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Bound states, taehyons, and restoration of symmetry in the 1/N expansion*
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An extensive analysis of the 1/N expansion of O(N)-symmetric h$' theory in four dimensions shows it to be a
consistent approximation method. It is confirmed that the ground state of the theory is O(N)-symmetric, and
that spontaneous symmetry breaking is not possible in the large-X limit. The Green's functions are free of
tachyons if constructed relative to this ground state. A natural upper bound is derived for the parameters of
the theory to ensure the existence of a ground state. In the strong-coupling domain there exist a bound state
and a resonance [in the identity representation of the O(N) group], which disappear in the weak-coupling
regime. It is shown that, to leading order in N, a zero-mass interacting "charged" boson cannot be sustained
in this theory. If the boson mass goes to zero, the model becomes a free-field theory.

I. INTRODUCTION

As part of the continuing effort to understand
the physical content of quantum field theories,
techniques have been developed which avoid a
conventional perturbation expansion in the cou-
pling constants of the theory. One particular meth-
od, which has attracted considerable attention as
a tool for the study of spontaneous symmetry
breakdown, is the 1/N expansion"' of the Green's
functions of O(N)-symmetric field theories. Ini-
tial studies of this method, "' when applied to XQ'
theory in four (space-time) dimensions, unfairly
cast doubt on the validity of the method. The here-
tofore unresolved difficulty was the presence of
tachyons in the Green's functions of the theory
constructed relative to the natural candidate for
the ground state of the model. The consequences
of this tachyon propagate through the theory, since
it was shown by Root' that the 1/N corrections to
the effective potential make this particular vacuum
state unstable as a direct result of the tachyons
in the Green's functions.

More recent studies4 have exploited the fact that
the effective potential V(gs) is a double-valued
function of Ps for small Qs. It turns out that the
ground state of the theory is to be found from the
branch of V(gs) not previously considered. If the
Green's functions are constructed relative to the
true vacuum, they become free of tachyons. Fur-
ther, the ground state of the theory in the large-N
limit altvrtys has the O(N) symmetry of the orig-
inal Lagrangian. Spontaneous symmetry breakdown
and Goldstone phenomena are not possible in this
limit.

Although previous workers4 have shown that it
was possible to avoid tachyons in the theory, their
results are incomplete. In particular, only special
parameter choices were treated, while Root's
criticism' and other important issues were not

considered at all. Therefore, the work of Ref. 4
does not resolve the consistency of the 1/N expan-
sion of O(N)-symmetric XQ' theory in four dimen-
sions. In order to avoid ambiguities and confusion
related to particular choices of renormalization
mass, we carry out our analyses in a renormal-
ization-invariant manner throughout. As a result
we are able to consider all possible (renormaliza-
tion invariant) parameter choices in a complete
and coherent manner, and not just special cases.
The issues we face are all addressed to the con-
sistency of the 1/N expansion in four dimensions.

Let us summarize the organization of our paper
in view of the large number of topics considered.
In Sec. II we review the salient features of the
theory, and define renormalization-invariant vari-
ables for the description of the model. This gives
us the necessary tools for our subsequent analy-
sis. We study the ground state of the model in
Sec. III, and confirm that spontaneous symmetry
breaking is not possible in the large-N limit. We
find a natural upper bound for the free parameters
of the theory if a stable ground state is to exist.
The Green's functions of the theory, computed to
leading order in N, are studied in Sec. IV. It is
shown that tachyons are always absent if the
Green's functions are constructed relative to the
vacuum defined by the ground-state branch of the
gap equation. In Sec. V it is established that both
a bound state gnd a resonance occur if the natural
interaction strength of the model is sufficiently
strong, while neither occurs for weak coupling.
[These bound-state structures appear in the iden-
tit'y. representation of the O(N) group. ] We then
prove that, to leading order in N, a zero-mass
interacting "charged" boson cannot be sustained
in this theory, a result which is "natural" in the
technical sense of being valid for arbitrary para-
meter sets in the model. Finally, we compute
bound-state and resonance masses, and show
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II. THE MODEL

The O(N)-symmetric XP' theory is described by
the (unrenormalized) Lagrangian

g L(s c,)2 L
p 2o2 0 (C,R)2 (2.1)

where 4, is an N-component quantum field and
O'=Z~, @,C,. To leading order in 1/N, the effec-
tive potential satisfies"'

that the parameter upper bound found in Sec. III
corresponds to the limit in which the bound state
unavoidably becomes a tachyon. The 1/N correc-
tions to the effective potential are considered in
Sec. VI. We conclude, up to next-to-leading order
in 1/N, that there exists a finite, real region of
V{Q') in the neighborhood of the ground state at
Q'= 0, if the 1/N corrections are evaluated rela-
tive to the ground-state branch of the gap equation.
In Sec. VII we establish criteria for the domain of
validity of the 1/N expansion. We show in Sec.
VIII that the large-Q' behavior of V{P') cannot be
computed reliably by the 1/N expansion. Even the
qualitative behavior of the V(Q') is not stable to
1/N corrections in the limit of large Q'. In Sec.
IX we attempt to draw some lessons from these
exercises.

The over-all conclusion of the extensive analy-
sis is that there are no remaining objections to
the 1/N expansion for four-dimensional scalar
field theories. Therefore, it must be considered
a consistent approximation procedure. It is not
known if the 1/N expansion correctly characterizes
the properties of the complete theory, or if the
results can be extrapolated to small ¹ These are
unanswered questions.

where M' is an arbitrary renormalization mass,
and the integrals are over Euclidean momenta.
(The parameter g is most convenient for studying
the gap equation, while A. appears naturally in the
Green's functions. ) After renormalization

X= p.'+ ——+,Xln X M'.

1 1 1

( )
=

( )+ 2 ln(M, '/M, '). (2.8)

As a result

M, 'exp[96m'/g(M, )]= M, 'exp[96m'/g(M, )], (2.9)

and similarly for A.(M). In order to avoid ambi-
guities of interpretation, we shall present our
analysis in terms of renormalization-invariant
quantities throughout. We define the renormaliza-
tion-invariant quantities X, and p(P ), where

Noting that the Euclidean integral in (2.3) is real
when X is real and positive, one defines the loga-
rithm to be real for this range of X.

From Eqs. (2.4) —(2.6) we see that {p, '/g) is a
renormalization-invariant parameter, although
p.', g, and X individually are M' dependent. In
fact even the absolute signs of g and p.

' are re-
normalization mass dependent since the effective
potential with parameters g, p, ', and M' can be
mapped to one with parameters -g, —p, ', and
M", where M" =M'exp(192m'/g). Thus p,

' only
serves as an intermediate renormalized mass
parameter which renders the model finite. Since
p,
' depends on M', one should not expect it to be

the physical meson mass. In general it is not. The
dimensionless coupling parameter g depends on
M' in such a way that

d V(Q')
d ' 'X' (2.2)

and

X,= M'exp(96m'/g) (2.10)

with X related to the (constant) classical field P
by the (unrenormalized) gap equation (2.11)

d'k 1
6 N 6 (2m)4 k'+X ' (2.3)

Note that p(Q') is dimensionless, while X, has
dimensions of mass squared. The gap equation
becomes

where the integral is over Euclidean momenta.
Renormalized parameters p, ', A. , and g are defined
by the equations

96p2 p 16g2
(2 ~ 12)

g X '
2m

' k' '

1 1 1
g ~ 96m' '

(2.4)

(2.5)

(2.6)

which demonstrates that X(P') is determined once the
the two renormalization-invariant parameters X,
and (p, '/g) are specified. It is to be observed that
a natural scale for Q'/N is set by (X,/16m'), a re-
mark which will be helpful in the discussion in Sec.
VII of the domain of validity of the I/V expansion.
Further, at P2= 0, the gap equation only depends
on the single parameter (96m'/X, )(p'/g).

Certain qualitative features of the effective po-
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tential can be deduced without a numerical solu-
tion. First, we observe that the leading-cn"dew
effective potential has no lower bound as a con-
sequence of Eqs. (2.2) and (2.7), since

~2+ (g/6)(42/N)
1 —(g/96w') In(X/M') ' (2.13a)

Thus

and

16m2(g /N)
ln(X/M')

—16m'(Q'/N)
ln(P'/M')

dV($2) 8/2($2/N)
dQ' 92.„1n(p'/M')

(2.13b)

(2.14)

(2.15)

a result which is independent of the parameters of
the theory. In Sec. VIII we show that this result
does not persist in higher orders of the expansion.
When the 1/N correction is included, V($2) in-
creases with Q2 for arbitrarily large Q2. Although
these values of Q2 are outside the domain of valid-
ity of the expansion, it indicates that (2.15) is not a
definitive prediction of the theory.

The leading-order effective potential is not every-
where real, 2 becoming complex for P2 sufficiently
large. From (2.2) and (2.7) one has

and (2.20)

branch II: p„&e ',
with branches I and II of V($2) that portion of the
effective potential determined by branches I or
II of p($2), and with a similar definition given to
branches I and II of X($2). From Eqs. (2.2),
(2.11), and (2.12) and Fig. 1 we can generate a
solution for HeV($2). These are shown in Figs.
2, 3, and 4 for p,2/g&0, p2/g&0, and p2/g=0,
respectively. The solid line indicates the domain
for which the potential is real, while the dashed
line indicates that ImV($2} IO. Note that V($2) on
branch II is always less than V($2) on branch I
for the same value of Q2. The dividing point be-
tween the branches, defined by Eq. (2.20), corre-
sponds to the branch point at Q, 2, as can be ob-
served from (2.11), (2.18), and (2.20}.

Another relevant feature of the effective poten-
tial is the renormalization invariant

X(o) = P(o)X., (2.21)

For Q2& Q,
2 one requires a solution of (2.12) to

determine p($2) and then V($2). In Fig. 1 we plot
the function p lnp as a function of p for real values
of p. From the figure, we see that p is a double-
valued function of plnp for —e"' —plnp~0. De-
fine these two branches as

branch I: p

ImV($2) 92 0 for all Q2& p,2,

where the branch point appears at

$22/N = —6P,2/g+ 2M'exp
96m'

1
= —6P /g+ 16 2X9~

(2.16)

(2.17a)

(2,17b)

where

96m' (p.
'

p(0) lnp(0) =-
Xo

Comparing (2.22) with (2.12), we see that

P(p') InP(p') & P(0)lnP(0)

(2.22)

(2.23)

which corresponds to

(y 2) M2e9692/2,

=e 'X„ (2,18)

for all 0& Q2 & f22, thus on branch II of the gap
equation

which is a renormalization invariant. We shall
subsequently show that the existence of this
branch point does not signal a fundamental failure
of the 1/N expansion, but rather indicates that
V($2) is a double-valued function of Q2 for

The real part of V($2) in leading order
reaches a maximum at P,2 before beginning its
plunge toward negative infinity, where

Q,2/N = —6g2/g+ 2M2exp(96w2/g)
1

p Inp

1" g' 32~'X'

& y, '/N. (2.19) FIG. 1. A graph of p ln p versus p for real values of p.



BOUND STATES, TACHYONS, AND RESTORATION OF SYMMETRY. .. 2215
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FIG. 2. A graph of Re V(Q~) versus Q for p /g&0,
where the solid line indicates the domain for which the
effective potential is real, while the dashed line indicates
that Im V(Q~)& 0.

FIG. 4. Same as Fig. 2, except p, /g=0.

situation, reminiscent of superconductivity, will
be developed in subsequent sections.

q„(0)—X (y') —Xo=X(y ')&0 for 0

(2.24)

III. GROUND STATE

The effective potential to leading order is"'
We shall show in the next two sections that the

evaluation of the Green's functions relative to the
ground state defined by branch II is a necessary
condition for the removal of tachyons from the
theory. Further, we show that depending on the
parameter values (y„p,'/g) the theory exhibits
either a bound state am' a resonance, or no
bound state or resonance. If the spectrum of the
renormalized theory contains a bound state which
is not contained in the spectrum of the bare La-
grangian, one should not expect the effective po-
tential and Green's functions to go over to the
weak-coupling loop expansion as a boundary condi-
tion. The inequivalence of the physical branch of
the gap equation to the vacuum defined by loop
expansion, the presence of the branch point at
P~', and the inequivalent particle spectrum of
bare and renorrnalizaed theories appear to be
different aspects of the same phenomenon. This

3N, , , 3N p.'V(4', X) =- X'+ aX4'+ X

&x' /'x
+

126~a 21' Ma 1 (3.1)

up to an additive constant, with X satisfying the

gap equation. This can be expressed in the ex-
plicitly renormalization-invariant form by using
(2.10) and (2.11) to obtain

] 2

& 'V(0', X) = 3X.p —+ — + ',.(2p»P- p) ~

(3.2)

From (2.2) observe that the local minimum of
V(Q', y) is attained only if either X = 0 or g'= 0.
From (2.7)

(3.3a)

requires

Re (&}
—&O
g

(u'/r) & o

and implies

(3 ' 3b)

P'/N = —6 p, '/g

at this local minimum, in which case

V(@',0) = 0

(3.3c)

(3.4)

FIG. 3. Same as Fig. 2, except p /g &0.

for the particular choice of additive constant in

(3.1). The minimum described by Eqs. (3.3) and

(3.4) lies on branch 1 of the effective potential.
For all other cases the local minima are found
at y'=0

Substituting from the gap equation (2.12), we
find
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V(P2 (P2)) — X(~ l 0 3 P X(4 ) (3 5)2N g 64m'i'

Thus

the effective potential is evexysehn'e complex,
that is, (3.11) is a forbidden domain for a consis-
tent theory. Therefore, we must restrict our-
selves to the parameter range delineated by

v(o, ,(o))= 3"x(0) '—"'
2 g 192m g

(3.6) 96m' p,
2—& e"'. allowed domain.

Xo
(3.12)

If (p, '/g) &0, there exists one real solution
X„(0)& 0, so that

V(0 Xi, (0))(0, (3.7)

pg(0) = o (3.8a)

which means the local minimum of branch II
alsoays lies below the minimum on branch I, des-
cribed by Egs. (3.3) and (3.4). Thus, spontaneous
symmetry breaking is not possible in this model. 4

The O(N)-symmetric ground state always lies
helot the vacuum state which could give Goldstone
phenomena. If (p, '/g) =0, with X,&0, then Eq.
(2.22) has two solutions

From (2.22) and Fig. 1, we see that if (3.12) is
satisfied and (p'/g) & 0 there are two real solu-
tions for p(0) and thus for X(0). Combining (2.11),
(2.20), and (2.24) with this observation we infer
that

xii(0) —x&&(4') —x& —xi(4') —x&(0) (3»)
in the allowed parameter domain. Now using (3.13)
with (3.9) to integrate back to P'= 0, we see that
the effective potential on branch II glseays lies
lower than branch I. This proves the desired
result.

The conclusions of this section are as follows:
(i) If

and

(3.8b)
(98w') (g') (3.14)

dV(p ) '

g

( 2) (2.2)

which is renormalization invariant from (2.11) and
(2.12). Then note that the two branches coincide
at Q'= Q~', and further

dy a2)

4b2

belonging to branches I and II, respectively. It is
obvious that (3.7) again holds, and is the lowest
minimum in this case also.

Finally, for (p'/g) & 0 the analysis is slightly
more complicated because the quantity in brackets
in (3.6) is not of a single sign. The most elegant
argument for finding the ground state is indirect.
First, we have

the effective potential is everywhere complex, and
no consistent theory is possible.

(ii) If

(3.15)

the ground state of the model occurs at P'= 0, and
branch II of the effective potential glsegys lies
below branch I.

IV. GREEN'S FUNCTIONS

The (unrenormalized) effective action of the
model, to leading order in N, is"'

I'= dx ~Q Q + X -2XQ — X
4 1 3 N, 2 3NP, ,

0 g

From (2.17) we have

1
2Xb (3.9) N——tr ln(- + X)2 (4.1)

2 pb

(" )H-"
which is the same as

(3.10a)

(3.10b)

where tr denotes the trace operator considered
as an integral operator in Euclidean four- space.
All Green's functions of the model can be con-
structed from (4.1). In particular, the (unre-
normalized) P-X matrix inverse propagator, in
the presence of external fields, is'

(ss")(",')= x..
Therefore, if

1

(3.10c)

(3.11)

B '(-~', A, x)=

(~'+x)5..
—3N —B(X,O', A')—

(4.2)
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for Euclidean momenta k'. The quantity B(X,k', A') is given by a divergent integral over Euclidean momenta,
4

k2 ii2) 1
(»)' (P'+x}t.(k+P)'+x]

1 A k +4X ' ' k'+4X ' '+
(4.3)

D '(-k', e,x)=

(k'+ x}5,,

1—Wr — B(x,k', M')

(4.4)

The renormalization is accomplished by substitut-
ing Eqs. (2.4) and (2.5) into (4.2), providing us
with the renormalized propagator

A. Absence of tachyons

It is known' that if the Green's functions are
evaluated relative to the vacuum defined by branch
I of the gap equation, tachyons will always be
present, indicating that the ground state of the
theory cannot be found on branch I. We now dem-
onstrate' that the Green's functions are free of
tachyons if they are computed relative to branch
II of V(Q'), so that the ground state of the theory
is attained on this branch. Since

It turns out that the finite functions in (4.4} can be
represented as o —If(o x) -f(-k' x)l& — «»' —o (4.11)

B(X k2 M2) = B(X k2 /2) B(M2 0 g2). (4.5) tachyons will be absent from D„„' if

For convenience we define a new function f(s, X)
by the relation

B(x,o,M') & o, (4.12)

B(x,k', M'}= B(x, 0,M'}

+ [f(-k', x) -f(0,x)], (4.6)

i.e., if

(I+»p(4')] & o, (4.13)

where

&(x, o, M')=

and

f(-& x)-4q, ( q, )

(4.7)

Pr)(4' )&e (4.14)

since Dxz'(k') will be free of zeros for Euclidean
k'~0. Since p, ((II)')&e ', we find tachyons through-
out branch I. Recall that the ground state occurs
on branch II at Q, = 0, so that (4.4) is diagonal
when computed relative to this vacuum. Combin-
ing the definition of branch II, Eq. (2.20),

(k'+ 4x)"+ vPxln
2~x

(4.8)

D„„'(-k', X) = —,[I+Inp(p')]

+ lf(o, x) -f(- k', x)1 (4 8)

The analytic function f(s, X), characteristic of
two-particle unitarity for mesons of mass
m= vX, has the following properties for
k'&O, x ~0.

(a)f(-k', X)&0,

(b) f(o, X)= 48, ,

(c)f(- O', X) increases monotonically
for increasing k'& 0.

for k'&0. From Eqs. (2.6), (2.8), (4.4)-(4.8), we
write D„'„(-k', Q, X) as a renormalization invariant,

V. PARTICLES SPECTRUM

The ground state of the theory occurs at Q'= 0,
on branch II of V(Q'). From (4.4), we find the
elementary meson mass

~'=x&z(0)& e 'x. , (5.1)

with (4.13), we see that D„x'(-O', X) is free of
tachyons for the entire range of branch II.

To summarize the results of this section, we
have shown that tachyons are absent from the
Green's functions if the Green's functions are
constructed relative to the ground state of the
theory. The previously discovered tachyons were
symptomatic of constructing Green's functions
relative to the wrong vacuum state, and are not
a signal of a fundamental failure of the theory.
Note that tachyons have been removed by finding
the ground state of the theory in leading order,
and not by appealing to higher-order corrections
in I/K.
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the meson-meson scattering amplitude is

+ crossed terms, (5.3)

which is renormalization invariant, as it must be.
Since

where s, t, u are the usual Mandelstam variables.
Thus, the singularities of D«(s, m') are physical-
ly observable, renormalization invariant, and
free of tachyons. Whatever bound states and
resonances are present in the theory emerge
from the (timelike)zerosofDxx ' These dynam-
ically generated states will all belong to the
identity representation of the Q(N) group. The

X propagator in the timelike (Minkowski} region,
obtained from analytic continuation of (4.9), is

2

Dxx (s, mx)= —
2 1+in~ +[f(0,mx)-f(s, mx)]

&XO

, [1+1np„(0)]+ [f(0,m') -f (s, m')].1

(5.4a)

(5.4b)

By analytic continuation of (4.8) one obtains the representation

4m'-s '" 4m'-s ~~'

f(s, m') =, —2 arctan + w for 0 ~ s ~ 4m'
96m' s s s

and

1 s —4m' '~'
I Ms+ (s —4m')'~' . s-4m' '~'

f(s, m')=, 2 ln —in— ' for s «4m'
96m' s 2m s

(5.5)

(5.6)

with the limiting cases

f(s, m') ~, [s(4m' s)' ~' -(4m'--s ) + ],1 1. .., 96m 2m
(5.7a)

and

in(s 4m—')'~'+ —(s —4m'}+ ],
s-~m 2 96m' 2m

(5.7b)

1
f(0, m')=

4
(5.7c)

Two trivial, but useful, limits are

[f(0,m') -f(4m', m')]=
4

~ = 1 (5.8a)

[f(0,m') —f(s, m')] ~ —,(lns im)—
gw4oo

(5.8b) Re(f(o, m*) - f(s, m') }

We plot Re[f(0, m') f(s, m')] v—ersus s in Fig. 5,
which helps us visualize the behavior of

Dxx '(s, m').

A. Criterion for bound states

From (4.13) we have

—[1+lnp„(0)] & 0,

while

(5,9)

4m' ~\

—~ & Re[f(0, m') f(s, m')]~- (5.10)

for O~s «, with the upper limit attained for
s = 4m'. Comparing (5.9) with (5.10), and con-

pro. 5. A graph of g,el. f (0, m ) —f(s, m )] versus s,
where f(s, m2) is given in Eqs. (4.8), and (5.5)-(5.8).
A dashed line indicates where the function is complex.
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suiting Eq. (5.4) and Fig. 5, we see that there will
be

(1) a bound state gnd a resonance if

[f(0,m') —f(4m', m')] = 48,
1

, [1+lnp„(0)]
1 Stable Vacuum

&0 (5.11)

and

(2) neither a bound state nor a resonance if
1

2 [1+Inpgg(0)] & 2 ~

1
(5.12)

Combining (5.13) with (2.10), (2.21), and (5.1),
there will be a bound state if

pIQ. 6. A graph of z = Xo/96m versus y = p, 2/g. If (a)
y&e ~z there is no stable ground state, (b) —ez &y&e ~z

there is a bound state and a resonance, (c) y & —ez there
are no bound states. Only z & 0 is relevant throughout.

lnp„(0) & 1,
l,e, y

(5.13a}
Xp (

96m' g
(5.18)

Thus

p„(0)lnp„(0)& e

(5.13b)

(5.14)

is also required. However, recall that branch II
is characterized by

(5.15)

Considering (2.22) with (5.14)

(5.16)

describes the range of parameters which gives rise
to a bound state and a resonance, where the upper
limit in (5.16) keeps us within the allowed domain
defined by (3.12). If the upper limit in (5.16) is
exceeded, the binding energy of the bound state
exceeds 2m, producing a tachyon, and an effective
potential which is everywhere complex. We plot
in Fig. 6 the domains defined by Eqs. (3.14) and
(5.16).

The following results are immediate:
(1) For p, '/g=0, X, finite, there is always a

bound state and a resonance, and a finite meson
mass m.

(2) For p. '/g& 0, with X, large enough to satisfy
(5.16), there is always a bound state and a reso-
nance.

(3) The case (p, '/g)&0 gives either
(i) a bound state and resonance if

B. Zero-mass theory

Let us consider the zero-mass theory m'=0,
which requires X,=0, (p'/g)&0 and fixed. This
limit entails p„(0)-+~, but from (2.22)

~ =Xopn(0}

=0,
xp~ p

so that m'= 0 can be achieved. Then

(5.19)

The S matrix of the model is obtained from the
renormalized version of (4.1) by relating one-
yarticle irreducible (1PI}Green's functions to the
connected Green's functions. Treelike structures
result, but with clothed propagators and vertices.
Notice that when bound states are present, one
should consider external y lines in the on-shell
S-matrix elements because of the bound-state
structure present in the X propagator. There are
nontrivial 1PI X n-point functions due to the last
term in Eq. (4.1), which can be interpreted as n-
sided polygonal Feynman diagrams with n internal
P lines for the elementary mesons of mass m,
together with n external X lines. Note that to lead-
ing order in N, no additional bound states or reso-
nances are produced by this construction. Thus,
the spectrum of states is quite sparse compared
to what one desires for a realistic theory.

Xo ~ c-1(p 2/g)
96m' (5.17) lim Dz„-~(s,m')

or
(ii) neither a bound state nor a resonance if , lim [1 —lnp„(0) —96m'f (s, m2)], (5.20a)
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so that

(5.20b)

which means the four-point meson-meson scatter-
ing amplitude vanishes like m'. [From (5.18) we
see that we have no bound states present. ] Now

consider the 2n-point connected meson Green's
functions obtained from the renormalized version
of (4.1). These involve tree diagrams with dressed
Q and y propagators, as well as diagrams contain-
ing a, single closed Q loop diagram. From (5.20b)
we may write the zero-mass limit of the connected
2n-point meson Green's function, G,","„'(m'), in the
schematic fashion

G(2n)(m2) ~ (m2)n-1G(2n) + (m2)nG(2n) (5 21)

where G,",,",' (G,"",'„,) is the 2n-point connected
Green's function evaluated in cvv'dinavy perturba-
tion theory in the tree (one-loop) approximation
to leading order in N.

Because of the over-all factors of nz', the zero-
mass limit of our 0(N) model is more infrared
convergent than massless Q' theory, evaluated in
perturbation theory. It is known that the Green's
functions of massless Q' theory are infrared finite
in any finite order of perturbation theory if ex-
ceptional momenta are avoided. Thus here

zeros ofDX„'(s, m') for timelike s. It will be shown
that the mass of the bound state varies continuous-
ly from m~'=4m' to m~'= 0, as one sweeps over
the bound-state region of Fig. 6 from left to right.
From (5.4b)

D« '(ms', m') = 0

implies

(5.22)

[1+Inp»(0)] = 967('[f(0, m') —f(ms', m')]. (5.23)

l. Strong binding

Recall from (2.22) that

p„(0)lnp„(0)= -( ) (
—),

so that

(5.24)

(5.25a)

corresponds to

en~ —0

and

(5.25b)

(5.25c)

Thus a zero-mass bound state occurs for para-
meters corresponding to the extreme-right edge of
the bound-state region of Fig. 6. The resonance
mass for this limit is obtained from

ReD«-'(s„m2) = 0, (5.26)
Therefore, the zero-mass theory in the large-N
limit is a free-field theory. [If p, /g= 0 first and
then X,=0, D« ' „2,1n(s/m'), which replaces m'
by (1/lnm') in E(I. (5.21). Nevertheless, the
argument still goes through. ]

This result is anticipated from the Federbush-
Johnson theorem, ' since the meson propagator
behaves as a free field, and the four-point func-
tion vanishes. Nevertheless, it is interesting to
see how the theorem is implemented in detail.
Thus the limit rn'-0 reduces the model to a free-
field theory in leading order. The other possible
massless limit, p, '/g 0, considered in E(I. (5.16)
ff. , leads to a finite meson mass m by dimension-
al transmutation, since XOWO. Thus, a zero-mass,
interacting "charged" boson cannot be sustained
in this theory, in accord with conventional wisdom.
This result is "natural" in the technic31 sense of
being valid for arbitrary allowed parameter sets
(x., u'/g).

C. Mass of the bound state

We now compute the mass of the bound state
and resonance masses, as obtained from the

which implies

Ref(ss, m') = I/48w'

and

Ress = 13.5m' = 3.4(4m').

Similarly

(5.27a)

(5.27b)

ImDxz '(s» m') = —0.06N.

From E(ls. (2.17b) and (5.25c), we have

(5.28)

(5.29)

96m' "("/g)

m~'& 0, which shows that when the branch point
reaches Q~ =0, one obtains the limiting case in
which unavoidable tachyons first appear in the
theory, spoiling the stability of the vacuum.

in this limit, which means that the effective poten-
tial becomes everywhere complex just when the
bound-state mass m~'=0. If
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p)I(0) = e,

then

2. Weak binding

(5.30a)

description of the intrinsic interaction strength.
We propose an (ad hoc) definition, which inter-
polates between the various limits discussed in
this paper. Let us define the renormalization-
invariant, dimensionless parameter

(5.30b)

which implies

mg mp 4m2 2 A 2 (5.30c)

This limit corresponds to the left-hand edge of the
bound-state region of Fig. 6. Then

—(X,/96m')(g/p, ')
e- (x./96v')(g/v')

g/96m'
(g/96m') —( g'/X, )

'

where x, is defined by (2.18). Then,

g= 0: free field,

(5.38a)

(5.38b)

(5.39a)

(&~'/» =
16 .(e+ e ')X.

Let us also consider the case

(I /g)= 0

which gives, according to (5.24),

(5.31)

(5.32a)

1
0&g ~

2 & 1: weak-coupling with1+e'
no-bound states,

, ~g~: strong-coupling with1+e'
bound state,

g& 0: no ground state

(5.39b)

(5.39c)

(5.39d)
p~)(0) = 1

m =Xo

Then from (5.22)

(5.32b)

relate the various domains appropriate to this
parameter. Thus all g& 0 is aLLowed, with increas-
ing g corresponding to one's naive expectations
for a coupling parameter. Unfortunately we have
found no operational definition of g aside from
(5.39).

tan-x . a 0

with the result

me' —0.845(4m').

Similarly

Res„=1.9(4m').

(5.33)

(5.34)

(5.35)

(4m' —ms')/4m' «1. (5.36)

Equation (5.32a) combined with (2.17b) sets the
branch point at

1 e 1

16n' ' 16m' (5.37)

D. Dimensionless coupling parameters

Since bothy(M) and X(M) depend on the renor-
malization mass M, neither is well suited for a

Therefore, even in the middle of the bound-state
region of Fig. 6,

UI. EFFKCTIUE POTENTIAL TO ORDER 1jN

A formal expression for the 1/N correction to
the effective potential has been given by Root. '
Restricting his analysis to branch I of the gap
equation (in the sense of this paper), he showed
that branch I becomes everywhere complex in
next-to-leading order, a result directly traceable
to the presence of tachyons in the Green's functions
computed to leading order. Since we know from
Sec. IV that tachyons are absent if the Green's
functions are computed relative to the branch II
it becomes essential to reexamine Root's results'
in the light of our ."inding.

An expression for sV/sp' accurate to next-to-
leading order in 1/N is given by Root in Eq. (3.37)
of Ref. 3. (His B corresponds to our XB.) The
actual expression, which involves a sum of a
number of complicated ter~s, will not be re-
quired here. It suffices to note that each of these
terms is given by a Euclidean integral of the form

" d'k , , 1 1 -sB(x, a2) "
f(xf 0 I+1 bt cId)

(2 )4 fde~( ~ Ayx)] (I 2 )Q
t 1/x B( f 2 M2)jg

where a, b, c, and d are zero or positive integers, X satisfies the gap equation, and from (4,4)

(6.1)
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—SNdetD) ')-, 4, )X=I( ')+x) —„-))h,),', M') +
&

(6.2)

In order for 8V/8$' and V(p') to be real, each of the terms of the form (6.1) should be separately real.
[We conservatively assume that there are no favorable cancellations among the sum of terms which con-
tribute to (6.1).] Since the integration in (6.1) is over Euclidean momenta, 8V/8$ will become complex
only when a singularity appears in the integrand of (6.1). We may forget about the convergence of (6.1),
which is taken care of by renormalization, while infrared problems are avoided exactly as in leading
order, by introduction of the renormalization mass M'.

Since

»(X) k') M') 8&(X)k')
~X BX

d'p 1 (6.3)

(6.4)
for p(P') on branch II, and 0())))'&Q»', as is evi-
dent from (2.20) and (4.4). That is, (6.4) has no
zeros on branch II since tachyons are absent for
all Q' on this branch.

Now from (6.4) and (4.4)

detD(-k' 0 X)=-lDxx '(k', X)(k'+X)+4'] '.
(6.5)

Since (k'+X)Dxz '(k', X) monotonically decreases for
increasing (Euclidean) k', the smallest value of
Q' for which (6.5) can vanish occurs at k'= 0. Thus

detD(0, P», X»(Q»')) = 0 (6.6)

defines the value )t)&» for which detD has a pole at
jp2=0. For convenience define

16m
(6.7)

the term 8B(X,k')/8X is never singular for
0(k'(~. Similarly, I/(k'+X)» is regular through-
out the integration domain for X(p') real and posi-
tive, which is true throughout branch II, with
0($2($ 2

The function

1—-a(x k' M') =- D -~(k' x(y'))~0

where

and

g» —= 34»'+ a

96w2
a = ( p, '/g).

Xo

(6.10)

(6.11)

or

g»=e ',

» P 2~0

(6.12a)

(6.12b)

Thus the 1/N correction to the effective potential
is also everywhere complex in this case.

2. Case a= 0. This case, discussed in Eqs.
(5.32)-(5.37), isthesame as (p, '/g)=0, which is
within the bound- state domain. The solution of
(6.9) gives

The solution of (6.9) requires a numerical eval-
uation, so that we only present solutions of (6.9)
for the special cases corresponding to the bound-
aries of the various domains of Fig. 6. Our dis-
cussion is restricted to branch II of the gap equa-
tion, since this is the only case of interest.

1. Case a= e '. This corresponds to the bound-
ary between the bound-state and tachyon regions.
The solution is

so that 4~2 satisfies the pair of transcendental
equations

Cp2 =0.239,

with

(6.13a)

24»'= p»(l + Inp») (6.8)

and

y, '/y, '= 0.65 (6.13b)

96m' t'p'
e,'= —

~

——p, lnp, .
Xo

(2.12) 0 '/&=
16 xo

We can combine (6.8) with (2.12) to obtain a single
transcendental equation for C»2, i.e.,

1
m2

16m
(5.37)

$~(1+ 3 In)») = —2a, (6.9) 3. Case a= —e. This corresponds to the bound-
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ary between the bound-state and weak-coupling
regions. Here

4p~= 1.5,

with

and

(6.13a)

(6.13b)

+ --,— ",p 21np —1

(7 1)

2/N o (e+ 8 ~), (5.31)

but with

(6.14b)

4. Case a -~. This corresponds to the zero-
mass or free-field limit. Here both

(6.14a)

where the quantity inside the square brackets is
dimensionless, and the quantity outside sets the
mass scale of the effective potential.

Since we do not have available an explicit ex-
pression for the 1/N corrections, we substitute
a simpler criterion, i.e., that the quantity inside
the curly bracket in (7.1) not be of order N, term
by term. One then obtains the conditions

1
(V.2}

y 2/y 2&1 (6.14c)
«Pf, (7.3)

0& /~'& (])),
' for a&e ', (6.15}

It is obvious from the above discussion, and
from examination of (6.9)-(6.11), that

and

N p' )384m'
——.

~

"'. p(A')I:»np(e')-Il«I. (V.4)

0~ (t)2 ~ ) 2 (6.16)

VII. DOMAIN OF VALIDITY

The 1/N expansion is initially defined in terms
of (unrenormalized) vacuum graphs, ' organized
according to the over-all power of N multiplying
each graph, with an infinite number of graphs
present in each order of ¹ Once the theory has
been renormalized the connection with Feynman
graphs is less immediate, particularly because
of the presence of bound states in the renormalized
theory. Since the vacuum is not expected to go
smoothly into the vacuum of the loop expansion, '
one cannot use the conventional criteria for es-
tablishing the domain of validity of the 1/N expan-
sion when bound states are present. Further, any
criterion we do set should be independent of the
renormalization mass, as this is only an artifact
of a particular renormalization convention.

It seems to us that a minimal requirement is
that the 1/N correction to the effective potential
be small compared to the leading-order contribu-
tion. Recall from (3.2) that the effective potential
can be written in renormalization-invariant form
as

with the effective potential restricted to branch II.
Thus, we conclude that there alzogys exists a
finite, rea/ region in the neighborhood of (t)'= 0
for the effective potential evaluated to the first
two orders in 1/N, and restricted to branch II.
This real region extends over the range

Equations (7.2)-(7.4) fulfill our naive expectations
for limits on the allowed domain of the 1/N expan-
sion. If one uses the gap equation, (7.4) reduces
to (7.2} and (V.3). Note that

', p(0) lnp(0) = 1,Xo

p, '~ 96m'
(7.5)

so that these inequalities are always satisfied at
$2 0

Let us ask if the branch point at Q,
' is inside the

domain of validity of the expansion.
From (2.1V)

(7.6)

(7.8)

and

p(2lnp-1) «N (V.9)

which satisfied (7.3) except for (p'/g)-0. How-

ever, from (5.32b) and (5.19)

Iim N-'V(y' }()=
P(~ } (y'/N)

i &]g 0
' 128m' m2

+ a(y )[x(nn(y ) (']I, '—
(7.7)

which indicates that the criteria (7.2)-(7.4) ought
to be modified, since X,(p'/g) no longer sets the
mass scale of V((())') in this ease. We speculate that
(7.2)-(V.4) should be replaced by
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when ( p, '/g) = 0. Note that (p'/g) = 0 means

(7.10)

Therefore, from (7.6), or (7.10) when applicable,
we find that Q» /N always satisfies our criteria.
We interpret this to mean that the branch point at
Q»' always lies within the domain of the 1/N ex-
pansion, and is a true feature of the O(N) model
when N is large [cf. (7.2)]. Although we are not
as certain of these estimates as the results given
in earlier sections, since they are based on some
speculation, the conclusions reached seem entire-
ly reasonable.

Finally we consider what happens when
p, /g- —~, which is the weak-coupling limit. For
p'/g- —~, and @»'«I, with C»' defined as in
(6.7), it is straightforward to show that

(7.11)

if one is on branch II. Thus, as ii'/g- —~,branch
II goes to the perturbation limit for smgl/ P'.
However, g&0 cannot be excluded, as the infinite
number of Feynman diagrams of leading order in
1/N provide stability of V(Q') for Q'& Q„as seen
in Fig. 7.

VIII. LARGE-P BEHAVIOR

In Sec. II we showed that the effective potential
computed to leading order in X ' behaves as

to describe the small-Q' behavior. Here we argue
that the 1/N correction to (8.1) increases as
p'-~, and in fact dominates (8.1) for sufficiently
large Q'. Thus, the large-Q' behavior of the
effective potential cannot be reliably calculated
by the 1/N expansion, since the correction terms
to (8.1) are as large or larger than this leading-
order result. Thus (8.1) is not a definitive pre-
diction of the model, since even the qualitative
conclusions of (8.1) are not to be trusted.

In principle the large-Q' behavior of the 1/N
correction to V(Q') can be extracted from Root's
expression' for dV(p')/dQ' [his Eq. (3.37)), how-
ever, this is a very tedious task. However, for
sufficiently large P' we may use the homogeneous
Callan-Symanzik equation to calculate V(P') in
this limit if we know P(A) and y(X) to sufficient
accuracy. It is obvious that P(A.), computed in
the usual one-loop approximation, coincides with
P(X) as computed from (2.5) and (2.6). Since
there is no wave-function renormalization in lead-
ing order, y(X) = 0 in this approximation. On the
basis of this result, we conjecture that P(A) and
y(A), computed from the first two terms of the
loop expansion, and then expanded to the first two
orders in 1/N, are the appropriate functions to be
used with the homogeneous Callan-Symanzik for
the solution of our problem.

The homogeneous Callan-Symanzik equation for
the effective potential is'

g 8 9
M + NP(X) —+y(X)Q', V(Q', M', A) = 0

(8.1)

independent of the parameters of the theory, and
the particular branch of the gap equation chosen

(8.2)

for P'» m', the meson mass. A calculation of
P(&) and y(&) in the two-loop approximation gives'

Re{v}
&0

g &0

and

(48m')P(A, )=, (N+ 8)—, (8.3)
9N+ 42

(481r') y(X) = ——'A.' (8.4)

fa g2

FIG. 7. A graph of ReV(Q ) versus Qt in the weak-
coupling limit p /g —-~ to leading order in ¹ This is
compared with Vg& ) of the tree approximation for p &0.
and g &0. Note how the infinite number of Feynman
graphs appropriate to the 1/N expansion "stabilizes" the
effective potential even though g & 0. A dashed line in-
dicates where the function is complex.

where of course X depends implicitly on the re-
normalization mass M'. Notice that P(X) has a
nontrivial ultraviolet zero, since

P(X*)= 0

for

N(N+ 8)
48m2 9N+ 42

' (8.5}

V(y' M' X)= y'8(y'/M' X)

Then the solution to (8.2) is'
(8.6)

Define the dimensionless quantity e(Q'/M', X) by
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&&(t, »&) = ' exp 2 dt'y(X'(t', »&)), (8.7)
~'(t, »&)

~0

where where

y&(t) -l b»&&(t)-(4/N)(c/ab)

4!N 1 —bA.

t = 1n(&t&'/M2),

N & ' ' =P(»&'(t, »&)},

A.'(0, »&} = »&,

(8.8)

(8.9)

(8.10)

Na t 1 1»&'(t)
2»&»&'(t) z»&

b2+ c 1 —b»&'(t)

b 1 —H. (8.17)

and

[2 —y(» )ly(» ) = y(»&) ~

It is convenient to write

P (»&) = a»&2(l —b»&)

(8.11)

(8.12)

(8.13)

(8.14)

Notice that when b and c 0, we recover the one-
loop result as well as the prediction (8.1) for
V(&»»&2). However, (8.16) is (lualitatively different
from the lowest-order result (8.1), primarily as
a result of the nontrivial ultraviolet zero of P(»&}.

In order to exhibit the asymptotic behavior of
V(&»»&2), we consider t- ~ in (8.16) and (8.17) which
drives A,'(t) toward ultraviolet' zero A. = 1/b. [We
only consider X& 0. See the paragraph that follows
E&l. (2.7).] The result is

y(»&) = —2c»&2 (8.15)
b'+ c

ln 1 —QX' t, A. (8.18)

with the (positive) coefficients a, b, and c given
by (8.3) and (8.4). Then (8.7)—(8.15) imply

Thus, combining (8.18) with (8.6) and (8.16), we
obtain for»&(1/b.

(4/N)(c/ab) y2 2c/(b2+-c)

(@')42. - 4jNb 1 —b»& M'

(positive constant)(&t&2) ( &'N4&')'/("&2"+&')'+& "+'&&"+'&')»

(8.19)

(8.20)

Since b' and c are the same order in the 1/N ex-
pansion, it is not appropriate to expand the ex-
ponent in (8.19) or (8.20). However, note that

V(&t&2) 4~2,„(&t&')2 for N«300,

V(Q') (&t
')4"/N for N» 300

(8.21)

We conclude that (8.1) is not a stable prediction
of the 1/N expansion. When the next to leading
corrections are included, one obtains the qualita-
tively different result (8.19)-(8.21). This is not
surprising, since we are dealing with values of
&t&2 well outside the domain of validity of the 1/N
expansion.

IX. CONCLUSIONS

Our detailed conclusions related to various tech-
nical issues have already been presented in the
individual sections of this paper. Here we present
a brief overview of our results so as to underline
any lessons that can be extracted from our work.

The most important global conclusion to be
drawn from our calculations is that the 1/N ex-
pansion appears to be a consistent approximation

scheme. The tachyons characteristic of bubble
sums can be removed by finding the correct vacu-
um state for the construction of Green's functions.
However, the manner in which this comes about
is rather surprising in that spontaneous symmetry
breakdown cannot occur in the large-N limit,
Goldstone phenomena are not possible, and the
ground state of the theory is 0(N)-symmetric.
Since we believe in Goldstone phenomena for
small N, there must exist for critical value of
X above which spontaneous symmetry breakdown
is not possible. Unfortunately, since we do not
have an intuitive picture of this phenomenon, we
cannot give an estimate of the critical value N, .
Certainly clarification of this issue would be
valuable.

Another result of particular interest concerns
the zero-mass limit. We found, to leading order
in N, that a zero-mass, interacting "charged"
boson cannot be sustained. If the physical boson
mass goes to zero, the theory becomes a free-
field theory. On the other hand, if the intermedi-
ate renormalized mass»«2/g- 0, the elementary
boson acquires a mass. These results are natu-
ral in the technical sense of being valid for arbi-
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trary parameter sets in the theory. This is in
accord with conventional wisdom.

Since the 1/N expansion appears to be consis-
tent, it should prove to be a valuable tool for the
understanding of the physical content of quantum
field theories, particularly in view of the rich
and unexpected phenomena already exposed.

Note added. It is interesting to note that the ef-
fective coupling constant becomes complex asymp-
totically since the effective potential V(p') becomes
complex for P' &P, 2 (see Figs. 2, 3, and 4).
Therefore the asymptotic coupling constant re-
quires the study of the P(X) in the Callan-Symanzik
equation for complex X, as is done by Khuri for
the simple A. Q theory. '0 However, it is simpler
to calculate the effective coupling constant directly
from Eq. (3.1), and we find that it becomes zero
asymptotically. Nevertheless, this does not nec-
essarily mean that the theory is asymptotically
free as emphasized by Khuri. " The features we
obtain are qualitatively similar although not iden-
tical to the case studied by Khuri. Were our ex-
pansion parameter the self-coupling constant Ao,
the vanishing effective coupling would imply that
the expansion was a good one in the asymptotic
region and the theory would be asymptotically
free. However, here 1/N is our expansion pa-
rameter, and the small effective coupling constant
does not mean that the leading term of the 1/N

expansion predicts the correct large-p' behavior.
It simply means that the next-to-leading terms of
the 1/N expansion are dominant in the asymptotic
limit P'

Note added in Proof. F. Cooper, G. S. Guralnik,
and S. Kasdan [Phys. Rev. D (to be published))
study AQ' theory in the random-phase approxima-
tion. This is essentially the extrapolation of the
O(N) model to N= 1. It is unlikely that this is valid,
as the terms omitted would then be as large as
those retained. See Sec. VII above.
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