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A canonical quantization scheme in a Hilbert space with positive-definite metric is proposed for local gauge
theories, based on Dirac's general theory of singular dynamical systems. A theorem on the subsidiary
conditions, permitting a perturbation treatment, is stated and proved. Unitarity in the subspace of allowed
states is demonstrated. The method is applied to the case of free electrodynamics in a nonlinear gauge and
Yang-Mills theory in the covariant Feynman gauge. The description does not require introduction of ghost
particles. The rules for calculating graphs are shown to be equivalent to those in a Lagrangian approach with
a ghost.

I. INTRODUCTION

The quantization of field theories, invariant
with respect to a group of non-Abelian local trans-
formations, leads to certain difficulties. If one
calculates scattering amplitudes using graphical
rules analogous to those of quantum electrody-
namics in a covar iant gauge, then, as pointed out
first by Feynman, ' one comes into conflict with
unitarity. The origin of this difficulty lies in the
fact that in a covariant gauge the polarization
states of the particles on the internal lines of a
diagram are more numerous than on the cut lines
appearing in the unitarity relations. Feynman'
suggested that unitarity could be restored by in-
clusion of fictitious "ghost" particles into the
theory. Following the suggestion of Feynman,
several authors' ' have succeeded in constructing
a manifestly covariant unitary quantum theory
of fields possessing local gauge invariance. All
these schemes are based on the Lagrangian rather
than the Hamiltonian and we will call them the
Lagrangian approach.

In classical theories with local gauge groups,
constraints of the type P =0 always occurs. In
order to guarantee the correspondence between
the quantum and classical theories the physical
state vectors

~ f) must satisfy the subsidiary
condition Q~g) =0.

It is wel. l known that covariant quantization re-
quires the introduction of an indefinite metric.
In this case the equation Q~ g) = 0 has to be re-
placed by the weakened form Q~'~~ g) =0, sug-
gested by Qupta and Bleuler. This reduction
is possible when P satisfies the equation Q =0.
In addition, the modified subsidiary condition
Q ''~ g) = 0 ensures correspondence with the clas-
sical theory only if the equations of motion do not
contain terms in which Q is multiplied with fields.
Let us assume, for example, that the equations
of motion contain a term AQ, where A is some

fiel,d. In the classical. case this term has to be
omitted because of the subsidiary condition Q =0.
Accordingly, in the quantum theory the expecta-
tion value ( /~AD~ g) must be equal to zero for
any physical state. The original subsidiary con-
dition Q~ g) =0 ensures that this expectation value
vanishes, but when it is reduced to the form
Q"~ f) =0, the part (g(Apl '~ () does not vanish
for an arbitrary A. .

Since, in the cases to be considered below, the
equations of motion generally do contain terms
like A@, it seems impossible to reconcile co-
variant quantization with the validity of the ca-
nonical equations of motion for the expectation
values. Even the fulfillment of the first condition

Q =0 alone requires, as shown in Ref. 5, a non-
trivial modification of the Lagrange-multiplier
method developed in Refs. 8 and 9 for the quantiza-
tion of the electromagnetic field in different co-
variant gauges.

In the present work we propose a canonical
quantization scheme based on Dirac's general
treatment' of singular dynamical systems. For
the reasons explained above we follow Dirac in
keeping subsidiary conditions in their original
Q~ g) =0 form. In this case we can work in a
positive-definite-metric Hilbert space, since
a noncovariant quantization procedure has to be
employed. As a result, the propagator of the
particles will. contain noncovariant terms. It will
be shown that the S-matrix elements between the
mathematically complicated physical states are
equal to the matrix elements between simple
states not satisfying the subsidiary conditions,
provided the propagator is supplemented by ad-
ditional noneovariant terms. In this form of the
canonically quantized theory we have the usual vec-
tor-meson vertices, the usual vector-meson prop-
agators except for their i& prescription, but we need
not introduce ghosts. In the last section we prove
the equivalence of this scheme with the Lagrangian
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theory involving ghosts. In other words, we shall
show that the contribution of the ghost loops can
be absorbed into vector-meson propagators with
a special type of singularity. The proof of this
statement in Sec.VI is independent of the quanti-
zation procedure which has led to this particular
form of the vector-meson propagator.

We will consider free electrodynamics in a
nonlinear gauge and Yang-Mills theory in the co-
variant Feynman gauge. In the last case the ex-
pressions Q contain the coupling constant g ex-
plicitly in both the Heisenberg and the interaction
pictures. It would be an extremely difficult task
to satisfy these subsidiary conditions exactly. A
similar problem occurs in quantum electrody-
namics as it was discussed and solved by Hailer
et al.~' Following a similar line of reasoning it
will be shown in Sec. III that the scattering states,
computed to a given order in g, automatically
satisfy the subsidiary conditions up to this order,
provided the asymptotic states satisfy the sub-
sidiary conditions with g set equal to zero. The
limitations of this theorem are also discussed.
The proof is based on the fact that in singular
theories the Hamiltonian is a first-class quan-
tity. '

Throughout the discussion we assume that in-
finities of the perturbation series can be appro-
priately handled by some gauge-invariant regular-
ization procedure. Problems of renormalization
will not be touched here.

II. DIRAC'S THEORY OF SINGULAR DYNAMICAL SYSTEMS

A dynamical system is called singular if the
expression of the momenta p, =81.(q, q)/Bq, do

not determine unambiguously the velocities j,.
as functions of the momenta P&. Dirac' worked
out the general framework for the canonical quan-
tization of singular systems. We give here a very
brief summary of the method. For a detailed
treatment we refer the reader to Dirac's book.

In a singular theory the expressions BI (q, q)j
8q; and the coordinates satisfy a number of iden-
tities and, therefore, the momenta are subjected
to the so-called primary constraints @,'(q, P) = 0.
The consistency of these primary constraints
with the equations of motion usually leads to a
number of secondary constraints Q,'(q, P) =0.

The functions F(q, P) of momenta and coordinates
fall into two classes: The quantities in the first
class are those whose Poisson bracket with any
of the constraints is zero or equal to the linear
combination of the constraints; if this is not the
case, the quantity is called second class. In
particular, the constraints themselves can be
divided into constraints of the first class and

those of the second class.
The Hamiltonian is determined up to a linear

combination of the first-class constraints with
coefficients which are arbitrary functions of the
dynamical variables. Therefore, the time evolu-
tion of a dynamical quantity is determined only up
to arbitrary functions. For those quantities, how-
ever, whose Poisson bracket with the first-class
constraints is a linear combination of the con-
straints, these arbitrary functions are multiplied
by constraints in the equation of motion and give
no contribution, if the constraints are satisfied.
These quantities are, therefore, the physical
quantities of the theory. In particular, the Ham-
iltonian can be shown to be of first class, viz. ,

and it is a physical quantity.
The indeterminateness, connected with the ar-

bitrary functions, reflects the gauge freedom of
the theory. Different choices of these functions
correspond to different gauge conditions imposed
on the generalized coordinates.

The change of the nonphysical quantities under
the influence of the first-class constraints, as
generators of canonical transformations, does
not correspond to any change in the dynamical
state of the system. Therefore, the first-class
constraints generate symmetry transformations
of the system in the sense, e.g. , of the gauge
transfor mations in electrodynamics. "

In quantizing the theory the first-class con-
straints are imposed on the state vectors as
subsidiary conditions g'~ g) = 0, while the second-
class constraints are satisfied as operator identi-
ties through a suitable redefinition of the Poisson
bracket. In the cases to be considered below no
second-class constraints arise.

The method outlined above will be applied to
special cases in the subsequent sections, and
most of the statements of the general theory will
be illustrated explicitly.

III. THE SUBSIDIARY CONDITION THEOREM

When the constraints are expressed through
the canonical variables their form is the same
in any picture. This is because the constraints
never contain time derivatives of the canonical
variables, as independent arguments, and there-
fore, the dependence on the time of the unitary
transformation connecting the different pictures
does not require special attention. Hence the sub-
sidiary conditions Q~ g) = 0 will depend explicitly
on the coupling constant g in any picture, when-
ever the classical expression of Q contains ex-
plicit g dependence.
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It would be extremely difficult to satisfy g-
dependent subsidiary conditions even in the inter-
action picture, where the constraints depend on

g through this explicit dependence alone. Fortun-
ately it can be shown that the scattering state,
calculated up. to the order n, automatically sat-
isfies the subsidiary conditions up to the same
order, if the unperturbed state satisfies the sub-
sidiary condition with g=0. This is the conse-
quence of the reiation (1)—valid in any picture—
which expresses the fact that the constraints are
related to the gauge symmetry of the theory. The
precise statement can be formulated as follows.

Let the first-class constraints Q', the Ham-
iltonian a, and the coefficients r" in (1) be of
the form

[~,a, ]=r-,g.

Using Eq. (3) we have

pl g') =g&l p&+ y z &„., ga, l y).

Let us write (1) in the form

ya = (a+r)y
and we get

Az ~„., ga, lv)

Agagl 0')

(8)

0'=x'+g (',
H=H +gH,
+ab +ab ++&ah

where X', g', ao, a„ro",r,"are independent of
g." Then the solution of the Lippmann-Schwinger
equation

= z &; „([x,a&l+g(a, )l v'&

(10)

Using the relations (5), (7), and (8) we can write

4I g & =gal v&

+ z -,, ([&„5]+rd+r,x+gÃ, )l v &

I
0'& =It&+g z a„., a, it) (3)

satisfies the equation

Clg')= & -„., g lv) (4)

provided the unperturbed state
~ y) satisfies the

lowest-order subsidiary conditions"

x'I9) =o. (5)

[x,a, l =r.x,

[x,a, ]+ [ (,a,] =r-,]+r,x,

(6)

(7)

Here we introduced the vector Q, whose com-
ponents are the constraints Q', and the matrices
r and H with the matrix elements r" and H5'",
respectively. Equation (4) shows that

~
g') is a

physical state in the limit i&-0, provided the
real part of the energy denominator does not
vanish. The states

~ y), satisfying (5), will be
called allowed states. They are not physical since
Q'[p) CO. The states orthogonal to the allowed
states will be referred to as forbidden.

In the proof we follow the method of Hailer
et al. ,"who investigated the problems of the sub-
sidiary condition in QED in detail. The basis
for the proof is Eq. (1), which can be written in
the form

[y, a]=re
Comparing the coefficients of the different powers
of g we obtain

(8' -z+r +ga"+gr )$~ y")

1
z a -„., gild&,

which proves our statement.
We have therefore shown that in order to have

Q~ g ) =0 it is sufficient to satisfy the condition

X~ p) =0. This fails, however, if
~
(') goes into

a matrix element, which is singular in the limit
i&-0, as, e.g. , in the case of the wave-function
renormalization constant Z, . When matrix ele-
ments of this type are computed starting from
the allowed states instead of the physical ones,
one gets results, depending on the gauge chosen.
In quantum electrodynamics, for example, the
allowed states satisfy the equation divE~ y) =0
while the physical states obey the subsidiary con-
dition (divE -ep)~ g) =0. When allowed states are
taken for the unperturbed states, Z2 turns out
to be gauge dependent. Of course, the renormal-
ized 8-matrix elements are independent of the
gauge chosen. In quantum electrodynamics one
can build up the physical states

~ g) from the al-
lowed states

~ p) by an appropriate similarity
transformation, and it can be shown that if the
asymptotic states are physical, then the renormal-
ization constants are gauge independent. " In the
Yang-Mil. ls theory such a transformation does
not exist, because the commutation relations of
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the constraints Q' differ from those of X'. The
replacement of the physical states by the allowed
ones leads to the gauge dependence of the renor-
malization constants also in this theory.

y~ y) = 0 is also a necessary condition; i.e., if
~
(') is the scattering state developed from the

eigenstate
~ y) of Ho, then from Q~ (') =0 the

relation g~ y) =0 follows. To see this it is suf-
ficient to expand Q[ g') in powers of g. Since
Q~ g') =0, the coefficients of this power series
vanish, and we get gj y) =0. Evidently the the-
orem also holds for the scattering state

~ g ).
An important straightforward consequence of

the theorem discussed above is that when ( q)
is an allowed state then S~ q) is also allowed, i.e.,
the S-matrix elements between al.lowed and for-
bidden states vanish. In order to prove this we
show that the two sets of states Q, [ y) -=X, and
Q ( y) —=X, which can be obtained from the al-
lowed states, coincide. Suppose that this is not
true. Then one can find a vector g) in X, which
is outside X . But according to the subsidiary
condition theorem for the states

~ () in X+ or X
we have Q~ g) =0, while for those outside R, or
R, yl f) & 0. Hence no vector

~ g) can exist, and

x+ =x =-x.
Let X,' be the sets Q, ~ q'), where

~
y') are the

forbidden states. If there are no bound states,
0, are unitary operators and the sets X,' are
orthogonal to X. Hence X', =X' =K', and we have
(R', R) =0.

Consider the S-matrix element Sa„= ( gg f'„),
where [P'„)=Q,[ y„) and ( fs) =Q ( ps). Since
( g')ER and

~
(8)eX' we have S8„=0, which is

the statement we wanted to prove.
From the Hermiticity of the Hamiltonian it

follows that S is unitary in the Hilbert space of
all of the asymptotic states. As a consequence
of the above considerations the S matrix is uni-
tary also in the Hilbert space of the allowed states
alone.

relation

fA „(x),B"(x')j = &"„6s(x x—')

Since SL/SAo o is identically zero, the primary
constraints of the theory are

P, =—B'(x) =0, (13)

H = I (-,'E„,E" +-,'B"B"-Ag" „)d'x.

The indices r, s, t take on the values 1, 2, 3.
Computing the time derivative of the primary

constraints Bo(x) with this Hamiltonian one finds
that it is equal to B" „(x). Therefore, the con-
sistency of the constraint (13) with the equation of
motion leads to the secondary constraints

B" „(x-)=0. (14)

The consistency requirement of (14} leads to no
further secondary constraints. The Poisson
brackets of the constraints are zero, so they are
of first class.

In order to obtain the most general Hamiltonian
Hjs one has to add to H the constraints 4„Q, multi-
plied by arbitrary functions of the dynamical
variables:

H~= gF„,F" +pB"B"-A. "„+Cq ~+C2 2 d x.

This Hamiltonian leads to the equations of motion

8C,
o,o 1 SBO 41 8BO 42&

i.e., one primary constraint at each point of space.
The quantity jB"A „od'x - I, can be expressed

through the momenta, potentials, and their space
derivatives without solving (12) for the velocities
A.

& 0, and in this way one can obtain one of the
possible Hamiltonians

IV. CANONICAL QUANTIZATION OF THE FREE
ELECTROMAGNETIC FIELD IN NONLINEAR GAUGE

We start from the gauge-invariant Lagrangian

Fjl vy3+
4 pv

8C~ 8C2
As, o

—B'+Ap. s Co,-s+ BBs 41+ &Bs 4'o~

8A. i 8A0 0

8C, 8C,B o =As, rr Ar, rs
s

(16)

Fpv =Av, p -Ap, v

of the free electromagnetic field. The canonical
momenta are

EPO
8A„

The nonzero Poisson bracket is defined by the

In the classical theory one can set in (16) @,= Q,
=0. The arbitrary functions C„need not disap-
pear from the equations, since the potentials are
nonphysical quantities and cannot be defined un-
ambiguously. However, for the physical quan-
tities E =5 and H =&&X Eqs. (14) and (16) lead
to the MMDvell equations, independent of the func-
tions C&.
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The arbitrary functions serve to fix the gauge.
Let us choose them, for example, in the following
way:

C, =A„„-A.AQ' —oBo,

Then the first of the Eqs. (16) leads to the ex-
pression

B'= -(s~"+xA„A')

the equation GB =0 and so covariant quantization
with indefinite metric cannot be employed.

The operators a„,5" in the interaction picture
satisfy (19) with A. set equal to zero:

Cla„(x) =0;

Clb" (x) =0.

The subsidiary conditions in the interaction pic-
ture are

and (13) is equivalent to the nonlinear gauge con-
dition

b'(x)l o)(t)& =0;

~
(x)I (o(t)& = 0.

(20)

e„A"+A„A"=0. The equations of motion permit us to write these
equations in the form

After having fixed the gauge one can go back
from H& to the Lagrangian, which is already non-
singular:

s a„(x)I~(t)& =0;

[s a„(x)],l ~(t)&=0.
(21)

L = [ —gF„„F""—o(8„A"+ A.A „A")o]dox.
The "interaction" Hamiltonian is the following:

If, (xo) = —A a „(x)a "(x)bo(x) d'x.
4

(22)

The theory corresponding to this Lagrangian has
been discussed in great detail in Ref. 15 on the
basis of graph combinatorics, since it serves
as a good introduction to the non-Abelian gauge
theories. For the same reason we also discuss
the canonical quantization first in this case.

The nonzero commutation relations are

[A „(x),B"(x')]„o=„o =i 5 „"5'(x-x')

and we get the following Heisenberg equations
of motion in the gauge chosen:

Using the Fourier expansions

ao(x) = ~ Q, „o [e '~a~~(k)+e'~aors)],

a, (x)= g, z [e ' *a,(k)+e' *a,(k)]

(where k =(o =
I kl), one gets for the commutation

relations of the Fourier amplitudes the oscil-
lator-type rules

[ao(k) a'(k')] =by. ~] ]

A, ,=A„„-ZA„A"-a',
A„=B"+A

Bo
o

=B"„+2k,A+o,
()19)

Using these equations, the commutation rule can
also be written as

(23)

which lead to positive metric for all four com-
ponents.

In momentum space the subsidiary conditions
(21) can be written as

[ato(k)+ c(k)] I (d(t )) =0,

[A „(x),A „,(x') ]„o=„o'= —i g„„b'(x—x'),

i.e., in the same form as in the Feynman gauge
(~ =0}.

The subsidiary conditions, corresponding to the
constraints, are

Bol 0) =Oi B,,l 0) =0.

These conditions do not contain the "coupling
constant" ~ explicitly; therefore, in the case
under consideration the physical states and the
allowed states are the same. The subsidiary con-
ditions cannot be weakened to the form B'[']I0&
=B"[,'~l 0& = 0, since for X wO Bo does not satisfy

[ao(&)+c'(%)]I~(t)&=0,

where c$) = (I/(())k" a„(k).
Let I 0) be the mathematical vacuum, i.e., the

Fock state, defined by the equations a„(k)l 0) =0.
It is not the physical vacuum, since it does not
satisfy (23). The physical vacuum is given by
the expression"

... ,e 'o&»' &»I 0) =- IO)
k

The unperturbed Hamiltonian Ho in the inter-
action picture can be obtained from (15) and (1V)
replacing A„,B"by a„,5" and taking the limit
A. =0
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H, = [ ,' f„—,f"'+-2b"b"-a,b" „+(a - -'b )b']d'x

e a~ k „k -a~a k aok + c number

Wick's T~ product. After a straightforward cal-
culation we get

S = Tv exp[ —iJdx, H, (x')]

A.= T~ exp —i '

A.b,a'a„a" + —a„a"a„a" dx,

e a~~, k a~, k +a&~, k. a~, k

+ [c (k}c(k) -ao(k)ao(k)]] + (c number).

The term

ct (k)c(k) —ato(k) a,(k)

= —,
' ( [ c~(k) —a,(k}][ c(k) +a,(k)]

+ [ c(k) - a~o(k)] [ ct (k) +a, (k)] j
acting on physical states gives zero; therefore,
the physical states obtained from I 0& by trans-
verse creation operators are those which con-
tain a definite number of photons. However, the
state I 0& is not normalizable, since the operators
a~o+c and a, +c have a continuous spectrum. Let
us confine ourselves to a single momentum com-
ponent and, following Ref. IV, define the state

I Q ) =o
I Q) =e 't'o&" &' &"

&I Q)

which for I yI& 1 has the norm

(24)

&Q, IQ, &=,

and for y-I satisfies (23). It is well known that
matrix elements between states belonging to the
same eigenvalue in a continuous spectrum are
not meaningful quantities, and using them one
may meet contradictions. For example, the ma-
trix element of the commutator [S"a„(x),a,(y)]
between physical states, satisfying (23), can be
proved to be zero in spite of the fact that the
commutator itself is a nonzero c number. Con-
tradictions of this type can be circumvented, if
the physical bra states are generated from the
vacuum bra (0&I with y41, and the limit y=1
is taken only in the final step. This limit, when
it exists, may be considered as the correct ma-
trix element between physical states.

The S matrix is given by the formal expression

S=Tv exp[ —i JdxoH, (xo)],

where T~ is the Dyson chronological ordering
operator. Applying the method described. in
Ref. 19, we pass from the TD Dyson product to

1

& 0 I 0 && 0„,tr' I sl 0„tr&

(0, tr'
I (OyO, ) SI 0, tr), (26)

Qy( 0,

where S =0, 'SO, . Since 0, is independent of the
space-time coordinates, this transformation can
be accounted for by the replacement

a„(x)-a„(x)=0, 'a„(x)O, . (27)

In Sec. V it will be shown that the operator
(I/( 0& I 0, ) )O&O, can, in fact, be omitted from
(26). Therefore, it is allogeable to use trans
verse I'ock states built up on the nzathenzatical
vacuum I 0), provided the propagator is identified
with the expectation value of the chronological
product of the operators a&(x}. Using (24) and
(27) it is a straightforward task to verify that

a, (x) =a,(x)- ~&/, „„e'"*c~(k),

yr
a„(x)=a„(x)- ~P ),~, e "*—ato(k).

From these expressions one obtains

(26)
It is easy to write down the matrix elements of

this S matrix between states I 0, tr), obtained
from the mathematical (nonphysical) vacuum I 0)
with the transverse creation operators. We have
the usual propagator" and vector-meson vertices
with three and four legs. There is no ghost con-
tribution here and it is easy to show that these
rules are in contradiction with unitarity. "

This is because the calculation has been based
incorrectly on nonphysical states. Modifications
equivalent to the ghost contribution arise when
the matrix elements of (25) are taken between
states, satisfying the subsidiary condition. These
states are complicated, since they contain lon-
gitudinal and timelike photons. They can be writ-
ten as

I 0&, tr& =0& I 0, tr)

and the S-matrix elements are

(QI T [a (x)a ( )]I 0) = d~kea'(*, ) 1 g~~ 2vib(k'}8(k )5«k~ 2wib(P)e(-k )5~ok
(2 )'i vk'+i e k' uo

(QI T [e"v( )oa,x(y)]I 0) = J(d'ke'"" 'ik,
(28)
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The integrand in the last line contains the Fourier component of the retarded propagator, and the integral
vanishes, unless xo&yo. This is the consequence of the fact that from the subsidiary condition S "a„~0) =0
the equation 8 "a„~0) =0 follows.

Therefore, it is allowable to use simple transverse Fock states, provided we replace S by S, where
S is given by

2

S = T~ exp —i A,a'a, a „a"+ —a „a"a„a" dx,

s

We have the following Feynman rules for the photon propagators, the three-vertex, and the four-vertex,
respectively:

1 ' g„„2mi6(k )8(k )o6 vko„2wib(k )e( ko-)bu, k„
(2n)'i

~

k'+i~ k' uo

2(2m)ax( g„,q„+g~„p,+g„k„),

(2+) i~ (gpugpo+gp pgva+gp g op)us

and one should use the usual combinatorial fac-
tors. There is no ghost here. It will be shown,
however, in Sec. VI that the theory is equivalent
to the theory with casual propagators in Feynman
gauge and usual ghost contribution. The unitarity
follows from this equivalence or from the theorem
of Sec. III.

l 4'i(x) ei(3)]"=,o=[ei(x) 42($)].o=~=o,

[e:( ), e.'( )].—,.= f"'e:( ) '( — ).

The most general Hamiltonian is therefore

d3~ ~ Ea ~rs+ &Bar Bar

V. CANONICAL QUANTIZATION OF THE YANG-MILLS

FIELD IN COVARIANT FEYNMAN GAUGE

The Lagrangian of the Yang-Mills theory"

I

~a~abfibr + paya+ Caya)

The subsidiary conditions in the Heisenberg and
interaction pictures are

I pa ~&vd
4

Fuu Av, p Ap, v+gf b A~pAu

leads to the particular Hamiltonian

I (1 Ea F ars 1 f3arf3ar ~a +abj3br) daX

where

~ab bab S +gfabaAa

means covariant differentiation, and the indices
a, 5, c label the generators of the underlying com-
pact group.

The constraints of the theory are

ya flao(x+) P

Q' =- p"~'r(X) = p.

The consistency requirement for @2 is fulfilled
as a consequence of (30), since

0:=i[if, 0:]=-gf' '&.4:

(29)

(30)

and no further constraints arise. The constraints
are of first class:

a"~n& =o,

v" ab"i n& =O

b"(x)I ~(i)& =0,

[b'" „( )x+fg" ab„'(x)bb"(x)]~ &u(t)& =0.

(32)

(33)

(34)

(35)

C' =A' ——'B'
j. r, r Ca

From the equation of motion for Ao it follows that
in this case kt'o = —a„A'" and (32) corresponds
to the Feynman gauge.

The procedure of the previous section can now
be immediately applied to the Yang-Mills theory.
The only step we have to add is to prove that the
operator (I/( 0& ( 0,) ) 0oo, can indeed be omitted
from the right-hand side of (26).

Using (24) and computing the norm ( 0& [ 0, ) we
have

The subsidiary conditions contain the coupling
constant g explicitly. In this case, according to
the theorem of Sec. III the asymptotic states need
not be physical. Instead, they have to be al.lowed,
i.e., they must satisfy (34) and (35) with g set
equal to zero. Let us choose, for example,
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(] y)(0 tr j
e -) ao(k)c(k)8-at(k )c (k )

After simple but lengthy algebraic manipulation
this expression can be brought into the form

(0, tr'( a Ock c(„(y},
=0

where

)k dk k

(k, (y)= (,), (I-y) --
k

In the limit y =1 all the coefficients e~ tend to
infinity except n„which is unity. However, the
matrix element (26) has to be calculated with the
aid of (36) before taking the limit y = I, and it
turns out that the terms with k0 give no con-
tribution. This follows from the fact that the
state S(0, tr) which multiplies (36) is generated
from the mathematical. vacuum by means of trans-
verse operators alone and hence it is orthogonal
to all the terms except for the first one. To see
this it is sufficient to notice that, according to
the theorem of Sec. Ill S(0, tr) is an allowed state,
which can be denoted by (O, tr"). But we have
the formula

O, S( 0, tr) = S( 0, tr) = (0, tr")

showing that

S( 0, tr) =0, 'j 0, tr") =
) 0, tr")

as expected. Therefore, the terms k&0 in (36)
can be omitted and this means that (I/&0, (0,)) 0',0.
can also be omitted from (26).

The rules for calculating graphs can be written
down by the same way as before. Our vector-

meson vertices are the usual vertices of the
Lagrangian approach, but we have no ghost here,
while our vector-meson propagator is

I g„„2wi5(k')8(ko)5„,k„
(2)()'i " k'+i~ k

2' 5(k )8( k-o)5, ~k„
y0

IV. EQUIVALENCE WITH THE LAGRANGIAN APPROACH

In this section we show that S-matrix elements
calculated according to the rules of the preceding
section (which are the rules corresponding to the
Hamiltonian approach} are, in fact, identical to
those which can be obtained by using casual propa-
gators in the Feynman gauge and ghosts (which
are the rules in the usual Lagrangian approach).
Given the two types of graphical rules, the proof
of their equivalence is simple graph combinator-
ics.

This equivalence is a special case of the fol-
lowing more general statement.

Let us start from the Feynman rules of the
usual Lagrangian theory in the Feynman gauge,
where we have causal propagators and ghosts.
It is possible to change slightly the i& prescription
of the longitudinal and timelike vector-meson
propagator as well as that of the ghost propagator
(it must be done simultaneously) so as to leave
the S matrix unchanged. This variation in the
i& prescription can be done in a continuous fash-
ion, and we have an infinite number of different
sets of Feynman rules, all of which have the
same S-matrix elements. One of these equivalent
vector-meson propagators is the propagator (28)
of the canonical theory. It has the important
property that the ghost propagator associated
with it is the purely retarded one. Loops built
up from retarded propagators vanish, so the con-
tribution of the ghost loops to the S-matrix ele-

g„, 1 d . d„.
d~b

+
& &, 21Ij,k„e(k') d(k }+,2T((k~8(-k')d"(k )

'

(a)

—~ ——+o( ()I I VIIII I= dCI +2 2Tf (g(k )8(k')cI b o b a b 0

~k ~k ~k (2TI) L k+lC

(b)

C'- Q„A'
X

SOURCES .

{c)
FIG. 1. (a) The is prescription of the vector-meson propagator. (4) The corresponding ghost propagator. (c) The

Slavnov- Taylor identities.
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k k
xh+/g

k

1 d g ~do
2 k' k +k„ ko

FIG. 2. The lowest-order change in the S~-matrix element due to changing e by an infinitesimal amount.

ments vanishes when (28) is used. That is the
reason that Feynman rules of the preceding sec-
tion define a unitary theory in spite of the absence
of ghosts. So the point is that the contribution
of the ghost loops to the S-matrix elements de-
pends on the i& prescription chosen, and the ca-
nonically quantized theory automatically picks
up the special type of vector-meson propagator,
where the associated ghost contribution is zero.

The proof of this statement is based on the
Slavnov-Taylor identities (STI) which are the
generalizations of the Ward identities of electro-
dynamics to a theory with a non-Abelian gauge
group. In order to fix the propagators in the
Lagrangian approach one has to supplement the
invariant Lagrangian with terms, breaking local
gauge invariance, and a ghost Lagrangian L~ has
to be included in order to satisfy STI. The rules
for determining L, from the symmetry-breaking
part of L are given in Ref. 22. According to these
rules the propagator of the ghost is that of a zero-
mass scalar particle. The i& prescription, which
cannot be chosen arbitrarily, may be determined
from STI in the lowest order. "'" In our gauge
the latter has the form k„D""(k)= —(m ')k' where
D„„and (- m ') are the propagators of the vector
particle and the ghost, respectively. If the i&

prescription of the vector-meson propagator is
given as in Fig. 1(a), then the corresponding
ghost propagator is as shown in Fig. 1(b) and
STI are of the form" shown in Fig. 1(c). Here
a is an arbitrary continuous parameter. For
a =0 we have the causal propagators, while for
o. = j. the vector-meson propagator is that given
in (28) and the ghost propagator is purely retard- .

ed.
We now show that the 8 -matrix elements con-

structed from the propagators in Figs. 1(a) and
l(b) and the vertices of (L+L,,) are independent
of the parameter ~.

Let us consider the sum of all the graphs with
some given external. physical particles and change
a to a+5m by an infinitesimal amount. We can
compute the lowest-order change of the S -ma-
trix element by replacing in succession each
propagator by its first-order variation in every
graph in all possible ways. The result can be
written down in the form of the equation in Fig.
2. The blobs on the left-handed side represent

matrix elements in a given order n and for the
given set of the external. physical particles whose
lines have been omitted for simplicity. On the
right-hand side the blobs are other matrix eI.e-
ments which have —beside the external particles
already present —an additional ingoing and out-
going line, both having the same momentum.
These matrix elements are multiplied by definite
factors, coming from the propagators in Figs.
1(a) and l(b) and containing 5(k ).

Hence the two new external particles are also
on the mass shell. The first and the second blobs
on the right-hand side are, therefore, nth-order
amplitudes to which STI may be applied. They
are in a form contracted with k, and STI shows
that the first and the third as well as the second
and the fourth terms give zero in the sum.

There is a point which we should mention here.
Our asymptotic states are allowed (and not phys-
ical) states so the renormalization constants are,
in general, gauge dependent, as was discussed
in the third section. So the external sources are,
in fact, a (gauge) dependent, "'2~ which dependence
was omitted above. On the other hand, using
the STI in Fig. 2 those terms were left out, where
the ghost line ended in an external source, for
instance, as shown in Fig. 3(a). In general this
graph does not contribute to the 8 matrix because
the absence of a pole in P', except in the cases

(b)
FIG. 3. (a) Class of diagrams not contributing to the

S~-matrix element. (b) Subset of graphs of (a) which is
gauge dependent but just cancels the gauge dependence
of the external sources.
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shown in Fig. 3(b). This contribution is also
gauge dependent, and it turns out' ' that it just
cancels the gauge dependence of the external
sources. As the proof of this statement is identi-
cal to that given in Refs. 15 and 22, we do not
repeat it here.

This proves the independence of S„of the param-

eter n and from this the equivalence of the ca-
nonical theory and the Lagrangian approach fol-
lows.
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