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The surprising narrowness of the J or Q(3.1) is interpreted as indication of a pure cc state, and hence as
evidence for the SU(8) ~SU(6) X SU(2)s X U(l)„symmetry-breaking chain (S, = charmed-quark —ystn
generators, I', = hypercharm generator) instead of an approximate SU(8) ~SU(4) X SU(2), chain (S = quark
spin generators) which would imply strong mixings. Decompositions under both chains of the s-wave qq
meson states of the 64 = 1+63 of SU(8) and of the 3q baryon states of the three-particle symmetric 120
representation are given. The most general mass-splitting operators with breaking in the Y and Y, directions
for these two multiplets are derived, which commute with the Casimir operators of the
SU(6) X SU(2)s, X U(1)„, chain, which contain only one- and two-body operators, and which are invariant under
rotations. Two independent mass relations follow for mesons containing charmed quarks; six, for baryons
containing charmed quarks. In an appendix, for reference relative to previous SU(6)-symmetric quark-model
mass analyses, the reduced numerical coefficients as determined by the meson 36 of SU(6) are listed.

I. INTRODUCTION

Our purpose is to discuss here two topics from
the standpoint of the charmed symmetric quark
model:

(i) The ground state 64 =1+63 (meson) and 120
(baryon) representations of SU(8) together with
their decompositions under the subgroups SU(6)
x SU(2) s x U(1)r and SU(4) x SU(2) s where S
stands for spin. The SU(2) s subgroup acts on the
c quark's spin, and F, is the hypercharm operator
(see Sec. III) with eigenvalues ——,', --,', --,', and
—, for, respectively, the O', X, A., and c type
quark s.

(ii) The mass operator for these states in the
SU(6) x SU(2) s x U(1)r chain which is derived by
extending the one- and two-body force analysis of
the SU(6) -symmetric quark model' which previ-
ously gave the successful mass formulas' ' for
the baryons, e.g., the Gursey-Radicati formula4
for the 56 of SU(6) theory. " Electromagnetic ef-
fects will be ignored. '

The motivation, of course, is the recent dis-
covery' of narrow resonances J or g(3.1), and
g'(3.V), which can be interpreted as charmed'
quark-antiquark objects, J =1, I~=a, with
%= 0 and 2 harmonic-oscillator quanta excited,
respectively. The A=2 state is either a radial
or an orbital excitation. It is important to recog-
nize that present difficulties with the charm in-
terpretation (the rise of 8 to 5.3 +0.6 at V.8 GeV,
the absence of narrow peaks in missing-mass
plots, the absence of increased kaon to pion pro-
duction ratio, etc.), principally involve phenom-
ena in ee -hadrons above the transition region at
about 3.6-4.1 GeV. Hence, these difficulties may,
in fact, not exist if the transition region is due to

excitation of first the charm and then the color
degrees of freedom at about 3.9 GeV, which would
be a natural occurrence' " in the Han-Nambu ver-
sion of the three-quartet model. In this case, the
details of the discussion in this article apply to the
SU(3)"-color singlet states. On the other hand,
this type of mass analysis remains relevant, though
not in detail, even if additional heavy quarks" "
are found to be necessary, because this analysis
preserves successful SU(6) results and accepts the
heavy-quark explanation, based on the Qkubo-
Zmeig-Iizuka rule, of the narrowness of the new
particles. A single charmed quark is certainly the
simplest of such heavy-quark models.

Lastly, we emphasize the basic contrast between
(a) the present spectra and mass analyses in which
the cc purity of the g and g' is given greatest im-
portance, and (b) various previous analyses" in
which broken SU(4) is treated in analogy with bro-
ken SU(3) so as to derive mass relations and mass
mixing angles and to predict specific mass values
from existing data, but where g-cc+ c(pP+rtn)'
+ 5A.A. results with 6 5 +O.

We first discuss the mesons in Secs. D and III,
and then the baryons in Sec. IV.

II. SPIN-UNITARY-SPIN SPLITTING OF THE MESON 64
SUPERMULTIPLET OF SU(8)

We will make use of the well-known fact" that
the breaking of an approximate symmetry group
can be simply expressed in terms of a "chain" of
successively smaller subgroups which are valid
to an increasingly better approximation. The
prime example is the chain SU(6) -SU(3) x SU(2)s,
where S, stands for the spin of the noncharmed
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SU(8) -SU(4) x SU(2) ~. (2)

The SU(4) subgroup here acts on the O'-, X-, X-,
and c-type quarks; it does not involve spin and is
not to be confused with the SU(4)~ ~ subgroup of
SU(6) theory. It has the further reduction

SU(4) -SU(3) x U(1)r,
where SU(3) is the usual group for the O'-, K-,
and A.-type quarks. This second chain we will call
the '

SU(4) chain. "
The physical resonances, as we noted, need not

be eigenstates of either chain so we will, first,
consider the meson eigenstates in each chain sep-
arately. The ground state of an s-wave, Fermi
quark-antiquark pair with negative parity and spin
J=S=O, 1 is the reducible 64 of SU(8)

8 x 8*=64=1+63.

In the "SU(6) chain, " the direct sum

64 = [1,1g+ [35, 1]~~

+ [6, 2*],'+ [6*,2]', + [1,1)+[1,3],

withthenotation[dim SU(6), dim SU(2)z ]r~, wheren,
is the total number of charmed quarks plus charmed
antiquarks. Mesons associated with the first two rep-
resentat:ions contain no charmed quarks and are
the familiar ones from the SU(6} theory. Continu-
ing the chain, there next are the further reduc-
tions, SU(6) -SU(3) x SU(2)~ with the notation

quark s, with SU(3) - SU(2)I x U(l) z in SU(6) theory.
Here, for instance, the hypercharge operator,
which breaks the SU(3) symmetry, is conserved
at the level of the smaller SU(2)~ x U(1)„subgroup.
The eigenvalues of commuting sets of generators
in the chain provide quantum numbers with which
to label, in practice uniquely, the states in the
irreducible representations of the initial approxi-
mate symmetry group. Often two or more chains
are relevant physically, and then superposition
effects occur such that the physical resonances
are eigenstates of neither chain. In the preceding
example, there is also the chain SU(6) -SU(4)~ +
x SU(2)~ x U(1)r with SU(4)»-SU(2)~x SU(2)~
where S~6 stands for the spin of the X- and 6'-
type quarks, whose existence is announced by the
"mixing" of the I= Y=O pairs of s-wave meson
states, the P-~ and g-q'.

In the SU(8) theory there are two analogous re-
duction chains, the "SU(6) chain"

SU(8)-SU(6) x SU(2)g x U(1)r, (1)

where the SU(6) subgroup is that discussed above;
it acts on the O'-, X-, and X-type quarks. The
other chain is

(dim SU(3), dim SU(2) )

1 = (1, 1),

35 = (8, 1)+ (1, 3)+ (8, 3),

6=(3, 2),

6+ = (3+, 2+),

and similarly for the other SU(6) subchain SU(6)
SU(4)~ 6 x SU(2)z x U(1)z with the notation

(dim SU(4)~ ~, SU(2) ~ )„

1=(1,l)~,

35 = (15, 1)', + (4 ~, 2),'+ (4, 2 ~)',

+ (1, 1),'+ (1,3)'„

6 = (4, 1)~+ (1,2},',
6~ = (4*, 1),'+ (1,2*)',.

The SU(6)-SU(3) x SU(2)z subchain yields, for the
n, &0 states, after recoupling the spins by S=S,
+ Sc~

[6, 2+],'=(3, 2)l +(3, 2)0,
[6*,2]', = (3~, 2~)1 + (3*,2*)0,

[1, IJ,' = (1,1)0,
[1,3]2 = (1,1)1,

with the notation (dim SU(3), dim SU(2)z )J, 8 = S
for the 64 representation. The (3*,2*)1 consists
of the isospin singlet E*'= (Xc)' and a doublet D*'
=(Rc)' and D* =(6'c)'. The (3*,2~)0 consists of
a singlet E' = (Xc)' and a doublet D' = (Xc)' and D'
= (6'c)'. The [6, 2*],' contains their antiparticles.
The [1,3], is the J = 1 isospin singlet p', = (cc)',
and the [1,1],' is the 0 singlet q', = (cc)'.

On the other hand, for the "SU(4) chain" under
SU(8) - SU(4) x SU(2) z these SU(8) representations
decompose into

63=(», I)+9, 3&+95, 3),

with the notation (dim SU(4), dim SU(2) z]. Then,
under SU(4) -SU(3) x U(1)r the SU(4) representa-
tions decompose into

1=1,',
15 10+ 80+ 31+ 3g I

with the notation dim SU(3)„"'. The corresponding
wave functions can be easily written down; we on-
ly note that in this chain the eigenstates are super-
positions of a&, —

&f&,
—P„and of q, —q, —g, .

For several reasons, we will assume that the
SU(6) x SU(2)~ x U(1)z subgroup of SU(8) and the
chain associated with it are of major importance
for the breaking of SU(8) for mesons and baryons.
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First and foremost, the striking narrowness of
the $(3.1) and the p'(3.7) suggests that they are
pure cc states due to some new dynamical invari-
ance principle, for example, n, is exactly con-
served in the strong interactions responsible for
the mass spectra. In particular, the J/P will
be identified with the [1,3], irreducible represen-
tation of the SU(6) x SU(2) 8 x U(1)„subgroup of
SU(8). Note that decay modes such as P-5w can
go, for instance, via unitarity corrections rather
than from mixings of the quark content of the g
and ('. This" has been pointed out in the context
of Okubo-Zweig-Iizuka-rule suppressions, e.g. ,
Q -KK and KK- 3w both have connected duality
diagrams so $-3w, with a hairpin diagram, can
go via unitarity correlations which are difficult to
distinguish from Q being other than an eigenstate
of the SU(6)- SU(4)~ ~xSU(2)z~x U(1)r chain. How-

ever, in the case of the Q resonance, the mass spec-
trum (see Appendix B)indicates that the latter g -XX

+ &(6'6'+XII), a+0, indeed occurs. Second, the
lowest mesons can be identified in the 64 of SU(8)
with the 1 and 35 of SU(6), and this 1+35 can be
identified with the [1+35,1$ representation of the
SU(6) x SU(2)8 xU(l)r subgroup of SU(8). Also,
as discussed in Sec. IV, the lowest baryons can
be similarly identified in the 120 of SU(8) with the
56 of SU(6), and this 56 can be identified with the
[56, lg irreducible representation of the SU(6)
x SU(2)z x U(1)r subgrouP of SU(8).

Thus, in our derivation of the mass-splitting
operators for the s-wave meson 64= 1+ 63 and
baryon 120 representations of SU(8), we will as-
sume that the operator (i) commutes with the
Casimir operators of the SU(6), SU(2)~, and
U(1)„subgroups of this chain, and is invariant

c
under rotations. We want the derivation to be a
direct extension of SU(6) analyses in the symme-
tric quark model used to rederive' the Gursey-
Hadicati result, used to study the first excited
baryon multiplet, the (70, 1 ), in the notation
(dim SU(6), L ~)„with N the number of orbital or
radial quanta excited in harmonic-oscillator
shells, and used' to treat uniformly all of the bar-
yon multiplets with X=O, 1, or 2 harmonic-oscil-
lator excitation quanta. Hence, we will assume
that the mass-splitting operator (ii) contains only
one- and two-body operators, "and that it (iii)
transforms like a linear combination of three types
of terms which transform, respectively, as a sin-
glet, as the hypercharge operator under SU(3),
and as the hypercharm operator under SU(4). For
one-body operators, this transformation assump-
tion is equivalent to mass splitting between the
nonstrange and strange quarks, and to an indepen-
dent mass splitting between the noncharmed and
charmed quarks.

The charm operator C with eigenvalue 1 (-1) for
a c quark (antiquark) and 0 for O', X, X quarks and
their antiquarks is not a linear combination of
generators of SU(8) so we introduce the operator

Y, —= C —4B = I')+ I;) (4)

with B the baryon number operator. This relation
is the analog of Y=S+B=8~~~~+ 8"„&~ which relates the
the hypercharge SU(3) generator and strangeness
operator for the 6', X, and A. quarks. The genera-
tors of SU(6) and its subgroups will be denoted by
script letters to distinguish them from SU(8) gen-
erators. Since the c quark has B=3, S=O, the
phenomenological extension to include the c quark
is Y= 8~~~+8~~~& ——B+S —3C.

In Sec. II, we discussed the relevant reduction
chains which occur in SU(8). Generators" for the
subgroups in these chains are tabulated in Table I.

TABLE I. Generators of SU(8) subgroups.

Subgroup

sU(4)

Generators

SU(2) s SS I)If s (S + g)8 .

sU(3) gQ —$0 1 QQ IP —rc + I QQe 3 a p q 3 a c~

Yc = Icc -I&P

SU(6)

SU(2) s,

SU(2) g

SU(2)

U(i), g3 gm

SU(2) g (g~ p)„=g'm„—-6„Y

SU(2), @~):= &3r + y
' &

III ~ MESON MASS OPERATOR AND INDEPENDENT
MASS FORMULAS

We use a formalism in terms of the generators
of SU(8) to derive the ground state SU(6) x SU(2) ~
x U(1)r meson and baryon mass-splitting opera-
tors. The 63 generators of SU(8), I~'„with M=1, 2,
3, 4 or 6', 51, A., c for SU(4) and x= 1, 2 or 0, 0 for
SU(2) 8, are constructed from Fermi creation and
annihilation operators for s-wave quarks and anti-
quarks in the charmed symmetric quark model
in Appendix A. The SU(8) commutation relations,
which can be easily computed from Eq. (Al), are
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The tensor operators in the mass formula will be
expressed in terms of the Casimir operators for the
various subgroups. Casimir operators needed are

C (8) ) [I)»s INr] C(») ) [I)» I)(]

C2 '(S) = » [S'„,S,"],= 2S(S+ 1),

C '()) = ) [8»„', 8»t, ],= '[P,„',—P,.",), --'Y,',
C")=-.'[a' a», ] =-.'[I' I» ],
C' '(I) =(1"8„"—2Y'=2I(I+1),
C(4)(cg P) gns @mr L Y2

and those for the several SU(2) subgroups describ-
ing the spins of particular sets of quarks. All
these Casimir operators can be expressed as bi-
linear terms in the SU(8) generators of the form
[X, Y],.

We can now derive the mass-splitting operator
for the s-wave meson 64=1+63. Our assumptions
require the mass operator be a quadratic polyno-
mial in the generators of SU(8), commute with

C,"', C,")(S,), and Y',', be invariant under rota-
tions, and transform like a linear combination of
three types of terms which, respectively, trans-
form as a singlet, as Y under SU(3), and as Y',

under SU(4). For mesons, the mass operator
must be invariant under charge conjugation. We
group the 63 generators of SU(8) into seven types:

pieces to make them traceless, I,' are the genera-
tors of SU(3); I; is the generator of U(1)r; I; and
its adjoint, I,', are generators of SU(4) not con-
tained in the SU(3) and U(1)r subalgebras, etc.

The most general term linear in the generators
and a scalar under rotations must be a linear com-
bination of the generators of SU(4). Generators
I, and I' are clearly admissible. We next consid-
er the linear combination of the remaining genera-
tors 6=a,'I, +b;I', . Using the identity

[[X,Y']„Z] +[[Y,Z]„X] +[[Z,X]„Y]=0 (5)

and E(l. (1),
—,'[[I;,I;]„a,'I;+ b;I;] = a', [I;,I;),+ b;[I;,I-;],.

Since symmetrized expressions which have differ-
ent numbers of different types of generators are
linearly independent, the conditions that this com-
mutator vanish are

a', =b;=0 (vq).

Thus n~ and n, are the only admissible one-body
terms which satisfy the transformation require-
ment and which are invariant under chsrge conju-
gation.

For bilinear terms in the generators of SU(8),

invariance under rotations implies that there are
two classes of terms that can be considered sep-
arately: those constructed from P, , I', I, and I',
and those constructed from I,„', I,'„, I,„', I,'„and
I,"„. We write the terms quadratic in the genera-
tors in the form [X, Y], so that they are linearly
independent of the terms linear in the generators.
The most general term in I,', I'„and I, and its ad-
joint is a linear combination of the six expressions
of the form [X, Y],. Of these, only [I', , I~), when
commuted with —,'[I;,I;], yields combinations of the
form

[I,', [I,I;1,1,

so these can be considered separately. The van-
ishing of

2[[I,', I»]„a„.p[I»', Ip],] = a„,p[I;, [I~—, Iq), ],
implies that

a„,~=0 (vq, q', p). (7)

The adjoint [P...I,). is also eliminated. The same
argument with I,' -I, eliminates terms of the form
[I;,I;], and its adjoint. Similarly, the terms
[P„I&].and their adjoint are excluded. Under com-
mutation with

only

[I;,I ],
leads to combinations of

and its adjoint; so, this term can be considered
separately. The vanishing of

implies that

a„.=0 (vq, q').

This then leaves as admissible terms

[I,I,']„[I;,I;]., and [I,I;]..
Linear combinations of these lead to

which transforms as a singlet,

which transforms as F, and

which transforms as F, and a sing1et. Here the
numerical diagonal matrices y', = diag(», 3, —3)
and c„=diag (- », --,', --,', —,') have been used.
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Next, we discuss the second class of bilinear
terms: those formed from generators transform-
ing as vectors under rotations. These terms
must also commute with the Casimir operators
C,'6', C,"'(S,) and with Y,' so the candidates are
the rotation-vector analogs of the surviving first-
class terms, plus those constructed with (S,)'„and
(I)„'. These analogs are

[I „',P~","]„[I"I;",]„and [P,„',I;",],.
Since the admissible terms linear in the genera-
tors are I' and I', the only candidates constructed
from (S,)'„and (8)'„are

[(S,)„,(S,);]„ [(S)„,(S);], [(S,)„,I;;]„,

[(s)'„,l~ "l..

Commutation with Y,', C,(S,), and C,"' shows that
all these terms enter. The additional linear com-
binations of bilinear terms, satisfying the trans-
formation requirement, are

[a',„,S;."]., X,'[S;„,S;;]., c„"[I„;,Ig„].

,'[Io,",—IP]„[S„,S,"1„

y', [8;,",6'„]„and c„"[Ig"„S'„],.

Finally, we collect the admissible terms and
obtain the mass formula for the s-wave meson
64=1+ 63. The terms, together with their form
in terms of quantum numbers, are tabulated in
Table H. These give the following twelve-param-
eter mass formula:

1Vl = mo+ m, n~+ m, C,'"'+ m, 2S(S+ 1)+ m~C~~s '+ m, [I(I+ 1) ——,
' Y~]+m, [2S~(S~+ 1) —

C~~4 '(X, (P) + —,
' Y~]

+ m, [2S& 6(Q 6, + 1) —2S~(S~+ 1) —32S,(S,+ 1)]+m8n, + m, Y,'+ m, 02S,(S,+ 1)+m„2$,(S,+ 1).

This mass formula predicts the following inde-
pendent equalities:

triplets, are equal; and from the observed mass
splittings of the states in the meson 36 of SU(6),
the magnitude of this mass difference

E* D*=E-D; (10) I' —D =76 MeV linear mass formula

the strange-nonstrange mass differences for the
pseudoscalar and vector SU(3) triplets, and anti-

(=0.074 Qev' quadratic mass formula).
(11)

TABLE II. Independent terms contributing to mass-splitting operator.

Form in terms of quantum numbers In form of generators

2 Linear Terms:

9 Bilinear Terms:

cP&

2S(S+1)

C(3)
2

r(r+1) - ~ Y2- ~C(,»

2SP,(Sy+ 1) —C( )(%-,(3 ) + ~4 Y2+ ~ C(2 )

S~ 6,(S~ ~+1) S~(S~+1) i~St(Sq +1)

Yc —C2 2 (3)

2S~(S + 1)+-Y —C2

Sq (Sq + 1) —S~ (S~ + 1) —-S(S+1)

Y(e) —Y(e)

Y. (e) —Y, (e)

cfog &J

-', [S„', S,'],
1 [yP ga]

gyC @P yC ]

fg„y y ]

c&f INs, I~ l+ —
4

EIps, I~ ]+

2 ~ ~r ~ CN INs ]+
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The numerical reduced coefficients as determined
by the 36 are given in Appendix B. The quadratic
formula for a D mass of 2 GeV implies an almost
degenerate & mass of 2.02 GeV. Equation (10), as
well as Eq. (11), is an SU(8) prediction, since the
four states are in the [6, 2*],' multiplet of SU(6)
x SU(2), x U(1)r which involves recoupling the
charmed and noncharmed quark spins.

Note that in Eq. (9) the SU(6)-breaking terms
enter with the same coefficients for each SU(6)
multiplet. This is the same as for the coefficients
of the SU(3)-breaking terms in the Gursey-Radi-
cati formula and in the SU(8) baryon mass formula
obtained below, Eq. (13). Here Eq. (9) mixes the
1 and 63 of SU(8) only as a consequence of the
standard 1 and 35 mixing of q, and q, in the SU(6)
theory. Relative to the SU(6) -SU(4)~ ~ x SU(2) ~

chain, the g —g' mixing is due to the C,'" and C,"'
terms; the breaking of ideal P-&v mixing is due to
the C,'3' term, i.e., it is solely responsible for p
not being a pure A~ state. The choice M„=M, re-
quires, in addition to C,"' being absent, the ab-
sence of [I(I+ 1) ——,'Y']. From the viewpoint of an

SU(3) singlet-octet system, n~ mixes the singlet
and octet whereas [I(I+1)——,'1"]only breaks the
octet; however, the m, and m, terms also mix
the states and break the octet. If systematic use
of SU(6) is used to classify the terms, as in the
SU(6) irreducible tensor approach, the m„m„
and m, terms arise' '" from SU(6) tensors "Ts", ,
"T,'8'„and "T~o',. Irreducible tensor operators
are labeled mydim &U(3), dim U( g where ~ specifies
the SU(6) state of q and/or q. Experience" with
baryon levels and past confusions" over inade-
quate meson-mass operators indicate that such
operators with the larger SU(6) representations
should not be excluded, but should be retained as
has been done here. This means thai only mixing
angles can be predicted for the s-wave mesons of
the 36 of SU(6); however, these predictions alone
are significant for decay tests.

1V. MASS OPERATOR AND INDEPENDENT MASS
FORMULAS FOR THE BARYON 120

SUP ERMULTIP LET

For completeness, we first discuss the 'SU(4)
chain" reduction of the totally symmetric three-
particle representation of SU(8), the 120, in which
we place the baryons. As in the symmetric quark
model, to be consistent with the spin and statistics
theorem, we assume that there exists an SU(3)"-
color degree of freedom and that the states in the
140 are in the totally antisymmetric three-particle
representation of SU(3)"-color, the singlet. The

direct sum

120 = (20„4]+f20, 2]

in the SU(8) - SU(4) x SU(2)z chain with the notation
(dim SU(4), dim SU(2) z]; where a permutation-
symmetry subscript, s = symmetric and nz =mixed,
suffices to distinguish the two twenty-piet Young
diagrams. Under SU(4) -SU(3) x U(1)r,

20 = 80+ 6, + 3~++ 32,

20, =100+ 6, +32+ 13,

with the notation dim SU(3)„. Note that n, = C, i.e.,
C

n, has the charm eigenvalue, for states containing
no antiquarks. While the SU(3) decuplet and octet
are obtained by this reduction, their physical re-
lation as submultiplets of the 56 of SU(6) is not
made manifest by the SU(4) reduction chain.
Hence, we return to the SU(6) chain.

The relevant reductions of the 120 under the
SU(8) -SU(6) x SU(2)z xU(1)r chain are

120 = [56, 1],+ [21, 2], + [6, 3],+ [1,4]

with the notation, as before, of [dim SU(6),
dim SU(2)~ ]„and then under SU(6) - SU(3)
x SU(2),

56 = (10,4) + (8, 2)

21=(6,3)+ (3~, 1),

6=(3, 2),

1=(1,1),

with the notation (dim SU(6), dim SU(2) ~ ). In or-
der to obtain the physical states with n, 40, the
spin of the charmed and noncharmed quarks must
be recoupled, i.e., S=S,+S,. This yields

[21,1],= (6, 3)2'+ (6, 3)-,"+(3*,1)-,",
[6, 3],= (3, 2)2'+ (3, 2)-,",
[1,4], = (1, 1)—,

with the notation (dim SU(3), dim SU(2)~ )J, S=J
for the 120 representation. It is a straightforward
exercise to tabulate the wave functions for the
thirteen charmed states, and from their composi-
tion in terms of t-, X-, A.—, and c-type quarks to
read off their respective I, B, Y, and C quantum
numbers. The (6, 3) consists of an isospin singlet
(XXc)', a doublet (XXc)o~ and (O'Xc) ~, and a triplet
(XXc)', (K(Pc)z, and ((P6'c)". The (3*,1) consists
of a doublet (KA.c)'„and ((PXc)'„, and a singlet
(K&c)'„. The (3, 2) consists of a singlet (&cc)' and
a doublet (Kcc)' and (Pcc)". The S and 4 sub-
scripts denote the permutation symmetry of the
two-particle combination of O', X, A. quarks.
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2$,(S,+ 1)= C+ sC'. (12)

For the 120 representation of SU(8) there exists
the identity

Thus, by the derivation of Sec. III, the most gen-
eral SU(6) & SU(2) N

x U(1)„mass formula for the
120 which satisfies our conditions has eleven pa-
rameters and is

M=mo+m, Y+m, C2"'+ms[I(I+ 1) —q Ysj+mqC(s'+m, 2S($+1)+msY, +mt Y s

+ m, [2$~($~+ 1) —C(q)(31, (y) + —,
' Ys]+ms[2+ 6,(Q ~+ 1) —2$~($~+ 1)]+m, q2$, ($, + 1). (13)

On the 56 of SU(6) only the first four terms, the Giirsey-Radieati formula, are independent. Here, as in

SU(6) theory, for baryons the two-body dominance assumption has led to a significant simplification.
For the 56 of SU(6) the Giirsey-Radicati formula yields four independent sum rules. For the thirteen ad-

ditional states in the 120 of SU(8), Eq. (13) predicts the following six new independent equalities:

[(6'(ye) —(6'Xc) ~ j(, ,), /, ,= [(6')(c)~
—()(Ac)](, ,), /„,

[(++c) —(6')(c)~ j(, ,), /, + = [(Sic)8 —(XM) ](, , )

[((y6' )-(&)( ) j,. ..=[ j,.h/

[(Pcc) —(Mc)](, »)/„= [same]

(6 cc)(s s )s /sq ((ycc)(3
~ s )( /s+ ( c)(s 3 )3 /s4' ( )(s 3 )) /2+7

4[(6'cc) —(Xcc)](, ,), /, .—3[(6'(Pc) —((PW) 8](, , ), /, .—s [(3I6'c)„—(6')(c)„](,q, ), /, .= ', [N —,'(A-+ 3—Z) ]
= -188 MeV,

(14)

(15)

(16)

(17)

(18)

(19)

where the subscripts denote (dim SU(3),
dim SV(2)8 )J~. Equalities (14) and (15) specify
equal spacing for both of the two SU(3) sextets,
Eq. (16) specifies that this spacing is also com-
mon, Eq. (17) specifies a common spacing for the
two SU(3) triplets, Eq. (18) specifies the same
separation between iostopic spin multiplets in the
J = —,

' and —,
' levels for the triplets as for the sex-

tets, and Eq. (19) specifies a relation between the
splitting of the antitriplet and those of the other
charm levels and the nucleon octet.

Equations (14) and (15) are SU(3) equal-spacing
statements. Both Eq. (16) and (17) are SU(8) re-
sults because recoupling of S, and S, is involved,
and clearly Eqs. (18) and (19) are SU(8) results.

V. SUMMARY

We again emphasize, from the point of view of
future ( spectroscopy, that the mass relations de-
rived in this article preserve cc purity of the

J/$(3. 1) resonance. We studied the charmed sym-
metric quark model for mesons and baryons using
approximate SU(6) x SU(2)N x U(1)r symmetry with
breaking in the Y and Y, directions in order to re-
solve mass degeneracies among resonances in the
same submultiplets. To reduce the number of pos-
sible mass formulas for baryons, we assumed that
one- and two-body contributions to the mass-split-
ting operator dominate. For the six meson levels
containing charmed quarks, we predicted two new
independent mass relations. For the correspond-

ing thirteen new baryon levels, we predicted six
new mass relations. In an appendix, for refer-
ence relative to previous SU(6) symmetric-quark-
model mass analyses, we gave the reduced nu-
merical coefficients as determined by the meson
36 of SU(6).
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APPENDIX A: SECOND-QUANTIZED FORMALISM

4:= (l)(I;N+(IB ;N

with

I(q) st) Nq~ tONs
) 6Nsaq"t()O t

I(gNs (5Nst5q" t 6NsbOttf q"
)

(A1)

(A2)

We introduce a set of Fermi creation and anni-
hilation operators' for the s-wave quarks and anti-

4 for SU(4), t =1, 2 for SU(2)~ and q" =1,2, 3 for
SU(3)" color. The spin and SU(4) indices for the
antiquark operators can be grouped together since
complex-conjugate representations in SU(2) are
unitarily equivalent to the original ones. The gen-
erators of SU(8) constructed in terms of these are
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From these expressions, Y,(q) = ,'(-—N,+3K,) and

+,(q) = &(-N-~+ 3N,-). These lead in the s-wave
meson mass-splitting operator, for a system
composed of a fixed number of quarks and anti-
quarks, to a single charge-conjugation invariant
term,

n, =N, +fq, =[Y',-(q) —Y,(q)]+ ~(N+Ã).

This is the number operator for the total number
of charmed quarks and antiquarks.

From the other linearly independent terms in
the SU(6) & SU(2) z x U(1)r meson and baryon
mass-splitting operators in the text, this second
quantized formalism can also be used to extract
specif ic dynamical parameter s characterizing
single quarks and the two-body interquark forces.
Such an explicit interpretation in the three-quar-
tet model of the forces responsible for the ob-
served hadronic mass splittings brings these
mass operators in closer contact with more ba-
sic quantum-field-theory approaches to quark dy-
namics, for example, gauge fields on a lattice
and the bag model.

APPENDIX B: NUMERICAL COEFFICIENTS
AS DETERMINED BY MESON 36 OF SU(6)

On the s-wave meson 36 multiplet of SU(6) the
terms in the meson mass formula derived in the
text, Eq. (9), reduce to the first eight terms. For

each term a normalization factor
3f, = (T',„—.7';„+1)"'is introduced so as to treat
them in a comparable manner. It is in order of

The reduced coefficients, M, =m,./3f;, for the
linear (quadratic) mass formula as determined
from the experimental data" a,re 1.000, -0.489,
-1.853, 0.594, 1.800, -0.411, 0.593, and 0.530
(0.975, -0.353, -2.364) 0.697, 1.967, -0.710,
—0.176, and 0.054) in units of GeV (GeV'). The
last term does not contribute significantly to
the quadratic mass formula. Otherwise, for a
simultaneous treatment of 4 =0 and 1 states it
does not seem possible to reduce the number of
terms a priori, for example, by abstracting rules
from the nearness of mesons to eigenstates of the
SU(6) -SU(4)~ ~ && SU(2)~ chain. Note that for both
the linear and quadratic formulas, the two terms
with largest reduced coefficients are C,"' and C,"'
which are the operators responsible for q —g' and
P-&u mixing of the associated eigenstates of the
SU(6) SU(4)~ && SU(2) ~ chain.

The ideal mixing angle is

8s„(4) ——tan '(1/W2) = 35'16'

to be compared with the empirical mixing angles
8v=37 27' (linear), 39 59' (quadratic) and 8~=-24'
(linear), -10'33' (quadratic) a,s determined from
sin28v = [p ——,'(4K* —p)]/(p —~), etc.
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