
PHYSICAL REVIEW D VOLUME 13, NUMB ER 8

Path-integral derivation of black-hole radiance*

15 APRIL 1976

J. B. Hartle
Department of Physics, University of California, Santa Barbara, California 93106

and California Institute of Technology, Pasadena, California 91125

S. O'. Hawkingt
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

and California Institute of Technology, Pasadena, California 91125
(Received 17 November 1975)

The Feynman path-integral method is applied to the quantum mechanics of a scalar particle moving in the
background geometry of a Schwarzschild black hole. The amplitude for the black hole to emit a scalar particle
in a particular mode is expressed as a sum over paths connecting the future singularity and infinity. By
analytic continuation in the complexified Schwarzschild space this amplitude is related to that for a particle to
propagate from the past singularity to infinity and hence by time reversal to the amplitude for the black hole
to absorb a particle in the same mode. The form of the connection between the emission and absorption
probabilities shows that a Schwarzschild black hole will emit scalar particles with a thermal spectrum
characterized by a temperature which is related to its mass, M, by T = k c'/8m GMk. Thereby a conceptually
simple derivation of black-hole radiance is obtained. The extension of this result to other spin fields and other
black-hole geometries is discussed.

I. INTRODUCTION AND SYNOPSIS

The Feynman path-integral method' is a natural
way to formulate the quantum mechanics of matter
fields moving in curved background spacetimes. ' '
In this method the amplitude K(x, x') for a particle
to propagate from one space time point x' to anoth-
er x is expressed as an integral over all the paths
connecting the two points. The integral has the
form

~(x xI) Q e fs (xpx' )/0

paths

where S(x,x') is the classical action for a particu-
lar path connecting x' and x. The amplitude K is
called the propagator.

This formulation of quantum mechanics has sev-
eral advantages. Because the sum is over paths
in the four-dimensional space time and because S
is a four-dimensional scalar the expression for K
is manifestly covariant. Expressing the propaga-
tor as a sum over paths gives it a direct physical
interpretation. Since the propagator is expressed
directly as a functional integral a problem of find-
ing an approximate form for it reduces immediate-
ly to a problem of approximating the functional in-
tegral. For these reasons the Feynman path-inte-
gral method is an attractive way to do quantum
mechanics in curved space times. In this paper
we shall use the path-integral method to derive the
thermal radiation emitted by black holes. ' In the
following we shall give a qualitative outline of our
methods and results. The details and proofs will
be presented in the subsequent sections.

Figure 1 shows the Penrose diagram for the
Schwarzschild geometry. The unshaded part of this
diagram represents the geometry outside a spheri-
cally symmetric collapsing body. The shaded part
should be replaced by the geometry inside. Let
us now consider the probability that a particle is
emitted by the black hole and detected by an ob-
server a constant distance away in a positive-fre-
quency mode peaked about some point A when
there are no incoming particles in the distant past.
This probability can be related to the amplitude to
propagate from some point B on the future singu-
larity to the observation point A. This in turn can
be represented as a sum over paths of the form in
Eq. (1.1), where the paths summed over are those
which begin at the point B on the future singularity
and end at the observation point A. A typical such
path (BCA) is shown in Fig. 1. These are exactly
the paths which correspond to a pair of particles
being created (near C), one of which falls into the
black hole and the other of which propagates out
to the observer. We do not sum over paths which
start on 8 since they would represent the propaga-
tion of incoming particles in the distant past. We
do not sum over paths which pass through the
shaded region since that should properly be re-
placed by the interior of the collapsing star and
will not contribute to the particle production at late
times (as we shall show in more detail subsequent-
ly). We consider only propagation from the future
singular ity.

If one attempts to evaluate the production proba-
bility by applying the method of stationary phase
to the integrals involved, then it is readily seen
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that there are no real stationary paths which con-
nect the future singularity to a positive-frequency
mode for a stationary exterior observer. Such
paths would be permissible classical paths with the
positive energy connecting the two surfaces and
there are none (although these are classical paths
with negative energy). However, if the coordinates
of the point B on the future singularity are dis-
placed to complex values then stationary-phase
paths can be found. These paths are, in fact, in
the real manifold and connect the past singularity
to the external observer. Thus, the amplitude to
propagate to the external observer from a point B
on the future singularity can be related to the am-

plitude to propagate from a corresponding point D
on the past singularity. In turn, by symmetry un-
der time reversal, the modulus of the latter am-
plitude is the same as that of the amplitude to pro-
pagate from the time-reversed point of A into the
future singularity at the time-reversed point of D.
This shows that by appropriately distorting the
contours of integration into the complex coordinate
plane the amplitude for a black hole to emit parti-
cles can be related to the amplitude for it to ab-
sorb. If we consider the amplitude for the black
hole to emit particles in a definite mode with ener-
gy E as measured by a distant observer then this
connection is

(probability to emit a particle with energy E) =e "s~"
&& (probability to absorb a particle with energy E),

(1.2)

FIG. 1. The unshaded part of the diagram represents
the Schwarzschild geometry outside a spherically sym-
metric collapse. The world line 0 is that of an observer,
who remains outside the black hole at a fixed radius. The
nonstationary path BGA corresponds to particle produc-
tion by the black hole. A pair of particles is created near
C. One falls into the future singularity at B while the
other propagates out to the observer and is detected
at A. The amplitude that a particle is produced by the
black hole and detected by the observer in a given mode
at late times can be expressed as an integral over the
amplitude to propagate between a point B on the future
singularity and a point A on the observer's world line.
In turn the propagator can be expressed as a sum over
the paths which connect these points. By analytically
continuing the point B into the complexified Schwarzs-
child space, the amplitude to propagate to A from a real
point B on the future singularity can be related to the
amplitude to propagate to A from a reflected point D on
the past singularity. This latter process is just the
time-reversed proces of absorption of a particle by the
black hole. In this way the probability for a black hole
to emit a scalar particle can be related to the probability
for it to absorb one. The relation implies the thermal
radiance.

where ~ is the surface gravity of the black hole; in
the case of a Schwarzschild black hole of mass M,
v =1/4M. (Here as in the following we are using
units where h =c = G =1.) This connection between
emission and absorption is exactly that necessary
to establish the result of Ref. 5 that a Schwarzs-
child black hole emits particles with a thermal
spectrum corresponding to a temperature T
= g/2'. To see this, imagine surrounding the
black hole by a thermal cavity and adjusting the
temperature, T, until the whole system is in equi-
librium. The temperature of the radiation is then
the temperature of the black hole. In equilibrium
the rate of emission particles by the black hole
must exactly equal the rate of absorption. Since
the ratio of the probability of having N photons in
a particular mode in the cavity with energy F. to
the probability of having N- 1 photons in the same
mode is exp(-E/kT) this equilibrium condition will
be true when T=~/2mk.

In the following we shall give the details of this
simple argument. In Sec. II the quantum mechan-
ics of scalar particles moving in a Schwarzschild
background geometry is formulated in terms of
path integrals. Section III contains a derivation of
the necessary analytic properties of the propaga-
tor on the complexified manifold, and in Sec. IV
the thermal radiation from a Schwarzschild black
hole is deduced. Section V discusses the generali-
zation to Reissner-Nordstrom and Kerr black
holes and higher-spin particles.

II. PATH-INTEGRAL QUANTUM MECHANICS OF A SCALAR
PARTICLE IN A SCHWARZSCHILD BACKGROUND

In this section we shall formulate the quantum
mechanics of a scalar particle moving in a curved
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background geometry in terms of Feynman path
integrals. Our work here is a generalization and
interpretation of that of Feynman for a scalar field
in a flat-space background, ' and as far as the gen-
eral formulation of path integrals in curved back-
grounds goes closely parallels the previous work
of the DeWitts. ' ' The considerations of this sec-
tion are intended to motivate the definition of the
propagator in Sec. III as a solution of the inhomo-
geneous scalar wave equation with certain bound-
ary conditions. As a consequence in the present
section we shall not be uniformly mathematically
precise, but this is a familiar situation when work-
ing with path integrals.

The path of a scalar particle through spacetime
may be specified by giving the four coordinates
x as a function of a parameter time w. Letting
x stand for all four coordinates we write this as
x =x(2{)). Suppose we consider the motion of a par-
ticle which starts at a spacetime point x' at w =0
and arrives at x at w= W. An action functional
which describes the classical motion of such a
particle is

(2.1)

where g is the metric on the curved spacetime and
x represents the tangent vector whose components
are dx /du). The path which extremizes S satis-
fies the geodesic equation with w as an affine pa-
rameter. Thus, for timelike paths w may be taken
to be a constant multiple of the proper time while
for spacelike paths it could be taken to be the same
multiple of the proper distance.

The action functional of Eq. (2.1) is not the usual
one in which the integrand is [-g(x,x)]'~'. How-
ever, (2.1) is a perfectly valid classical action
which has obvious advantages for a path-integral
formulation in that it is quadratic in the four-ve-
locities (see the Appendix). In contrast to the
usual form, the action in Eq. (2.1) continues ana-
lytically from timelike to spacelike paths. In add-
ition it gives correctly the relativistic quantum
mechanics of a scalar particle in flat spacetime
and is therefore a natural generalization to curved
backgrounds. We shall not discuss other choices
of the action further here.

The basic assumption of the Feynman path-in-
tegral method is that the amplitude for a particle
to travel a particular path in spacetime is propor-
tional to exp(iS[x(2())]). To have a clearer idea of
what this means imagine dividing the parameter
time w into many small intervals at values w, .
The amplitude for observations of spacetime posi-
tion at each parameter time w, to yield the set of
values (x, =x(co,)) is proportional to exp(iS[x(N))])
in the limit as the intervals become infinitesimally

separated. Amplitudes for more restricted sets
of observations may be constructed by summing
this amplitude over the unobserved positions. For
example, the amplitude that an observation of
spacetime position at one parameter time yields
the value x' and a second observation a parameter
time 8' later yields the value x is

X(W, x, x') = fex[w e)pxXf—', d{x, )dxw
Q

(2.2)

where the integral is over all the unobserved posi-
tions at parameter times between 0 and W. In
other words, the integral is a functional integral
over all paths which have x(0) = x' and x(W) = x.

The parameter w has been introduced as an ob-
servable which plays a role analogous to ordinary
time in nonrelativistic quantum mechanics. ' How-
ever, there is no experiment in which it is direct-
ly observed (since particles do not carry clocks).
All physical observations can be obtained from the
amplitude K(x,x') for a particle to be localized at
two spacetime points x' and x. K(x,x') is called
the propagator. This amplitude can be constructed
in two steps: first by summing over all paths
which connect x' to x in a given parameter time
W and then by summing over the unobserved val-
ue, W. The first sum is just F in Eq. (2.2). In the
second sum an appropriate weight must be as-
signed to each elapsed parameter time W. In flat
space if the scalar particle has a rest mass m this
weight is' i exp(-im'W). It is natural to adopt this

, also for the curved-space case. The expression
for the propagator then takes the form'

X( , x)x=i f dWex(2( (I*W)F(W,x,x'), (2-.3)
0

where E is given by Eq. (2.2). The restriction of
the integral to positive 8' is the requirement that
the particles always propagate forward in parame-
ter time.

From this definition it easily follows that K(x, x')
is symmetric in x and x'. Letting w = 8'- w' leaves
the action in Eq. (2.1)=unchanged but interchanges
x and x' in the sense that as functions of ge', x(0)
=x and x(W) =x'. Thus E(W, x, x') is symmetric in
x and x' and it follows immediately from Eq. (2.3)
that K(x,x') is also.

Equations (2.2) and (2.3) are the basic relations
which are needed to define the quantum mechanics
of a free scalar particle moving in a curved space-
time. Before this definition is complete the inte-
grals in Eqs. (2.2) and (2.3) need to be given mean-
ing. We now turn to this question but for simplicity
and definiteness restrict our attention to scalar
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ds2 = (32M'e "/'"/x)( dz'-+ dy2) + x'dQ',

with dQ' =d8'+ sin'8d(/]' and r(y, z) defined by

z2+y2 —(y/2M l} re/2M

(2.4)

(2.5)

this can be accomplished by letting z =i/ and keep-
ing f real. Then the analytically continued metric
y is given by the line element

da' = (32M'e ' '"/r)(dr'+dy')+r'dQ', (2 6)

particles propagating in the Schwarzschild geome-
try.

The first problem is the definition of the path in-
tegral in E(l. (2.2). To solve this we analytically
continue the variables in this formal expression to
values where the integral is well defined. In par-
ticular zg and 5' are continued to negative imagi-
nary values -iw and -iA, respectively, and the
coordinates are continued to a domain where the
metric has signature +4. In the case of the
Schwarzschild geometry which in Kruskal coordi-
nates z, y, 8, y has the form

the class of paths defined above look like when the
analytic continuation reaches real values of 8' and
the contours of the path integration are deformed
to real coordinate values? It seems clear that the
resulting class of paths will not be confined by any
finite boundaries in the Kruskal coordinates. In
particular, they will cross and recross the singu-
larities at x=0. These singularities are poles in
the metric considered as functions of the complex
coordinates. The path integral across the singu-
larity is defined by giving a prescription for which
way the contour of integration goes around the
pole. In turn this is determined by the analytic
continuation of the path from the positive-definite
section and the deformation of the contours to real
values everywhere except near x=0. If the paths
cross r =0 then they extend into the Schwarzschild
geometries with negative mass. This is illus-
trated schematically in Fig. 2(b).

The actual computation of F(Q,x,x') is greatly
facilitated by noticing that it satisfies a parabolic
partial differential equation

with x now defined by

P+y& —(~/2M l )er/2// (2.7)
8F

(2 9)

The analytically continued expression for F be-
comes

0
P(II, x, x')= f Ilx[te]exp ——,

'
X(x, x]dte

0

(2.8)

where x is to be understood as x =(f,y, 8, (/]) and
x as dx /d(d The sp.ace covered by the coordinate
ranges -«f«, -«y «, 0& e~ g, 0& y&2g
is complete, has the topology A'&&S', and, since
r ranges only over values greater than 2M, the
metric y is regular with the exception of the trivial
polar singularities at 8 =0 and n. The integration
now extends over all paths in this space which
start with (0= 0 at x' and end with &o = Q at x (see
Fig. 2). This path integral can be precisely de-
fined. "Our basic assumption" is that the function
F when defined in this way and analytically con-
tinued back to real values of the coordinates and
parameter time variable gives the correct propa-
gator defined heuristically by E(l. (2.2).

This procedure not only gives definition to the
integral in E(l. (2.2) but also identifies the class
of paths over which integration is done. Imagine
taking a particular path in the space with positive-
definite metric and continuing both coordinates
and parameter to complex values. The complexi-
fied path is now a two-dimensional sheet in the
space of complex coordinates given by the four
complex analytic functions x(((]) of the complex pa-
rameter ~. The analytic functions are completely
fixed by their real values for real ~. What does

where 0'=y ~V Vz and V indicates covariant dif-
ferentiation with respect to the metric y. The de-
rivation of this result is reviewed in the Appendix.
The boundary conditions on E(l. (2.9) which yield

(b)

FIG. 2. (a) A compactified representation of a con-
stant 8, constant fIt} slice of the positive-definite space-
time whose metric is given in Eq. (2.6). The heavy
circle represents infinity. There are no singularities.
A typical path connecting two points x' and x is shown.
(b) A Penrose diagram for the Schwarzschild geometry
showing in addition the regions of negative mass (or
r ~0) above and below the singularities. A typical mem-
ber of the class of paths continued analytically to this
real section from the positive-definite spacetime repre-
sented in (a) is shown. Such paths may cross and re-
cross the singularities at r =0. Integrations over paths
which cross the singularities are specified by choosing
contours of integration which are the analytic continu-
ations of those in the positive-definite section.
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F as defined by the path integral are first that

F(O, x, x') = 5(x,x'), (2.1o)

where 5(x, x') is the four-dimensional 5 function in
the space with positive-definite metric [equal to
6'~'(x —x')y ' ']. Second, F must vanish as x ap-
proaches the infinity of the space with positive-
definite metric. The first boundary condition is
simply the requirement that at 0 =0 the particle
be localized at x'. The second follows from the
exponential damping of the integral as x tends to
infinity.

The solution to Eq. (2.8) and associated boundary
conditions will be analytic in x where the metric is
and analytic in 0 except at the origin. " The solu-
tion can thus be continued back to physical values
of the coordinates and parameter time. There it
will satisfy the analytically continued equation

QF
i = — F, (2.11)

where Cl'=g ~V V~ and V is covariant differentia-
tion with respect to the metric Z. Equation (2.11)
can be thought of as the Schrodinger equation for
propaga, tion in the parameter time W.

The second problem involved in giving meaning
to Eq. (2.3) for the propagator is the integral over

To resolve this we need the asymptotic form
of F(W, x, x') for both small and large W. The be-
havior of F for small W is essentially given by the
definition of the path integral itself. For small W

and fixed x and x' the action [Eq. (2.1)] for a typi-
cal path will become large. The only paths which
contribute significantly to the path integral are the
stationary paths, i.e., the geodesics connecting x
and x'. For these paths the action is

S(W, x,x') =-,'s(x, x')/W, (2.12)

(V s)(V s) =4s,
one finds that

N(W, x, x') =D(x, x') W-'+ ~

(2.13)

(2.14)

where D is independent of R', its exact form will
not concern us. The reader will recognize this as
essentially the WEB approximation to the solution
of Eq. (2.11). Considerably more detail on the de-
rivation can be found in Refs. 2 and 8(d).

where s(x, x') is the square of the geodesic distance
between x and x'. If there were a single geodesic
connecting x and x' then for small W we could
write

F(W, x,x') =exp[is(x, x')/(4W)]N (W, x,x'),

where N(W, x,x') is a real normalization factor.
Equation (2.11) can then be solved for small-W be-
havior of N. When note is taken of the identity

In general there will be several geodesics con-
necting x and x'. In that case the small-8' be-
havior of F will be

F(W i) —((, (s,(x, x )/(~w)

IimF(W, x,x') = 5(x,x') .
lV 0

(2.16)

For large values of 0 standard estimates" for
the solution of the parabolic equation (2.9) defined
by the boundary condition in Eq. (2.10) show that
F(Q, x, x') decreases at least as fast as 0 ' for x
and x'. Physically this is nothing more than the
spreading of an initially localized wave packet with
increasing Q. Thus, at large 0, F can be ex-
pressed as

F(A, x, x') =0 '[F,(x,x')+F, (x, x')0 '+ ].
(2.17)

We will assume that expansion can be continued
back to real values of 8' and x by term. Thus, in
particular we have for large W

F(W, x, x') =O(W-') . (2.18)

The large-S' behavior of F shows that the inte-
gral in Eq. (2.3) always converges at the upper
limit. This is nqt the case at the lower limit where
F diverges as W ' [Eq. (2.15)]. To make the inte-
gral finite we shall insert a convergence factor
exp(-e/W), where e is a small positive constant.
Physical quantities are to be computed with & finite
and then the limit & -0 is to be taken. Thus,

sc(x, e) =I f awaxp(-(I'w- ~iw)s'(w, x, x') .
0

(2.19)

&& W '[D,(x,x')+O(W ')],
(2.15)

where the sum is over each class of geodesics
which connect x to x'. This small-W behavior will
not be uniformly valid over the whole range of
values of x. In particular where neighboring geo-
desics which start at x' intersect (caustics) we ex-
pect the approximation to break down. For exam-
ple, s(x, x') will have a branch point at such an
intersection, but we know from general considera-
tions that F has none.

If Eq. (2.15) is integrated over a smooth function
of x then as TV tends to zero there will be a signi-
ficant contribution to the integral only for values
of x for which s,(x,x') is nearly stationary keeping
x' fixed. This will happen only for x close to x'.
In other words, F(o,x, x') is proportional to a 6
function. The proportionality factor is just unity
because the normalization factors in Eq. (2.15)
must also give rise to Eq. (2.10). Thus,
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This method of regularization corresponds physi-
cally to the requirement that the particle propagate
forward in the parameter time 8'. It correctly
gives the usual Feynman propagator for a scalar
particle in flat spacetime as we shall show in the
next section. With Eq. (2.19) our definition of the
propagator is now essentially precise. We shall
now examine the consequences.

III. ANALYTICITY PROPERTIES OF THE PROPAGATOR

In the preceding section an integral representa-
tion for the Feynman propagator K(x, x') was de-
rived in terms of the propagator for a definite pa-
rameter time W, F(w, x, x'). It follows immedi-
ately from Eq. (2.9), the parameter time Schro-
dinger equation, Eq. (2.11), and the boundary can-
ditions, Eqs. (2.15) and (2.17), that K(x, x') is a
solution of the inhomogeneous wave equation in the
Schwarz schild background

( '-m')K(x, x') =- 5(x, x'). (3.1)

F(W, x, x') =i(4~W) 'e"'" "'"" ' (3.2)

where s(x, x') denotes the square of the Minkowski
interval between x and x'. From Eq. (2.19) the
propagator is then

i 1
K x, x') =-

4m' s(x, x')+is ' (3.3)

which is the correct Feynman propagator. In any
coordinates in which the Minkowski metric is ana-
lytic, s(x, x') will be an analytic function of the co-
ordinates and K(x, x') will also be analytic except
at the poles where s(x, x') =- ic. These poles cor-
respond to the null geodesics connecting x and x'.
It is regularity at infinity plus the location of these
poles in the complex coordinate plane that uniquely
fixes K(x, x') as a, solution of the inhomogeneous
wave equation. More concretely, in the usual rec-
tangular Minkowski coordinates with x = (f, x) and
x'=(f', x'), K(x, x') has poles at t —f'
=+(~x- x'

~

—ie). Thus K(x, x') is that solution of

As an alternative to the path integral, K(x, x') could
be defined as a solution to Eq. (3.1) with suitable
boundary conditions. This approach is a useful one
because some properties of K(x, x') can be deduced
directly from the differential equation and because
it is more easily generalizable to the propagation
of particles with higher spin. In this section we
shall derive the boundary conditions for K(x, x')
from its path-integral definition.

First, we illustrate the procedure with the ex-
ample of a massless scalar particle in flat space.
The solution of the parameter time Schrodinger
equation for F which satisfies the boundary condi-
tion of Eq. (2.10) is

the inhomogeneous wave equation which is regular
at infinity and for which the singularities corre-
sponding to propagation along future-directed null
geodesics lie below the real t axis, while those
corresponding to propagation along the past-di-
rected null geodesics lie above the real t axis.
Elsewhere in the complex f plane K(x, x') is ana-
lytic. We shall now consider the analogous bound-
ary conditions for Eq. (3.1) in the Schwarzschild
geometry.

To begin with let us consider the case in which
x' is exterior to the black hole and x lies on the
horizon. It is convenient to use null Kruskal co-
ordinates U and V in which the Schwarzschild
metric takes the form

ds' = —(32~'e " ' /r)d Ud V+ r'dQ', (3.4)

with z defined by

UV = (1 —r/2M)e" ~'" (3.5)

K(x, x') =K,(x, x')

e iss(x, s )/4lVp'

s,(x,x')+i&

This expression can be used to continue K(x, x') to
values of x off the complexified horizon. With
m &0, K(x, x') also has singularities whenever
s,(x, x') = —ie, i.e., slightly displaced from wher-
ever there is a null geodesic connecting x' to the
complexified horizon. We shall now locate these
points.

To start with we shall show that all null geodes-
ics which start from real values of x' intersect the
complexified horizon on the real section, i.e. , at
real values of U and V. For definiteness let us

On the horizon x=2M and either U=O or V=O. We
analytically continue the nonzero member of the
pair (U, V) to complex values and refer to the sur-
face thus obtained as the complexified horizon.
Since the metric is analytic in the Kruskal coordi-
nates on the complexified horizon, the function
E(w, x, x') will also be analytic there. Any singu-
larities in K(x, x') will therefore come from the
end points of the integration over O'. From the
asymptotic expression [Eq. (2.1'1)] for E(w, x, x')
at large values of 8' one easily sees that the inte-
gral converges for large 8' for all complex values
of x. Any singularities of K(x, x') must therefore
come from the W=O end point. To analyze these,
divide the interval [0,~] in W into two pieces
[0, Wp] and [Wp, ~], where Wp is small. The inte-
gral from 8', to infinity gives a contribution
K,(x, x') to K(x, x') which is analytic in x. In the
part from 0 to 8', our expression for the small-W
behavior of E(W, x, x') may be used wherever it is
valid. The result for K(x, x') when m =0 is
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consider first the geodesics which connect a real
x' exterior to the hole to the future horizon. In-
stead of the affine parameter V on the horizon it
is convenient to use the Killing time v related to
it by V= exp(xv). This is just the familiar advanced
time of the Eddington-Finkelstein coordinates
which cover the region V~0. Complex null geo-
desics may be represented by giving the four co-
ordinates as functions of a complex affine parame-
ter which we shall call X. The geodesic is thus
really a two-dimensional sheet in the complex co-
ordinate space.

From the relation V= exp(vv), a given value of
n and one displaced from it by Imv = 2v/z corre-
spond to the same value of V. A consequence of
this is that by studying the null geodesics whose
v coordinates are confined to a strip of width 2m/v

in the complex plane one learns about the null geo-
desics for all other values of v. It is convenient
to choose a strip which includes the real v axis.
We may then suppose that at X=O the coordinates
assume the real starting values v', r', 8', y'. Our
question is what complex values of v in this strip
with real values of 8 and p and r=2M lie on the
two-dimensional sheet which represents a complex
null geodesic '?

Null geodesics in this stationary spherically
symmetric spacetime may without loss in generali-
ty be taken to be in the equatorial plane, 8 = v/2.
They are characterized by two constants of the
motion e and l which may take complex values.
The definitions of these constants are

1 —2M dv
l = ~dq

(3 'l)

Then from the null condition g(x, x) = 0 we derive
the familiar expressions

and

2M 1

J,. 1 —2M/r [1—~ v '(I —2M/r)]' 'I '

(3.8)

(3.9)

Here we have written b for the impact parameter
l/e. The multiplicative arbitrariness in the affine
parameter X implies that the invariantratio b is suf-
ficient to completely characterize a particular null
geodesic.

The purely real geodesics connecting x' to the
future horizon correspond to real values of b be-
tween 0 and S~M. For these values, x=r' and
r =2M can be connected by a purely real contour.
For this reason for real b between 0 and 3~3M it
is convenient to take the cuts of

f(r) = [& —b'x '(l —2M/x)]'/' to avoid the positive
real r axis and to have r =r' and r =2M on the
same sheet of the Riemann surface off. The com-
plex analytic structure of f for other values of b

is then fixed by analytic continuation in that vari-
able.

A given complex value of b and a given contour
in the r plane connecting r = r' with r =2M should
determine a unique complex null geodesic. For
example, for every real b between 0 and SWSM
and a purely real contour between r = r' and r = 2M
there is a unique real null geodesic. For the same
value of b a second contour which could not be ob-
tained from the first by a smooth distortion would
determine a different complex null geodesic.

However, it is easily verified from Eqs. (3.8)
and (3.9) that there are no poles in the integrands
of these equations to prevent one contour which
connects r =r' and r =2M on the given sheet from
being distorted into any other. The most conven-
ient choice for the contour, therefore, is simply
to take it to lie along the real axis provided that it
does not intersect a cut of f(r).

For a given contour the integral in Eq. (3.9) de-
fines a function y/b which is a multivalued func-
tion of b2. In order to obtain a unique connection
between y and b it will be necessary to restrict b'
to a given sheet of the Riemann surface of p/b. We
shall call this the physical sheet. This sheet must
include the real axis between b'=0 and b'=27M
which corresponds to the physical real null geodes-
ics. There is a branch point of the function rp/5 at
b' =27M'. It is therefore convenient to define the
physical sheet as the plane cut along the positive
real axis from 2VM' to infinity and containing the
physical real values from b'=0 to 2VM'. It is then
easily verified that the contour in Eq. (3.9) can
always be chosen to lie along the real axis. With
b' on the physical sheet the integral in Eq. (3.9)
then defines a unique connection between p and b.

Of interest in the present, instance are null geo-
desics which have real values of p at the end point.
An elementary analysis of the integral in Eq. (3.9)
shows that since the contour can be chosen real
for b' on the physical sheet, the imaginary part of
the integrand is always of one sign and the imagi-
nary part of p does not vanish unless b' is real
and between 0 and 27M'. However, these values
of b mean that v at the end point will also be real.
Thus, complex null geodesics starting from x' in-
tersect the complexified future horizon only for
real values of V. A similar conclusion clearly
holds for the past horizon. There are then singu-
larities of K on the complexified horizon slightly
displaced from the real values of U and V at which
null geodesics from x' intersect the horizon ac-
cording to the relation s(x, x') = —ie We shall now.
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determine the direction of these displacements.
Suppose that &p is the end point on the future

horizon of a real null geodesic which starts at x'.
If Vp repre sents the value of V as soc iated with xp,
then for values of V near to Vp s will behave as

~S
s(x x')= —(V- V)+ ~ ~ ~ .

~V
Xp

(3.10)

d '(I' k)/d)). ' = 0, (3.11)

and this relation can be used to propagate l'k back
along the null geodesic to X=O, where both geodes-
ics originate. One finds

A positive value of (Bs/()V)„means that the solu-
tion of s(x, x ) =- ie is in the lower half plane while
a negative value means that it is in the upper half
plane. To determine the correct sign let k5V be
the displacement vector from the null geodesic to
a neighboring geodesic which starts at x' but ends
on the future horizon a small affine parameter dis-
tance 5V to the future of V, . Thus on the horizon
k = 8/SV. If I is the tangent vector to the null geo-
desic then on the horizon l k &0. The equation of
geodesic deviation implies that

propagator for regions other than the complexified
horizon. To complete the program outlined in the
Introduction we shall be concerned in particular
with the analytic properties in the Schwarzschild
coordinate t. This is connected to the null coordi-
nates U and V through the relations

U I y 2M 2/2 (r-t)/4N)
~ U&0, V&0 (region II)

V (I 2r/2~)1/2e(r+ t)/4N I

(3.13a)

U (tr/2M I ) t/2 (r t) /4�-
NU&, V& 0 (region I)

V = (y/2)if I)'/2 (r+ ')/4N

(3.13b)

and similar relations with the signs of U and V
changed in the quadrants reflected in the origin of
the U- V plane. These relations are indicated sche-
matically on a Penrose diagram in Fig. 3.

For definiteness let us first consider the case
when x' is exterior to the black hole and x is in
region II. The portion of the future horizon with

l'k =cX, (3.12)

where c is a negative constant. Since the tangent
vector along the neighboring geodesic is the sum
of I and k()V, Eq. (3.12) implies that the neighbor-
ing geodesic is timelike. Thus s(x, x ) is negative
as x runs along the neighboring curve and
(ss/s V)„&0. The singularities of the propagator
corresponding to s(x, x') = —ie therefore lie in the
upper half plane and the propagator will be analytic
in the lower half V plane on the complexified
horizon.

In a similar manner the analytic properties of
the propagator on the past complexified horizon
can be deduced. For x' located at a real point out-
side the black hole, and x on the complexified past
horizon, K(x, x') will be analytic in the upper half
U plane.

The analytic properties which we have deduced
from the path integral for the propagator on the
complexified horizon may now be considered as
boundary conditions which define the propagator as
a particular solution of the inhomogeneous wave
equation, Eq. (3.1). For all of our subsequent re-
sults we could have started from this definition of
the propagator in terms of its analytic properties
on the complexified horizon, but such a definition
would lack the physical motivation which our defi-
nition in terms of the path integral gives.

The inhomogeneous scalar wave equation togeth-
er with the boundary conditions just deduced may
be used to derive the analytic properties of the

FIG. 3. A Penrose diagram for the Schwarzschild
geometry. The amplitude for a black hole to emit
particles which are detected in a mode of energy E by
an observer in region I may be related [Eq. f4.4)] to the
integral of exp(-iEt) times the propagator to go from a
point x on a surface C+ of constant r in region II to a
point x' on the detector's world line in region I. The
integral is over the coordinate t on C+. The propagator
is analytic in the coordinate t except for singularities at
those values where a null geodesic from x intersects the
complexified surface C+. One of these values is the
real value of t corresponding to the intersection with
C+ of the radial real future-directed null geodesic from
x. As shown in the text, if x has a time coordinate with
an imaginary part -4Clf, it actually corresponds to the
point x in region III, which is x reflected in the origin.
There is thus another singularity in t with imaginary
part -4mM corresponding to the radial real past-directed
null geodesic from x intersecting the surface C which
is the reflection of C+. The two singularities just dis-
cussed are repeated at intervals of S~M in Imt. The lo-
cation of the singularity is illustrated in Fig. 4(a).
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V~ 0 together with the part of the past horizon
with U ~ 0 are a complete characteristic Cauchy
surface for region II. The propagator in the in-
terior region is uniquely determined through the
differential equation by the initial data on this
Cauchy surface. These are just the values of the
propagator on the relevant parts of the horizon.

Complex values of t with r, 8, and y fixed cor-
respond to certain complex values of U and V ac-
cording to Eq. (3.13a). If we let t =7 +iv then in

particular

U-(U)e ' "" V=(V(e"'" (3.14)

The problem of determining the propagator at a
certain complex value of t may be considered as
a problem of solving the wave equation, Eq. (3.1),
for a fixed value of v in the real coordinates

~ U~

and
~ V~. Since the metric is independent of t the

equation is hyperbolic for any value of 0 and the
characteristic initial-value problem is well posed.
The analyticity of the propagator on the complexi-
fied horizon in the upper half U plane and in the
lower half V plane implies that the Cauchy data
for this real problem are regular provided -4'
& 0 & 0. The standard existence and uniqueness
theorem for the hyperbolic characteristic initial
value problem guarantees that there will be a so-
lution for the propagator for this range of 0. To
determine whether the resulting solution is analy-
tic in t we need only verify that the Cauchy-Rie-
mann condition is satisfied. This is (a bar denotes
complex conjugation)

(3.15)

where the derivative with respect to t is being
taken at constant r. Evidently this condition is
satisfied by the data for -4'& o & 0 since K is an
analytic function of U and V in the appropriate half
planes on the complexified horizon. Furthermore
(8/st)„commutes with ' so that determining
(8 K/Bt )„may be regarded as a problem of solving
the wave equation with zero data on the character-
istic Cauchy surfaces. The unique answer to this
problem is (aK/st)„=0. One concludes, therefore,
that for x' in the exterior region and fixed r, 8, y
in the region U&0, V&0, K(x, x') is analytic in t
in a strip of width 4' below the real axis.

The strip of analyticity cannot be extended above
the real axis because immediately above it there
are singularities corresponding to the real null
geodesics which connect a value of t on the sur-
face of given r to x' (see Fig. 3). The strip of
analyticity cannot be pushed below 0 =-4aM' either.
From Eq. (3.14), this value of v corresponds to a
U and V which are again in the real section but re-
versed in sign. The propagator K(x, x') with x in

region II when continued in t to t —4mMi then equals
the propagator from a point x" in region III to x'

in the exterior region. The point x" is just x re-
flected in the origin of the U- V plane. This identi-
ty will be the basis of our derivation of black-hole
radiance in the next section, but for the present
we simply note that it implies that immediately
below the line o =-4@M there are singularities
corresponding to the real null geodesic which con-
nect a point on the surface of constant r in region
III to x'. The singularities in this case lie below
the real axis because x" lies in region III and from
the relations analogous to Eq. (3.14) the small pos-
itive imaginary value of U and a negative value of
V which locate the pole correspond to a negative
imaginary value of t.

In this way the analytic properties of the propa-
gator K(x, x') in the variable f become apparent.
For fixed 0, y, r in region II with x' located in re-
gion I they are illustrated in Fig. 4(a). The propa-
gator is periodic in v=1m(t) with period 8mM. The
regions of analyticity corresponding to the upper
half U plane and lower half Vplane on the com-
plexified horizon are the shaded strips of width
4mM. There are periodic singularities corres-
ponding to the real null geodesics which connect
x' to a point on the curve of given 8, y, r either in
the past or in the future.

If x and x' are both located in region I the propa-
gator is still periodic in 0 with period 8' as a
consequence of Eq. (3.13b). Now, however, there
are real values of t both in the past and in the fu-
ture of x' for which there are real null geodesics
connecting it to the fixed r, 9, y curve. For the
values to the future of x' the corresponding singu-
larities are displaced slightly above the real t
axis. For the values of t to the past, the corres-
ponding singularities are displaced slightly below
the real t axis. These singularities are shown in
Fig. 4(b). There are no singularities correspond-
ing to real null geodesics near o =+4' since the
corresponding real points lie in region IV, every
point of which is separated by a spacelike interval
from x'.

The propagator K(x, x ) is periodic in imaginary
t because it follows from the path-integral defini-
tion that the propagator is an analytic function of
the Kruskal coordinates U and V except at the
singularities we have described. However, the
Schwarzschild coordinate, t, has a logarithmic
singularity as a function of U and V and is multi-
valued; it is defined only modulo 8wiM. Thus if
the propagator has a singularity at some value of
U and V, it will have periodic singularities at in-
tervals of 8giM when expressed as a function of
t. The propagator is similar to that suggested by
Unruh. " By contrast, the propagator proposed by
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Boulware'4 is not periodic in t because it is not
analytic on the two horizons.

The existence of periodic singularities in t im-
plies that observers moving on lines of constant
r, 8, y in the extended Schwarzschild solution will
detect particles. This is very similar to the fact
that, as Unruh has pointed out, observers moving
on world lines of uniform acceleration in Minkow-
ski space will also detect particles. On the other
hand, an observer moving along either of the two

Im t

M 12aM

SvrM SvrM X X

M 4~M

4' M

X

Re t

X X

-4mM

—SwM

—12wM

X X

Re t

(a) (b)

FIG. 4. The analytic structure of the propagator in
the complex t plane. (a) shows the analytic structure of
K (x, x') for x' fixed outside the black hole (region I) and
fixed values of r, 8, y inside the future horizon (region
IQ. The propagator is periodic in Im(a) with period8' as a consequence of the relation of t [Eq. (3.14)]
to the coordinates U and V in which the metric is analy-
tic everywhere except at the physical singularity. The
shaded regions are the regions of analyticity in t which
are deduced from the analyticity of the propagator in the
upper half U plane and lower half V plane on the com-
plexified horizon. The crosses locate the singularities
which correspond to the real null geodesics which con-
nect x' to the curve of constant r, 8, y. A typical sit-
uation is illustrated in Fig. 3. There are singularities
immediately above the real axis corresponding to the
null geodesics which connect x' to the fixed r, 8, y
curve in region II. There are singularities below the
Imt =-4vrM line corresponding to the real geodesics
which connect x' to the fixed r, 0, y curve in region III.
In each case there is an infinite sequence of singularities
(only a few of which are shown) which arises because
there are nu11 geodesics which spiral an arbitrary num-
ber of times near r =3M and thus can connect the fixed
r, 9, y curve to x' at increasingly large values of
1t t'1. The singularit—ies at other values of Imt are
duplicates of these as a consequence of the periodicity
of the propagator in lmt with period 8aM. (b) shows
the similar analytic structure when both x and x' are in
Region I. The propagator remains periodic in Imt with
period 8mlVi . There are now infinite sequences of null
geodesics which connect x' to a curve of fixed r, 0, y
in the future and in the past. Correspondingly there are
singularities above and below the real t axis. These are
periodically repeated in Im t with period BxM.

horizons will not see any particles. This is an il-
lustration of the fact that the concept of particles
is observer-dependent. " In the next section we
shal1. show that the propagator constructed here
will give for observers at a constant distance from
the black hole the same rate of particle production
as was obtained in Ref. 5 through a study of the
mixing of positive and negative frequencies in a
gravitational collapse.

IV. BLACK-HOLE RADIANCE

In the preceding section we demonstrated the
analyticity of the propagator K(x, x') in a strip in

the t plane when x is in region II and x' is in

region I of the Schwarzschild geometry. We shall
now use this anaiyticity to derive the thermal
radiation from a Schwarzschild black hole.

Suppose we surround a Schwarzschild black hole
by particle detectors at some large constant ra-
dius R. These detectors measure particles com-
ing out from inside the surface in modes
fi(t', r', e', y') which are purely positive-frequen-
cy (with respect to t') solutions of the scalar
wave equation. The amplitude that a particle is
detected in a mode f, (x') having started in a mode

lt&(x) on some surface which bounds a region in-
terior to 8 is

da~ x' ~" x ~
x' ~~K x', x ~„~~ x,

(4.1)

where the integral over x' is taken over the sur-
face r'=A and the integral over x is over the
interior bounding surface. The notation aB&b

means ab „—a „b.
Suppose for the moment that the particle detec-

tors are confined to a time interval t'E(- t,', t,'),
where t,' is very large. Eventually the limit
t,'-~ will be taken. The interior bounding surface
mentioned above can then be taken to be a space-
like surface through the precollapse star at -t,',
a complete spacelike surface inside the future
horizon and a timelike surface connecting this
to the ~' =R surface outside at t' = t,'. The space-
like surface inside the future horizon will be
taken to be part of a constant-x surface C, out-
side the matter and a spacelike extension inside
it. The complete spacelike surface inside the
future horizon could have been chosen to be the
future singularity were it not convenient to avoid
mathematical complications associated with the
singularity in the metric at r =0 by keeping it
away from those points.

We now calculate the total probability that a
particle is measured by a detector in a mode

f, (x') which is peaked in time about some late
time to. This probability will be the sum of the
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square of the amplitude in Eq. (4.1) over all modes

h, (x) which are consistent with our knowledge of
the bounding surface. There will be no contri-
bution from modes which are localized on the
spacelike part at t' = —t,' because we are assum-
ing that there are no scalar particles in the initial
state. The contribution of the other two surfaces
is significantly restricted by the fact that the prop-
agator K(x, x') in the exterior geometry of a col-
lapsing star at late times will be a function only of
the difference t'- t as a consequence of the time
transition invariance of the Schwarzschild geom-
etry. Thus if f, (x') is peaked about a late time to

only times t comparable to t,' will contribute in
Eq. (4.1). In particular there will be no contribu-
tion from the timelike surface which starts at t,'
since by choosing t,' large enough this only inter-
sects values of t much larger than t,'. Further-
more, the only part of the spacelike surface in-
side the horizon which contributes is the part with

tp and for sufficiently late times this is well
outside the matter. The conclusion of this is that
if one is interested in the probability of production
of particles at late times the details of the col-
lapse may be ignored. The only part of the ampli-
tude in Eq. (4.1}which contributes to the probabil-
ity of particle production is that in which the inte-
gral over x is taken over the complete spacelike
surface inside the horizon, and this can be ideal-
ized as a surface C, of constant r between 0 and

2M in the exact Schwarzschild geometry. We are
explicitly assuming here that the propagator be-
tween a point interior to the future horizon and a
point outside the black hole in the geometry of a
collapsing star is well approximated at late times
by the propagator we have obtained in the analyti-
cally extended Schwarzschild metric.

To compute the total probability that a particle
is detected we next note that there is no informa-
tion on the state of the particle on the future sin-
gularity. The total probability is obtained by sum-
ming the modulus squared of Eq. (4.1) over a
complete set of states on C+. It is not necessary
to carry this sum out in detail to derive the black-
hole radiance as we shall now show.

Of chief interest is the amplitude for a black
hole to emit a mode with a definite positive ener-
gy E. The time dependence of such a mode is
f-exp(- iEt'). Because of the time translation
invariance the modes h, (x) in the complete set on

C, may also be classified into modes with the time
dependence exp(- iEt), although since t is a space-
like coordinate inside the horizon, E is not to be
interpreted as a local energy. The fact that K is
a function only of the difference t'- t means that
the integral over t and t' in Eq. (4.1) will lead to
an energy-conservation 5 function. When prob-

abilities are computed the formal square of the 5
function will be replaced by a density-of-states
factor in the usual way. Factoring out this ener-
gy-conservation 6 function there remains of Eq.
(4.1).

f do(B ) f dd(R) f, (R')—d (R', B)—dt(R),

(4.2)

where R and R' denote the coordinates r, 8, y and
r', 8', y' respectively, f, (R) and hz(R) denote the
angular parts of the respective modes, and de(R)
and d()'(R') are appropriately weighted angular inte-
grals. The crucial information about the emis-
sion is contained in the amplitude 4z defined by

Ss(R', R) = J( dte ' 'K(0, 8'; t, R).
~00

(4.3)

Making use of the symmetry of K(x, x') under in-
terchange of x and x' this can also be written in

what will be the more convenient form

d (B', B)= I dt d ' ' K(t(; 0,tR'). , (4.4}

The amplitude 8~ is the component with energy E
of the amplitude to propagate from the surface C,
to a point (0, 8') outside the black hole.

Following the program outlined in the Introduc-
tion we now wish to relate the amplitude for emis-
sion as contained in Eqs. (4.2) and (4.4) to an
amplitude for the black hole to absorb a particle
in the same mode by distorting the contours of
integration into the complex plane. To do this it
is enough to concentrate on the amplitude 8a(R', R}
and distort the contour of the t integration in Eq.
(4.4) downward by an amount —4vMi. This distor-
tion is permissible since the main result of the
preceding section is that K(t, R;0, R) is analytic
in a strip of width 4@M below the real axis. Equa-
tion (4.4) becomes

&a(R', R)=e " 'JI dte 'a'K(t —iv/x, R;O, R'),

(4.5)

where we have written the surface gravity of the
black hole g instead of 1/4M. Equation (3.14)
shows that translating t by an amount —iv/a is
equivalent to reflecting the Kruskal coordinates
U and V in the origin, The integral in Eq. (4.5)
can thus be interpreted as the component with en-
ergy E of the amplitude to propagate to a point
(0, R') outside the black hole from the surface C
in region III, which is C, reflected in the origin
of the U-V plane. If this integral is inserted in
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Eq. (4.2) in place of Ss we obtain minus the ampli-
tude for a particle to be detected in a mode f, of
definite energy E having started on C in region
III in a mode h& with the same energy. The minus
sign occurs because the appropriate normal to
the surface C is reversed. By time-reversal
invariance the modulus squared of this amplitude

is exactly equal to the modulus squared of the
amplitude for the black hole to absorb a particle
which starts at (0, R') in a mode f, with energy E
and arrives at C+ in a mode. h& with the same en-
ergy. When the sum over the complete set of
states h& is performed we have the general rela-
tion

(probability for a Schwarzschild black hole to emit a particle in a mode with energy E)

=e " ~" x (probability for a Schwarzschiid black hole to absorb a particle in the same mode). (4 5)

This is the fundamental connection between emis-
sion and absorption stated in the Introduction.
This connection shows that a black hole wiQ- emit
particles with a thermal spectrum characterized
by a, temperature T = z/2wk. Thus we recover"
the result of Ref. 5.

V. ROTATION, CHARGE, AND SPIN

In this section we shall comment on the general-
ization of our results to particles with higher spin
and to black holes with rotation and charge.

For fields of spin greater than zero it is diffi-
cult to express the propagator in terms of an in-
tegral over paths. However, we shall assume that
the analytic properties of the higher-spin propaga-
tors are the same of those we have derived for
the scalar field. Namely, we shall assume that if
U and V are affine parameters along the past and

future horizons, respectively, both increasing
toward the future, the propagator from a point
outside the black hole to a point on the horizon is
analytic in the upper half U plane and in the lower
half V plane. If this assumption is taken then the
generalization of our results to higher-spin par-
ticle is immediate since the derivation of black-
hole radiance given in the preceding section for
Schwarzschild black holes and that to be given be-
low for more general black holes depend only on
this analyticity property and the correct construc-
tion of the emission and absorption amplitudes.
We now proceed to the generalization of our argu-
ment to the Kerr and Reissner-Nordstrom black
holes. For simplicity we treat these two cases
separately, leaving it to the reader to join the
arguments together for the general rotating
charged black hole.

which x' is fixed outside the black hole and x is
integrated over a spacelike surface interior to the
horizon which divides the past and future. It is
convenient to call this surface C, and take for it a
surface of constant s in the usual Boyer-Lindquist
coordinates such that r &r &r,. In order to gen-
eralize our result to the Kerr geometry we shall
thus need a set of coordinates in which the metric
is regular over at least regions I, II, and III shown
in Fig. 5(a). Fortunately Carter" has given such
a set of coordinates. To avoid lengthy redefinition
we shall use his notation wherever it does not dif-
fer from that used elsewhere in this paper. The
reader is referred to Carter's paper for symbo1s
not defined here.

Region I in the Kerr geometry can be covered by
Boyer-Lindquist coordinates (t, r, 8, q) with r &r,
(Carter uses f, q for our't, y). Regions II and III
can be covered by a similar patch withe &r&r .
Regions I and II can be covered by a coordinate
patch of the Kerr-Newman form involving an ad-
vanced time v. Similarly regions I and 1II can be
covered by a patch involving a retarded time u.
(Carter uses u for our v and -m for our M. ) In
region I these coordinates are connected by rela-

A. The Kerr black hole

Figure 5(a) shows the familiar Penrose diagram
for the axis of a Kerr black hole. Following our
argument for the Schwarzschild case, the ampli-
tude for the black hole to emit a particle can be
related to an integral of the propagator K(x, x') in

(a) (b)

FIG. 5. (a) The Penrose diagram for the axis of a
Kerr black hole. (b) The Penrose diagram for a B,eiss-
ner-Nordstrom black hole.
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tions of the form

(5.1)

(5.2)

where df/dr =(r'+a')/b, . Carter then introduces
a new azimuthal Killing angle cp' defined by

+
'P = 0' —+ty (5 8)

where cu, = a/(r, ~+ a') is the angular frequency of
the horizon. He also introduces two new null co-
ordinates x and y which correspond to our U and
V. These are defined as

U= —8 "", V=e', region I,
U=e "", V=e"", region II,

U=-e '", V = —e"", region III,

(5.4a)

(5.4b)

(5.4c)

where z=-,'(r, -r )/(r, '+a') is the surface gravity
of the black hole. Thus V is Carter's x while U is
the negative of Carter's y. In this new (U, V, r, y')
patch the metric is analytic in regions I, II, and
III [see Carter's Eq. (26)). The future horizon is
located at U=O and V is an affine coordinate along
it. The past horizon is at V=0 and U is an affine
coordinate along it. The coordinate x may be
considered to be defined in terms of U and V by
Eqs. (5.1), (5.2), and (5.4). Figure 5(a) gives a
schematic representation of the various definitions.

In the Schwarzschild case the amplitude for a
black hole to emit a particle with energy E was
ultimately related to an integral he(R', R) over a

surface of constant & inside the future horizon
of exp(- jEt) times the propagator to go from a
point x on that surface to a point x' outside the
hole. In the Kerr case we will be interested in
the amplitude for the emission of a particle of
energy E and an angular momentum along the
axis of rotation m (m is not to be confused with
the rest mass). In a similar fashion this ampli-
tude can be related to an integral of the form

dye ' ' "'K(t, (p, R;0, 0, R').
~00 0

(5.5)

Here K is the propagator in the Kerr geometry
which, because of the time-translation invariance
and axial symmetry, depends only on the differ-
ence in the t and y coordinates of x and x'. The
quantities R and R' stand for the x, 6 coordinates
of x and x'. The integral is over the surface C,.
Arguments similar to those given in the Schwarzs-
child case will show that, for fixed r, L9, y', K is
analytic with U in the upper half plane and V in
the lower half plane. We can therefore distort
the contour of the t integration downward by an
amount —iw/x keeping r, 8, y' fixed since that
amounts to rotating U by an angle m and V by an
angle -m. Keeping y' fixed means from Eq. (5.3)
that y —y —imur, /~ in the process. Thus,

+oo 2 'If

ge„(R', R)= e " + " dt dkpK(t —iv/g, y- iv&o /i&, R;0, 0, R').
~oo 0

(5.6)

Since this displacement of t is equivalent to [see Eq. (5.4)] U- —U and V- —V the integration is now over
the reflected surface of constant r which is in region 111 and which we have shown as C in Fig. 5(a). The
remaining integral can be related to the amplitude for the black hole to absorb a particle of energy E and
angular momentum m. Thus we have

(probability for a Kerr black hole to emit a mode with energy Z and angular momentum m)

=e "ie " +it" x (probability for a Kerr black hole to absorb a mode with Z and m). (5.7)

This is exactly the relation necessary to establish
that a rotating black hole will emit particles with
an expected number per mode proportional to
(exp[(E —m&u, )2w/g] —1) so that z/2nkmay be in-'
terpreted as the black hole's temperature. ''

B. Reissner-Nordstrom black hole

The situation with the Reissner-Nordstr5m
black hole is similar. Here, however, we shall
investigate the amplitude for the black hole to
emit particles of charge q. Figure 5(b) shows
the Penrose diagram for the Reissner-Nordstr5m

A, (x) =e/r, (5.9)

where e is the charge on the black hole. How-
ever, such a gauge K cannot be expected to be

geometry. The propagator for a particle of
charge q is a solution of the wave equation

g"8(V —iq A ) (V s —iq A8)K(x, x') = —5(x, x'),

(5.8)
in the Reissner-Nordstr5m background geome'try.
In the usual gauge the only nonvanishing compo-
nent of A„ is
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(5.10)+p +/+A py

where
A =4't, (5.11)

and C is the potential on the horizon equal to
e/r, . In the new gauge A„will be analytic in the
same domain as the metric but it will not vanish
at infinity. This means that the time dependence
of a mode of energy E at large distance from the
hole will not be exp(-iEt) but rather
exp[- (i(E —q4) t].

As in the Schwarzschild and Kerr cases the
amplitude for the black hole to emit a particle
with energy E and charge q can be expressed in

terms of an integral of the propagator over a
constant-r surface C, which lies between the
future horizon at r, and the inner horizon at r .
By the time invariance of the propagator the
amplitude for emission depends on the integral

Ss(R', 8) =
(

dt 8 ' ' ' K(t, R;O, R'),

(5.12)

analytic in the upper half U plane or lower half
V plane as is required by our boundary conditions
because the components of A„(x}will not be ana-
lytic on the horizon in coordinates which are ana-
lytic there. For example, if we use the (u, r, 8, q))
coordinates which are analytic on the future hori-
zon, A„(x) = (e/r)(1 —2M/r+e'/r'} ', which di-
verges at r = ~,. A gauge in which A„ is stationary
and regular on both horizons can be found by
making the transformation

where R stands for the coordinates r, 8, y.
In the new gauge K will be analytic in the upper

half U plane and the lower half V plane. The co-
ordinates U and V here are related to those of
Carter as described in Eq. (5.4) and above. As
in the Kerr case this analyticity implies that the
contour of the t integration in Eq. (5.12}may be
distorted downward in the complex t plane by an
amount —im/x keeping r fixed since this amounts
to rotating U by n' and V by w. Thus,

d ()(' R)=x'" """I d(x-" -'e)'
g

xK(t -Ar/a, R; 0, R').

(5.ls)
Since displacing t by —im/x is equivalent to the
reflection U- —U and V- —V this integral may be
written

Ss(R', R) =e" ' "
Jt dte ' 'K(t, R;O, R').

(5.14)

where the integral is now over the reflected sur-
face C illustrated in Fig. 5(b). The integral in

Eq. (5.14) can be related, as before, to the ampli-
tude for the black hole to absorb a particle of
charge q. Following through the arguments which
led to Eq. (4.6) we have

(probability for a Reissner-Nordstr6m black hole to emit a particle of charge q and energy E

=e '"(s '@)"x (probability for a Reissner-Nordstrom black hole

to absorb a particle of charge q and energy E) (5.15).
This is exactly the relation necessary to establish that a rotating black hole will emit scalar charged
particles with an expected number per mode proportional to [exp[(E —q4)/kT] —I] ', where kT = z/2w.
(See Refs. 5 and 19.)

APPENDIX: DERIVATION OF THE DIFFUSION EQUATION FOR F(o„x,x')

The amplitude F(Q, x, x') is defined by the path integral

0
P((), x, x') = f ()x[x]exp ——' y(x, d)dtx

where y is the positive-definite metric of Eq. (2.6), x=dx/d(d, and the sum ranges over all paths with
x(0) =x' and x(Q) =x. We shall now derive the diffusion equation [Eq. (2.8)] for F and in the process dis-
cuss the interpretation of the differential 6x[(d].

Divide the interval [0, Q] up into %+1 intervals each e long. With a natural assignment of the weight to
the integrals over spacetime the path integral in Eq. (2.1) may be interpreted as

d4 4 d'
Ii(Q, x, x') = lim I & [y(xz)] &

~ ~

& [y(x,)] exp g S(e, x&+i, x&)
&=0

(A2)
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where x, =x xN y=x, and S is given by integral d~zexp —45 Szzs e

S(e, x;„,x, )=4 d(oy(x, x),
0

(A3) = (4wz)'. (A8)

evaluated along the geodesic path which connects
x& at + =0 with x„,at ~ =e. The constant A is a
normalization fixed by the requirement that the
amplitude for a particle to propagate from one
point to any other point in the spacetime is unity.
This is equivalent to

Because the odd integrations in z vanish, the
first-order term in e is

z —=B (~E —-R 8E}.ns
BQ

(A9)

where the curvature term comes from the expan-
sion

A = Jl d'x[y(x)]' 'exp[- S(e,x, x')]. (A4) y'~' =1- 'R z~zz+ 0(z'),6
(Al0)

The reason that Eq. (A2) is correct is that as z

becomes smaller and smaller the action for the
paths which connect fixed x& to x;„will become
larger and larger and hence their contribution to
the integral will be exponentially damped. The
dominant contribution will come from the station-
ary path for which S is a minimum. This is a
geodesic between the points.

The diffusion equation can be derived by con-
sidering the relation between E(Q+e, x, x') and
E(Q, x, x'). From Eq. (A2) this is

E(Q+ e, x, x') = d4y[y(y)]'~' exp[- S(c,x, y)]

and B 8 is the integral

B"8= t d'z(z "z8/4) exp(- M„„z"z"/z)

=2ea '. (Al 1)

Using this expression we finally arrive at the
diffusion equation for E by replacing the partial
derivatives in the normal coordinates by covariant
derivatives 0 with respect to the metric y. The
equation is

x E(Q, y, x')/A. (A5)
ng-—=(y v v, ——,a}s'.

eQ
(A12)

Write y=x+z and let the integration be over z. On

the right expand S and F in powers of z. On the
left expand I' in powers of e. Analysis of the in-
tegral shows that only the first few terms of the
expansion on the right contribute to the part of E
linear in e giving an expression for BE/BQ. This
analysis has been ca.rried out by Cheng in a gen-
eral coordinate system. 4 However, the calcula-
tions are considerably simplified if a Riemann
normal coordinate system is introduced at x. In
such a coordinate system

y„a(y) = 5„z ——,'R„yz sz~z'+ O(z'). (A8)

where 5
& denotes the Kronecker 5. From the

definition of normal coordinates it follows that the
geodesics from the origin are straight lines so
that x"=z"/z and

S(e, x, x+z) =-,'5„zz "zz/e. (A7)

From the form of S we see that the only significant
part of the integral as e-0 comes from the region
where z"-c' '. Thus only terms O(z') in the ex-
pansion of (y)'~' and E need to kept under the in-
tegral and the limits may be extended to infinity.
Then, the zeroth-order term in an expansion of
Eq. (A5) gives the normalization condition

()p y" V V8+ —,(s —1)R E.ag (A13)

Thus any amount of scalar curvature can be had
both here and in the equation for K by the appro-
priate choice of the action. For the vacuum
black-hole solutions we are considering 8 vanishes
and these equations are all identical and we will
not consider this issue further. However, See the
remarks in Ref. 3.
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This is exactly Eq. (2.8) taking into account the
fact that R vanishes for Schwarzschild geometry.

The factor -R/3 in Eq. (A12) is a consequence
of our particular choice of weight in the coordinate
integrals in Eq. (A2}. If we had replaced
exp[- S(e, x,,„x,.)] in the integrals with

[y(x„,)/y(x, )]'~' exp[- S(e, x,„,x;)],
then the resulting equation would have been
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