. Strong-coupling
perturbation theory in the dimensionless param-
eter st = I/g'a' is briefly described. In Sec. III
the eighth-order series expansions for masses of
particles in the theory are recorded. In the next
section we present the Pade extrapolations for
several quantities whose series expansions can be
unambiguously extrapolated to the continuum limit,
x-~. These include the vacuum energy, SM»/Sm
(M»= mass of the vector particle of the Schwinger
model, rrt =fermion bare mass), Ms/M» (Ms= mass
of a scalar state), and M» itself. We also com-
pare the mass of the vector particle determined
"statically" (as the mass gap at zero momentum)
to its mass determined "kinetically" (as the curva-
ture of its energy-momentum relation). Good
agreement between the two methods is found. This
supports our claim that our calculational methods
retrieve a relativistic realistic spectrum of the
continuum theory. This is a particularly nontrivial
test for the theory to pass since lattice Hamilton-
ian methods do not have manifest Lorentz invar-
iance. In Sec. V various plots of the Pade approxi-
mants are presented for finite x. It is argued that
the absolute mass scale of the theory (in units of
g) can also be inferred by studying these graphs.
Considerable improvements in the eighth-order
calculations relative to the fourth-order calcula-
tions are noted. A brief section of conclusions
and prospects follows.

II. MASSIVE SCHWINGER MODEL ON A LATTICE

We shall collect here the most useful construc-
tions and formulas from Ref. 4. Recall that we
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1= ~Q(n), n= odd.
(2.1)

The gauge potential A(n) enters the theory through
unitary operators

U(n, n+ 1)= exp[iagA(n)] —=exp[i8(n)] . (2.2)

We always work in the class of gauges A'= 0 for
which a simple Hamiltonian form of the theory
exists. The Fermi field @(n) satisfies the dimen-
sionless anticommutation relations

Q'(n), y(m)} = 5„,„, (2.3)

place fermion fields on a lattice by assigning a
one-component Fermi field Q(n) to each site {n}.
The continuum two-component field g(x) is recon-
structed by the equality

=1 @(n), n= even
va

V& = g[y'(n)e'""'y(n+ 1)+H.c.] I ». (2.6)

A scalar state can be made by using the kinetic-
energy density,

IS)= 'E Q[y'(n)e"'"'P (n+ 1) —H.c.] I0), (2.'t)

as discussed in Ref. 4. States of nonzero momen-
tum will also be considered. The vector particle
at momentum p is

ly to that of the massless model. Given the zeroth-
order ground state one can calculate the masses of
the particles in the theory. Of particular interest
will be the vector state which is generated in the
continuum theory by applying the spatial integral
of the vector Qux to the vacuum. On the lattice
this state becomes

while the gauge variables satisfy

[8(n), L(m)] = i5„„, (2.4)

where 8(n) = agA(n), and L(n) = (1/g)E(n) = (1/g)A(n).
L(n) is an angular momentum operator whose spec-
trum consists of the integers. The Hamiltonian,
scaled by a factor 2/ag' for convenience, then
reads

I v(»& =+["'"e'(n)"""'e(n+1)+H '] I»

where

(2.8)

= gL'(n)+ pg(-1)"pt(n)P (n)

+ ixg[gt(n)U(n, n+ 1)$(n+ 1) —H.c.], (2.5)

where

x=
2g2 0

2m 2m
Mx,

g u g
m= fermion mass.

The physical spectrum of W is now obtained in
perturbation theory. We identify the zeroth-order
piece of W, Wo, as the first two terms of Eg. (2.5).
Wp leaves different lattice sites uncoupled. The
ground state of W, is then a fluxless state [L,(n)
= E(n) = 0 for all n) with (P~(n)Q(n))o =+ 1 for n odd
and 0 for n even (we recognize this as the static
limit of the Dirac sea). The determination of the
ground state for m = 0 is more subtle —one argues
using second-order perturbation theory in the
third term in Eq. (2.5) that discrete y, invariance
is spontaneously broken. Then the m-0 limit of
the vacuum of the massive model connects smooth-

Our calculational methods were explained in de-
tail in Ref. 4. In brief, we simply treat the third
term in Eg. (2.5) as a perturbation and develop the
physical quantities as power series in x. Simple
illustrative calculations can be found in Ref. 4
along with detailed graphical rules.

III. EIGHTH-ORDER EXPANSIONS

Q= 1+2@,y

P=3+2p,
+=1+ pe

(3.1)

Then the ground-state energy per site, E,/N, is

The calculations of Ref. 4 have been extended to
eighth order in x=1/g'a'. This was accomplished
by computer using a finite lattice and programs
employing abstract algebra manipulations (SNOBOL).

Many of the calculations, which are simple but
tedious, were also done by hand. The eighth-or-
der vacuum energy, sixth-order vector-particle
mass, and fourth-order energy-momentum rela-
tions were checked by hand. The higher-order
computer calculations were checked by repeating
them on lattices of various sizes, etc.

Let us list the expansions. It is convenient to
define
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Eo 1, 3 4 (58+40'), (5772+ 13802', + 10940[[['+3000','+ 80p,4)
X + —3X X + 7 2 X ~

n n' n'p 4n'p y

The vector-particle mass is given by

M» 2, (10+4p) 4 (236+ 272'+ 96''+ 16ps)
2 x =1+2++—x —

3 x + 5 XnBP

(6626+ 18738i4+ 19980g2+ 10244 p,'+ 2808 p4+ 464 ''+ 32 p4)

n 7p2y

The scalar-particle mass is given by

~ Mg 6, (26+4') 4 (572+448', + 16'' —16',')2vx ~=1+ 2p, + —x2 —,x4+
5 X

nBp

(15810+32188p + 32284 p'+ 8964 p' —262p4 —176i4'+ 32p4)
n'p'r

(3.2)

(3.3)

(3.4)

The energy-momentum relation for the vector particle is

E»(p) E„(0) 2(1 —cosk), (1 —cos2k) 4(l —cosk)'2x " =2x " +
g Q Q Q

1 1 1 4 1 6
+ —, —[(cosk —g)cos2k+ cosk ——,']+—,[(1+cos2k)cosk+ 4 cos2k —16)] + —+, (cos2k 1)

Q Q Q nP 2P n'P

+ —,[14coss+ 28 coss coo 22 —18(1+coos)'c 22 cosss+ 84[
I

s'

For the massless Schwinger model these quantities reduce to

E,/N = -x'+ 3x4 —'-'x'+ 4—"x'
3 3

» —1+ 2x2 10x4+ 222[x4M
3 9 7

(3.5)

(3.6a)

(3.6b)

22[ x = l, + 6x2 26x + 872xM
3 9 (3.6c)

2V x = 2v x " + 2(l —cosk)x'+ [(1 —cos2k) —4(1 —cosk)'] x'+ 2(1 —cosk)(5 —26 cosk —27 cos'k)x'.E,(p) E,(o)

(3.6d)

IV. EXTRAPOLATION TO THE CONTINUUM LIMIT

Now we begin to extract physics from these re-
sults. We first discuss calculations which can be
extrapolated to the continuum limit with no am-
biguity. First, however, recall the nature of the
general problem. In Eq. (3.6), for example, we
have expansions derived assuming x= I/g'a'«1,
i.e., large, fixed lattice spacing. In our field
theory examples we want to allow g' to go to zero,
so physics lies at the x- ~ limit. Clearly the
series in Eq. (3.6) cannot be continued to large x
without a systematic extrapolation procedure which
reflects the character of the Taylor series (note
how quickly the coefficients grow with the order of
perturbation theory). At this point we will follow
the methods of statistical mechanics and employ
Pade approximants. '

Before considering field theories we shall use

Eo/N = -0.637. (4.1)

From Eq. (3.6a) we form the [2, 2] Pade approxi-
mant, using the variable y =g2 for convenience,

E,/N+1 = 1 —y+ 3y' ——", y'+ +48' y'

1+8.903y + 3.473y'
1+9.903Y+ 10.376y2 (4.2)

our calculation of E,/N to find the ground-state
energy of the x-y antiferromagnetic spin lattice.
In this case the lattice spacing is physical and
fixed but g must be taken to zero. By consulting
Eq. (3.10) of Ref. 4 we see that setting g= 0 for
fixed a2 reduces the Schwinger model to the spin
lattice of interest. Exact calculations of the spin-
lattice problem give'
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So

E,/N = 0.335 —1= -0.665, (4.3)

which differs by 4.4% from the exact result. Ob-
serve that the ground-state energy obtained from
the first two terms in Eq. (3.60} is not nearly as
good~

0.20

[I,I] Pade'

~[2,2] Pade

0.05-

Eo/N+ 1= 1 -y+3y' I

0.2
I

0.4
I

0.6
I

0,8 I.O p

or

1+ 2y 2

1+3y @~~3

Eo/N = -0.333.

(4.4)

(4.5)

FIG. 1. Binding in the scalar channel as a function
of 4m/g. The higher-order cal,culation (eighth order in
y) intersects the ordinate well below the lower-order
calculation.

1 — ~ = 5.505 f'+ O(f'}, (4.6)

where f =—4m/g is a dimensionless measure of the
fermion mass. Furthermore, as f -0 and M~ ap-
proaches 2Mv the scalar particle decouples from
the theory. Now consider M~/M„in the lattice
theory. For the massless (m=0) model

It is encouraging that our eighth-order extrapo-
lation retrieves a free-field result (g=0), although
it begins from a static zeroth-order approximation
(g= ").

Now we turn to Schwinger models as theories of
hadrons made from confined quarks. Recall from
Ref. 4 that there is a composite scalar particle in
the massive Schwinger model. It is bound by an
energy proportional to the square of the fermion
mass. The continuum-theory formula, obtained
in the Appendix, is

8M
= e"= 1.781.

aBz
(4.11)

Our calculations are not sensitive enough to con-
firm the delicate quadratic behavior of Eq. (4.6)—
that behavior cannot be expected from an approxi-
mate calculation until the intercept of the curves
decreases closer to the origin. However, the
magnitude of (1 -MB/2M„) at f-1.0 has been
checked against an approximate continuum calcu-
lation in which q-q bound states were constructed
in the infinite-momentum frame and a Schrodinger-
type equation was solved numerically. ' Agreement
between the two methods was found through two
significant figures.

An interesting quantity which can be computed
exactly in the massive Schwinger model is the rate
of change of the vector-particle mass Mv as the
fermion mass m is turned on. A continuum calcu-
lation gives4

Ms 1+6y —26y + —y —" '
y

Mv 1+ 2y —10y + —,y ——,y
(4.7} Previously this quantity was calculated to fourth

order with the result

To extrapolate this quantity to y -~, we expand it
in a power series, 1+14y

= 1+4y —24y + 200y —1975.11y,
Mv

(4.8)
= 2(1 ——,') = 1.71, (4.12)

form the [2, 2] Pade approximant,

Ms 1+17.84y+ 64.41y2

1+13.84y+ 33.05y»

then let y-,
s 195

v

(4 9)

(4.10)

which lies 3.8% below the exact answer. The same
manipulations applied to Eq. (3.3) give a [2, 2] Pade
approximant

= 2(1—2y+ 28y' —374.444y'+ 4971.481y4)
m=O

1+ 13.054y+ 21.538y'
1+ 15.054y+ 23.646y2

which lies within 2.5/0 of the exact answer. Recall
that we found M~/M~= 1.67 in the fourth-order cal-
culation, so the convergence of the lattice calcu-
lation to the true result appears ensured.

In Fig. 1 we plot the [1,1]- and [2, 2]-order Pade
approximants of M~/M~ as functions of f= 4m/g.

= 1.822,
~00 (4.13)

which lies 2.3% above the exact answer. The con-
vergence of this quantity, which is sensitive to the
free-field character of the continuum theory at
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short distances, is very nice.
To this point we have found energy levels as the

mass gaps in zero-momentum states. Since the
lattice theory does not possess translation sym-
metry and is completely static in zeroth order,
its hadrons will not have precise relativistic en-
ergy-momentum relations. Only by computing to
high orders and passing to the continuum limit
can we hope to retrieve relativity. To see how

this works we computed the energy of the vector
particle as a function of its momentum as de-
scribed in Eq. (2.8) and Eq. (3.6d). Then the mass
of the state was identified through the coefficient
of p' in

consider the fourth power of M„/g,

= (1+ay 10y2+»~y3)4
g 3

m, 4

16y = 1+8y-16y'+ '—"y'.
(4.19)

So

(
1 1+ —,y+ ~y

g 16y 1+ 3oy y
„-2o (4.ao)

Forming the [2, 1] Pade approximant of this series,
we obtain an expression for (M„/g)' which has a
finite limit as y

(m'+ p')'~' = m+ p'/am . (4.14) =—0.769 . (4.21)

+ (x'+ 4x' —48x')k'.

From Eq. (3.14) we identify

(4.15)

From Eq. (3.6d) we have for the massless Schwin-
ger model

2~ @v(P) 2~ Ev(0)

In the exact theory M»/g = 1/v~m= 0.564, so the
calculation here lies 36% high. This represents
considerable improvement over the calculation
which would proceed from Eq. (4.19) if we knew

only the first two terms in the power series. Then
we have

M 2

1+4x' —48x4 ' (4.16)
So

16y v = 1+8y (4.22)

„",.„=2(1+ 2y —10y')(1+ 4y —48y'), (4.17)

where we have inserted Eq. (3.6b) to the appro-
priate order. Expanding Eq. (4.17) into a Taylor
series to O(y'), forming the [1,1] Pade approxi-
mant, and letting y-~ we have

where the superscript "kin" reflects the fact that
the mass is determined from the curvature of the
energy momentum relation. To compare with the
mass determined statically we form the ratio

—(—')' = 0.841,
g y -+aO

(4.23)

which lies 49% above the exact answer. The im-
provement of Eq. (4.21) beyond Eq. (4.23) is en-
couraging, but we learn that it is more difficult
to obtain accurate masses rather than mass ratios
by our methods. Clearly some detailed informa-
tion in the original power series of Eq. (3.6b) is
lost when its fourth power is taken and the series
is truncated after several terms.

+ = —', (1+ 6y —50y') =—
2 1+ —y3

- —,'( —,",) = 0.86. (4.18)

Since this calculation used only the fourth-order
calculation of M», the 14% error appears quite
reasonable. In the next section a more detailed
comparison of static and kinetic masses will be
made. Once the kinetic mass is calculated through
two more orders, all the terms in Eq. (3.6b) can
be used in calculating the ratio.

Next we calculate M»/g using the sixth-order
expansion. Because of the presence of the v x in
Eq. (3.6b), we cannot employ a diagonal Pade ap-
proximant and let x- ~ in a completely straight-
forward way. As will be discussed in the next
section much can be learned from diagonal Pade
approximants at finite but large y. However, first

v 1 1+ vy
2y'~4 1+5y '

M~ 1 3+ 31y
g 2y 3+ 13y

(5.1a)

(5.1b)

We are interested in comparing these functions to
their eighth-order counterpartsIv 1 1+13.96y+ 34.40y'

g 2y'~ 1+11.90y+ 20.47y2 '

M q 1 1+17.93y+ 65.49y2

g 2y'~ 1+11.93y+ 19.91y

(5.2a)

(5.2b)

V. FADE APPROXIMANTS AT FINITE y

Now we return to Eq. (3.6), and discuss Mv/g
and M, /g using [2, 2] Pade approximants. Recall
from Ref. 4 that in the massless (m=0) model the
[1,1] Pade approximants for these quantities are
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FIG. 5. Same as Fig. 4 but for the scalar particle.

computed numerically and plotted in Figs. 4 and 5.
Useful information can be extracted from these
figures, although they are meaningful only for fi-
nite y. For example, choosing y anywhere in the
flat region of the curves (where M„/g=0. 55 +0.05
for f=0), we infer the dependence of the vector
mass on f,

M„(0)
—1= (0.81 —0.85)f . (5.6)

This should be compared with the continuum-theo-
ry prediction which follows from Eq. (4.11),

—0 $9f+er ~ ~ (5.'1)

V
Mklll

g 1+ 4y-48y'

Its [1,1] Pads approximant reads

1 1+ 12y

g y~ 1+ 16y

(5.8)

(5.8)

which is plotted in Fig. 6 along with the fourth-
and eighth-order static expressions for Mv. Mv
lies between the two other curves. This detailed
agreement is a very nontrivial success of our lat-
tice methods.

We learn from these studies that choosing finite
y &4 gives good agreement with the continuum the-
ory. In other words, as long as the lattice spacing
can be chosen a factor of 2 or 3 smaller than the
size of the physical state being considered, a good
approximation to its energy results. This is not
very surprising since, if the wave function of the
bound state extends over several lattice spacings,

which is within several percent of our lattice theo-
ry estimate. A similar consideration of Fig. 5

shows that Mz/g grows more slowly with f than

M„/g in agreement with Fig. 1.
Finally, we reconsider the quantity 2' M„"'"/g

at finite y,

FIG. 6. The "kinetic" mass of the vector (a sixth-
order calculation) compared to the [1,1] and [2,2] Pade
approximants for the "static" definition of the mass.

it is well determined by knowing its values only on
the lattice sites. Of course, the energies of high-
ly excited states will not be obtained equally well
because their wave functions vary relatively rap-
idly over the lattice.

VI. CONCLUSIONS

These calculations strongly suggest that lattice
calculations will be a helpful tool in extracting in-
formation out of field theories. In those cases
presented here where eighth-order series were
used in full and extrapolations to the continuum
limit were unambiguous, our lattice-theory an-
swers lay within several percent of the known con-
tinuum-theory results. When only lesser orders
in the series were exploited, less detailed agree-
ment was found, but no serious discrepancies
existed. Since the calculational method is simple,
programmable, and works in any number of di-
mensions, we are using it to explore non-Abelian
gauge theories in 3+1 dimensions. ' Our calcula-
tions are proceeding both analytically and by
machine. ' We are hopeful that they shall shed
light on previously intractable problems in field
theory.
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APPENDIX

We sketch here the derivation of Eq. (4.6) in the
massive Schwinger model. We begin with the
equivalent-boson formulation of the theory"
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H=-, + &, +— —2Ecos 2 n dx,
2v n mge& 12

S (2M)'' (A6)

where

K= e& (y=0.577. . . ) .
21r 7r

(A 1)

(A2)

Now the bound state of Eq. (A4) can be found.
Working in momentum space with the ansatz

"(~}=E P/2~, (A7)

for small m (m«g) we can expand the cos(2&@' Q)
and keep only terms through Q4,

'+ 8 '+ g m +me&'

leads to the eigenvalue condition

c " dl
s, ~

E ~+&'/2m„

——,
'

v w mg e»y'] dx. (AS)
By scaling variables, y =l/v'

~
E(, an explicit equa-

tion for the binding energy E follows,

1 d'
+ V(x) g(x) =Eg(x),

»
(A4}

For m&&g, this 8 describes a heavy quantum in-

teracting with itself through a weak, attractive Q'

interaction. Alternatively, we can write a Schro-
dinger equation for the heavy quantum interacting
through a weak, attractive &-function potential

c dg
7r (1+y/2M„) '

which gives
m2

E =2m e'"
Mv

(A9)

(A10)

Therefore, Ms, the mass of the scalar bound state,
is

where M» =g/v s+ 018», and

V(x) = c5(x) . (A5)

2

M =2M„-2m'e'& —.
v

Using the notation of the text

(A 11)

The coefficient of the & function is proportional to
the coefficient of the Q4 term in Eq. (AS). A non-

relativistic reduction of the Q' term gives = (5.51}f' . (A12)

3

1 — = —,e» f +higher orders in fMs m

2Mv 4

*Work supported in part by the National Science Founda-
tion.

)Work supported in part by NSF Grant No. GP-38863.
~This general approach to strongly coupled, cutoff gauge

theories is due to K. G. Wilson, Phys. Rev. D 10, 2445
(1974).

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
3J. Kogut, D. K. Sinclair, and L. Susskind (unpublished).
4T. Banks, J, Kogut, and L. Susskind, Phys. Rev. D 13,

1043 (1976).
~See, for example, the text by G. A. Baker, Jr. , Ess-

ential of Pads Approximants (Academic, New York,
1975).

6D. Mattis, The Theory of Magnetism (Harper and Row,
New York, 1965).

7H. Bergknoff (unpubl. ished) .
Since the parameter p =2fy~ in 5' and in Eq. (3.3) has
weak y dependence, we must expand Eq. (3.3) in powers
of y =z through O(z'8) and make Pade approximants
in the variabl. e z. When f is very small this prodigious
algebraic exercise can be avoided by treating p, as a
numerical constant when forming a t. 2, 21 Pade approx-
imant iny. Then, when the final expression Mv/g is
being considered, one treats p, exactly. Iff is small
this process is numerically in detailed agreement with
a lengthy honest treatment done in the variable z.

GT, Banks, J. Kogut, S. Raby, and L. Susskind (unpub-

lished).
A. Carrol. l and R. Frederickson (unpublished).

~~J. Kogut and L. Susskind, Phys. Rev. D 11, 3594 (1975).


