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Foldy-Wouthuysen transformations in an indefinite-metric space.
II. Theorems for practical calculations 0
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We present a number of theorems and lemmas which are useful in indefinite-metric spaces for explicitly
calculating Foldy-Wouthuysen (FW) transformations, both as power-series expansions in c and as exact
transformations. We mention two applications.

I. INTRODUCTION AND NOTATION

In the preceding paper' we proved the theorem
that the necessary and sufficient conditions that
a "pseudounitary" (Foldy-Wouthuysen)' ' trans-
formation exists which will diagonalize a non-
diagonal "pseudo-Hermitian" matrix 6 on a (non-
singular) indefinite-metric space are that all the
eigenvalues of 8 be real and all the eigenvectors
of 6 have nonzero norm. We also discussed phys-
ical applications of this theorem as well as dem-
onstrating that the pseudounitary transformation
of a pseudo-Hermitian matrix also yields a pseudo-
Hermitian matrix.

On a more practical level, if one is given the
existence of an FW transformation from the above
theorem, it is then of use to have techniquesavail-
able with which to calculate the FW transforma-
tion either order by order in c, or preferably
exactly. For the Dirac case, one can do both4

these things by writing the transformation U as

(M6) ' =MS. (1.4)

As noted in Ref. 1, one can take M diagonal, mean-
ing

(1 5)

We now introduce the following useful notation.
Definitions. The "adjoint commutator" of A

with B is the operation

[ tA, B]= AtB BA. - (1 8)

Thus, if B is the metric M, then from (1.4) and

(1.5) an operator S is metric-Hermitian if its ad-
joint commutator with M is zero:

will use our terminology meaning a transformation
U is "metric-unitary" if

U MU=M,

where M is the metric, and an operator 8 is "met-
ric-Hermitian" if

U=e", ['S,M] -=S'I -MS =0. (1.7)

S=g c S„, (1.2)

where the S„are independent of c, calculating U

order by order in c, and then finding that the
closed form of the sum is the exact FW transfor-
mation.

It is the purpose of this paper to derive theo-
rems and lemmas for the analogous calculations
in indefinite-metric spaces. In the following sec-
tion we will state four such theorems, commenting
on the physical significance and applications of
them. Lemmas will also be derived in this sec-
tion, but the proofs of the theorems themselves
will be reserved for the Appendix.

Before proceeding, we wish to discuss our
terminology and notation. In Ref. 1, we stated
preference for the more descriptive terminology
"metric-unitary" and "metric-Hermitian" over
the commonly used "pseudo. " In this paper we

(['A, }'B(])'=['A, ['A, B] ]
= [tA, (AtB —BA)]

=A~A B—2A~BA+ BAR. (1.8)

II. THEOREMS AND LEMMAS

Theorem I. Let

(2.1)

where S is not necessarily self-adjoint. Then

UV6U ~-kS 6~is

=p ([ S )"8(])"
n=0

(2.2}

We also define the symbolic notation that in an
equation quantities like ([tA, )"and ( ])" mean the
objects in the round brackets are explicitly writ-
ten out n times. Thus, for example,
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Lemma I. When S=S, Eq. (2.2) becomes U= ebs S=g ~as (2.9)

U'eU=Q ([s, )"e(])" „,
n=0

(2.3)

U 8U=8, U =e (2.4)

where S can be expanded as an analytic power
series in a real parameter A, , and S goes to zero
as X-0:

s= gz's, . (2.5)

which in the positive-definite-metric Hilbertspace
case is also equal to U '8U.

In the Appendix theorem I is used to prove theo-
rem II. Theorem III will be the converse of theo-
rem II, but is treated separately owing to the lem-
mas and the associated discussions.

Theorem II. Let the operator 8 be invariant
under the transformation

Suppose the adjoint commutators of the S» and
hence of S with an operator 8 are zero:

(2.10)

U'8U= e-" 8e'~ =8. (2.11)

Again letting M be the metric operator in theo-
rem III yields the important converse of lemma
II.

I.emma III. Let S be metric-Hermitian; then

U= e' (2.12)

is metric-unitary.
Finally we quote a theorem which is of use in

obtaining exact FW transformations.
Theo~em IV. Let V and I' be given by

['s„e]=['s, e]=o.
Then the transformation U~SU leaves 8 invariant:

Then the adjoint commutators of the S» and hence
of S with 8 are zero. That is, g'lE Qt j (2.13)

['s„e]=-s,'e-es, =o,

['s, e]=s'e-es=o.

(2.6)

(2.7)

Then

e'(z) = v'ev-= e' ee"

can be given by

(2.14)

An important lemma follows as a special case
of theorem II. Suppose Uin Eq. (2.4) is a Foldy-
Wouthuysen transformation, and e in Eq. (2.4) is
the metric operator. Further, suppose that the
expansion parameter of (2.5) is the inverse of the
velocity of light, c . Then the first line of Eq.
(2.4) is the definition of metric-unitary and Eqs.
(2.6) and (2.7) are the definitions of metric-Her-
mitian. Thus we have lemma II.

I.emma II. Let U be a metric-unitary Foldy-
Wouthuysen transformation which can be expanded
as

U=e, S=~~c S .k (2.8)

Then S is metric-Hermitian, and so too are the

S» ~

Lemma II is of much practical value. For ex-
ample, in our series' on the first-order Bhabha
fields of arbitrary spin, we will soon discuss' the
Foldy-Wouthuysen transformation of the Poincare
generators. Lemma II will allow the S„of the
transformation to be determined uniquely, up to
a phase.

Now going to the converse of Theorem II we have
theorem III.

Theorem III. Define U and S as in Eqs. (2.4) and

(2.5),

(2.15)

The manner in which theorem IV helps in ob-
taining exact FW transformations is seen by re-
calling the contents of Ref. 1. The metric-unitary
transformation which diagonalizes the Hamiltonian
is given by a matrix whose columns are the "class
A" eigenvectors. Thus, the transformation matrix
can be found by starting with the rest system
eigenvectors and performing a Lorentz transfor-
mation on them.

To cite a specific example we are interested in,
using the notation of Refs. 5 and 6 for the Bhabha
half-integer-spin system and defining

E= -8[+„n v],

tanh8 =v/c,

{2.16)

(2.17)

8—=M = A+4, (2.18)

we will show elsewhere' that

e'~Me'~=M cosh8 —i(n ~ v) sinh8. (2.19)

The result Eq. (2.19) is crucial in obtaining the
Foldy-Wouthuysen matrix.
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APPENDIX: PROOFS OF THEOREMS

Theorem I. Let U=e', where S is not necessarily equal to S . Then

U 8U=e ' ee'

1 -iS +, S ~+ ~ ~ ~ 6 1+iS+—S + ~ ~ ~
(-i)'

2 f )

= e+ies -is'8+, (s')'e+, es' —(- i)'s'es+ ~ ~ ~
(- i)' i, (- i)'

2=-i['s, e]+ ', '['s, ['s, e]]+ ~ ~ ~ .

(A 1)

(A2}

(A3)

-isieeis ( & ([is )n 8( ] )n
n1n=0

(A4}

To see this result consider

We will now show that Eq. (A3} can be written to
all orders as

(A5) will produce another —i[ S,e'(a}] inside the

nest of factors [ S, [ S, . . . on the left-hand side,
and another term to the factorial on the right-hand
side. Hence, letting a- 0,

A„= (- i)'([ S, )"8( ))". (A11)

8'(a) =—e-ias eeigs (A5)

Now, setting a= 1 in Eil. (A5) completes the proof.
Theorem II. Consider the problem where 6 is

left invariant by the transformation U:

(A6)

Now differentiating (A5),

(ei(a)) (&
ias ice in-s)

da da

= —iS 8'(a) +ie'(a)s

= —i['s, e'(a)]

The object is to find the coefficients A„. This
can be done by alternately setting a = 0 and dif-
ferentiating with respect to a. The first term,
Ao, is an identity from setting a=0 in (A5):

A, =8= ([is,)'8( ])'.

U'6U=6,

U —eis

(A12)

(A13}

s-=g ~'s, . (A14)

However, since 6 is not a function of A., we have
from theorem I

ne n 6 (A15)

Suppose further that S can be expanded as a power
series in A. which goes to zero as X-0 [i.e., S is
analytic in A, , A. is a real c number, S(X=0) =0,
but (ds/&) (A =0) is not necessarily zero]. Then

=g na" 'A„.
n=1

Letting a-0 in (A7) gives

i[is, 8]=~,.
Differentiating (A7) with respect to a yields

(A7)

(A8)

Using (A6) to subtract the first term, this means

g „, (['s, )"8(])"=0.
n=1

(A 16)

But since the A.
" are independent, each coefficient

of A.
" must vanish, meaning

(—i[ S, e'(a}])=(-i}'[ S, [ S, e'(a))]
n

'
', (['si(ia) }8(]}'=o (A17)

= P n(n —l)a " 'A„. (A9) where the l(ik) are integers ~1, in the product we
are again using our symbolic notation, and

Letting a-0 gives

&,=(,') ['s, ['s, e]]. (A10)
g l(ik} =n.
i =l

(A18)

Similarly, every derivative with respect to a of
Now consider the structure of these general co-
efficients of X":
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0=1 f =j

z['s„,e]+ ', ['s„„['s„e]]
' 2

+ ', ['s„['s„['s„ I s„el 111.

Ste=6S„, n ~ 1, S~6=68, (A32)

where the restrictions on S are given in Eq. (A14):

Since n is arbitrary, we have the result that

~-iS e~fS (A30)

implies

[tS„,8]=0, n~ 1, or [ S, e]=0.
That is,

First let n = 1. Then we have

(A 19) s= P x's, . (A33)

['s„e]=o. (A20)

' 2

o = l['s„e]+,' ['s„['s„e]]. (A21)

Thus, from the result for n= 1, Eq. (A20), we
have

Let n =2. Then because of the structure of the co-
efficient for X',

n=1

so that

(['s, )"e( ])"=0, (A34)

Theorem III. Conversely, if [ S„,e]=0, then

[ S, 8]= 0, and we have

[ ts„e]= 0.

For tl = 3y

(A22)

or

P(- I}"(['s )"8(1)"=8

U~6U = 6.

(A35)

(A36)

0 = g h, ([ s).«a), )8( 1)'
f=1 Theorem IV. The proof of theorem IV is similar

to that of theorem I.4 Consider
(-I)' t= —i[ si(ii&, 8]+ [ s&(i2) ~ I. si(2a) ~8] ]

I 8 (bF) ——e(IE8 AE = g bn B (A37)

+ [ s)(is) [ Si(23) [ s)(sa) 8111~

Hence,

To find the coefficients B alternately set 5=0
and differentiate with respect to b. Setting b= 0
yields

l(11)=3, l(12)+ l(22) =3,

meaning

(A24)
F0 = 6.

Differentiating (A37) with respect to b gives

(A38)

l(12) =1, l(22) =2 or l(12) =2, l(22) =1,
(A25)

(A26)l (13)= l (23) = l (33) = 1.

Thus,

o =- z['s„e]+(-f)'['s„['s„e]]
(- )' I's., ['s„el]

+ (- i)'['s„['s„['s„e]] ]. (A 27)

['s„,e] =o. (A29)

Equations (A20), (A22), and (A27} mean

['s„e]=0. (A28)

By induction, if [ts„e]= [tS„8]= ~ ~ ~ [tS„„8]=0,
then from Eq. (A19}for the coefficient of A,

" we
have

8'(bF) =l{—F, 8'(bF)) =Q nb" 'B„.
n=1

Setting b = 0 in (A39) gives

B,=i{F,ej.
Similarly one obtains

B.= ,', {F,{F,8H—
and in general

Now set b=1 in (A37), yielding
00 ~ tf

e'(F) = e'~ee'" = g —,({F,)"e( 1 )".
n =0

(A39)

(A40)

(A41)

(A42)

(A43)
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