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A previously developed method for making the Einstein-Maxwell equations determinate for a static,
multicomponent fluid also permits the calculation of the macroscopic electric field in such a body. As a
practical application of these equations, a simple, two-component model for a white dwarf star has been
constructed and its properties examined for arbitrary central densities. It is found that, for typical white dwarf
densities, the internal electric field is quite small and other characteristics are almost identical to those
calculated by the Chandrasekhar classical white dwarf model. For very large central densities, however,
internal fields can be quite large, with a general correlation between large mass densities and large charge
densities.

I. INTRODUCTION

In a previous paper' we developed a method for
making the Einstein-Maxwell equations determin-
ate for a spherically symmetric, multicomponent
fluid in static equilibrium. In an attempt to de-
termine the effects of these new equations on an
actual physical system, we have constructed a
relatively simple model for a two-component
white dwarf star. Traditional models for the white
dwarf are nonrelativistic and electrically neutral. '
One argues that the quantity GM(R)/Rcs, where G
is the gravitational constant and m(R) is the mass
integral over the volume of the star, will be small
compared to unity and that the relativistic effects
will be negligible. ' Also, although a small elec-
tric field is needed to support the pressureless
nuclei against gravitational collapse, ' the star is
treated essentially in terms of only one charge
component, where charge neutrality is assumed.
With the complete system of equations, it is pos-
sible to calculate the individual particle distribu-
tions and, since the particles are charged, the
electric field within the star. If the assumptions
of the standard theory are valid, we cannot expect
the charge and gravitational effects of this model
to be large. Nevertheless, the exact radial de-
pendence of the electric field in the white dwarf
is not without interest.

In our search for large charge and gravitational
effects, we have carried out calculations for cen-
tral mass densities larger than those reasonable
for a white dwarf. These are to be viewed as
possible reference calculations, exact for a mix-
ture of noninteracting and nonreacting charged
Fermi and Bose gases at zero temperature and
arbitrary density.

In Sec. II we develop the model for the charged,
relativistic white dwarf star, and in Sec. III we
show the assumptions needed to reduce this to the

Chandrasekhar classical model. Section IV des-
cribes the calculations to be performed. In Sec.
V we obtain numerical results for central mass
densities typical of the standard white dwarf. We
find that, with a few exceptions, these agree
closely with the Chandrasekhar results. In this
section we also calculate the electric field and
charge density for a typical white dwarf as func-
tions of the radial distance from the center of the
star. Finally, in Sec. VI we explore the conse-
quences of large central mass densities. Here,
the deviations from the Chandrasekhar model are
large, and some unexpected effects occur. Sec-
tion VII summarizes our results.

II. DEVELOPMENT OF THE THEORY

We take the white dwarf star to be a static,
spherically symmetric body of electrons and Fe"
nuclei in equilibrium at zero temperature. At
pressures typical for this star, mean atomic dis-
tances are less than the Bohr orbit for the K-shell
electrons, and bound electrons cannot exist. ' The
system is approximated by a noninteracting mix-
ture of a perfect Bose gas of Fe" nuclei and a
perfect Fermi gas of electrons. More realistic
expressions for the pressure and mass-energy
density which incorporate particle interactions in
some approximation have been used in previous
white dwarf calculations. ' Also, nuclei other than
Fe" are expected to be present at high central
densitites. ' We shall not attempt to take any of
these corrections into account here. Although the
formalism developed in Ref. 1 is capable of includ-
ing these effects, the computational effort is
formidable. We adopt the simplest possible equa-
tion of state (perfect gases) and look for charge
imbalance and relativistic effects in the results.

Using quantum statistics, Chandrasekhar7 has
shown that, in the rest frame of a votume element
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at zero temperature, the pressure P, and mass-
energy density p of the electrons can be written
in terms of their number density n, as

P =P, +PN,
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where q, and qN are the unit charge per electron
and nucleus, respectively.

Equations (7)—(12) do not constitute a determin-
ate system of equations. By minimizing the energy
of a static, zero-temperature multicomponent
star, the authors' have determined that the fol-
lowing additional independent equation is required
for the two-component case:

and m, is the rest mass of the electron. The
pressure P„and mass-energy density p of the

mN
nuclei are given by

(4)

(5)

N

P -mNSN ~
N

where mN is the rest mass of a nucleus, and nN

is the nuclei number density.
Inherent in these equations is the assumption

that any radial electric field present in the star
varies slowly enough that the electric potential in
a small volume element can be considered con-
stant. It is simple to show that a constant electric
potential in no way alters Eqs. (1)-(5).

The gravitational metric tensor for a static,
spherically symmetric body is given by'

1 r[1/r '+ (8sG/c ) T ']
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This new equation is not without a classical ana-
log. Auluck and Kothari' have obtained a similar
equation by demanding that the Gibbs free energy
of the nuclei be constant throughout the star. With
definitions (1), (2), (4), and (5), Eqs. (7), (8), (9),
and (13) constitute four equations in four unknowns
X, p, n„and nN. After some manipulation, these
four equations can be shown to be equivalent to
the four equations

ds'=e "df —eldr' —r'(d82+ sin'8dg2), (6) 0 =e (p„c ) m+, — e —Sq„n„e
4mGx P SG
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where e" and e~ are functions of x only. The Ein-
stein-Maxwell equations are
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It should be noted that the sum of Eqs. (15) and
(16) is simply the "one-component" equation of
hydrostatic equilibrium, the Tolman-Oppenheimer-
Volkov equation, which can be obtained from Eqs.
(7)-(9) without the use of Eq. (13).

It is possible to reduce Eqs. (14)-(17) to a single
second-order differential equation in one unknown.
It is convenient to rewrite (10) as
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Making the change of variable" y =(n, ' '+1)'/' and
deflnlng

K =m~ G/q//',
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III. REDUCTION TO THE CLASSICAL MODEL

(34)

(35)

Then, Eqs. (15)-(19)become
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The classical model can be obtained from the
relativistic model by making the following approx-
imations:
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Adding (41) to (42) and using (44), we find that
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(32)
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(The reader will note that the constant I is nega-
tive in this case. )

Equating the quantity in large parentheses in
Eqs. (26) and (2V) and solving for 8, we find that

g Nm c2r 2yie &/2

/I~(I —y )
(33)

Using (33) to write (27) in terms of y and m, one
may then solve for m. Differentiating the result-
ant expression for m with respect to r and set-
ting this equal to Eq. (29) produces the desired
equation for y,

which is Chandrasekhar's Eq. VI of the standard
model. " With Eqs. (1)—(5) and the change of vari-
able y = (n,'/'+ 1)' ', Eq. (45) can be written

Ir y ( 2 1)3/2 (46)3

This is the classical "one-component" analog of
Eq. (34).

IV. CALCULATIONS

We have solved Eqs. (34) and (46) numerically
using extrapolation by rational functions. ' Bound-
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ary conditions are specified at the origin, r =0,
for y andy'. y(0) can be chosen arbitrarily, but
from Eq. (34) it can be seen that y'(0) must be zero
if y" (0) is to be finite near x=0. The minimum
value for y compatible with pressure ionization is
-1.0001 as computed from the volume associated
with the Bohr radius. Models with an initial y
value of 1.006 are found to be completely ionized
over 94% of their volume. Those with larger cen-
tral densities are more nearly totally ionized. For
values of y larger than -8.00, inverse beta de-
cay will occur, introducing more than one kind of
nucleus, and above y

- 54, free neutrons are pro-

duced. 4

Integration of Eqs. (34) and (46) progresses from
the origin for increasing r until either y =1 (the
electron number density is zero) or until the nuc-
lei number density is zero, whichever happens
first. When either one of the particle number den-
sities is identically zero, the corresponding equa-
tion, (26) or (2V), is also identically zero. Further
integration of the remaining density involves either
(26) or (2V) plus Eqs. (28)-(30).

Substituting into Eq. (30}expressions for h' and
e ~ ' in terms of y and y' one obtains the following
expresion for n„:
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If the value y =1 is substituted into Eq. (47), one obtains
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which for y =1 is equivalent to A(r)=, f (p +, ,)s'ds. (52)

(49)

Thus, at y =1, the nuclear number density is neg-
ative. [If y'=0, then the mass of the star will
also be zero. See Eq. (55).] This suggests that
the nuclei number density has previously gone to
zero at some x» and that for r &r», Eqs. (26),
(28), (29), and (30) should have been used to con-
tinue the integration for the electron number den-
sity. Thus, at least a thin shell of electrons must
surround the star for this model.

In addition to the density-radius relationships,
the total mass and maximum radius are considered
important characteristics of stars with specified
central densities. We are also able to compute the
total charge for our models. The expression for
the classical limiting mass comes from Eq. (45),

( )
R'y'(R)

c1 (50)

where

2&(r) GS'(r)
r 2C4 (51)

where R is the maximum radius of the star.
For the relativistic model, the star's asymp-

totic mass-energy, A(R), is the relevant quantity.
We can write Eq. (17) as

2m(~)
r

Thus, at large distances from the star, A(R) is the
observed mass-energy.

From Eqs. (27), (28), and (33}, we find that

1+2R' vo'(R)

D(R)

h(R) =m»c'R'y'(R) I+ 2R'vo(R) ' 2

q, I -y(R) D(R)

(53)

(54)

R 1+2R vo(R) R2[y'(R)]' R
2 D(R) [I—y (R)]' 2

(55)

V. NUMERICAL RESULTS FOR MODERATE
CENTRAL DENSITIES

In Table I we have summarized the results of the
solution of Eq. (34) for several initial electron
number densities within the range expected for a
white dwarf. Results of the solution of Eq. (46)
are included for comparison. y(0) is the value of
y at the center of the star [see Eq. (46)].

As expected, the relativistic model agrees
closely with the Chandrasekhar model for small
densities. However, at the upper limit the rela-
tivistic mass-energy is seen to reach a peak for
y(0) - 20 and then decline while the Chandrasekhar
mass increases to the well-known limit. Even
without a detailed stability analysis, it is possible
to deduce, after the manner of Zel'dovich and
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FIG. 3. The charge density as a function of the radial
coordinate inside a two-component star with central
density y(0) =6.

is given as a, function of r, also for y(0) =6. It is
positive over the bulk of the star, although, as
mentioned in Sec. IV, there should be a very small
negative region near the boundary. [In practice,
both number densities fall to zero in an indisting-
uishably small interval, less than 10 cm for a
central density of y(0) =6.] Plots of the electric
field and charge density for other moderate cen-
tral densities are very similar, with the maximum
internal field increasing generally as the central
mass density increases.

~'.&. NUMERICAL RESULTS FOR LARGE CENTRAL DENSITIES

For the reasons mentioned previously, this two-
particle model is not expected to be realisitic for
a white dwarf above y(0) =20. Nonetheless, we
have carried out the calculation for larger densi-
ties with the intent of determining the limiting
mass and completing our analysis of the model.

Figure 1 plots the total mass-energy as a func-
tion of the central density both for our model and
for the Chandrasekhar model. Our asymptotic
mass limit is about one third of the Chandrasekhar
limit, but our maximum mass is only -3% small-
er. As mentioned above, the star is not expected
to be stable for the range of central densities
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FIG. 4. The maximum radius, R, for the two-compo-
nent star as a function of the central density y(0).
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FIG. 5. The mass-energy density, p~, as a function
of the radial coordinate for the specified central
densities.

where this curve has a negative slope. It is also
interesting to note that for our model, increasing
the central density beyond a certain point does not
decrease the maximum radius of the star (Fig. 4).
(The Chandrasekhar radius decreases to zero as
the central density approaches infinity. ) Thus,
we do not find a star of finite total mass and zero
radius.

Graphs of several additional quantities calculated
for the charged, relativistic, two-component mod-
el follow. Figure 5 plots the mass density as a
function of z for several initial central densities.
In general shape these curves resemble those for
Cameron's' neutron-star model, although our
slopes in the straight-line region are steeper and
our corresponding maximum masses smaller.

Figure 6 is a plot of the total charge, 8(R), of
the star as a function of the central density, y(0).
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It is similar in appearance to the plot for m(R) as
a function of y(0) (Fig. 3), with a maximum total
charge of 1.2 &&10" esu and an asymptotic limit of
3.9 ~ 10"esu. However, as Fig. 7 shows, the
ratio of charge to mass is not constant. There is
a direct correlation between the charge-to-mass
ratio and the average mass density of the star.
The peak of the h(R)/m(R) curve occurs for a y(0)
value of 1.48 & 10', for which the average mass
density is 3.8 x 10" g/cm'. The first minimum
occurs for a y(0) value of 6.6 x 10', for which the
average density is only 2.5 x 10" g/cm'. This
trend is verified for other points on the curve with
the charge-to-mass ratio and the average mass
density approaching finite asymptotic values for
y(0) &4 x10'.

Use of Ecl. (48) allows one to calculate the charge
density as a function of x and y. Figure 8 shows
the charge density at r =0 as a function of y(0).
Notice that beyond y(0)-2 x 10', the central charge
density increases linearly with y(0). For y(0)
&10", this charge imbalance induces internal
electric fields stronger than the 10"V/cm needed
for electron-positron pair creation" (cf. Fig. 2 for
the general shape of the internal electric field).
Thus, for central densities larger than this, the
field will break down and positrons will be intro-
duced. It must be emphasized that the external
electric field does not change at all for y(0) &4
&& 10'. Thus, while the internal electric field in-
creases dramatically to balance the effects of in-
creased mass density, the external field attains
an asymptotic value of only about 0.02 esu/cm'
(6 V/cm) at the boundary of the star (-4.46 x 10'
cm). Again we note that this is not a region in
which our two-componet model can be considered
realistic. However, this instance illustrates a

Io
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4,9
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I I I I I I I I
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FIG. 7. The ratio of the total charge integral to the
total mass-energy integral as a function of the central
density y (0).

VII. SUMMARY

For the low-density white dwarf star, most of
the standard results were verified by this study.
In addition, we have calculated the electric field

1000
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situation in which effects due to charge separation
can be quite large.
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FIG. 6. The total charge integral, 8(R), for the two-
component star as a function of the central density, y(0).

FIG. 8. The central charge density as a function of
the central density y(0).
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and found it to be weak, as had been predicted.
In the extrapolation to large densities, the fol-

lowing results were obtained:

(1) The total mass-energy, M(R, y(0)), does not
simply saturate, but peaks at nearly the Chandras-
ekhar value, drops, and then saturates at about
one third the Chandrasekhar limit.

(2) The star radius, R(y(0)), does not drop to
zero for large y(0) as in the standard model, ' but
saturates at a finite value, R = 4.46 ~ 10' cm.

(3) The charge-to-mass ratio of the star is di-
rectly proportional to the average mass density.

(4) For large central mass densities, the cent-
ral charge density increases as y(0) and eventual-

ly produces large internal electric fields. How-
ever, the external electric field approaches a low
asymptotic value for y(0) &4 x 10'.

The first two results are similar to those found
for relativistic neutron-star models, "but the third
and fourth are new.

Even though the two-component, fermion-boson
structure is not strictly applicable for large densi-
ties, we have carried out an extensive investiga-
tion of the model in search of possible charge
effects. We are at the present time looking into
the more realistic model of a neutron star com-
posed of a compressible neutron-proton liquid and
a free electron gas.
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