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We observe that the spectrum of the statistical bootstrap model with spin can indeed give rise to peripheral
peaks in two-body scattering. This further confirms the conclusion of an earlier work by Kogitz et al. We also

present a new refined solution to the bootstrap model, which provides the shrinkage phenomenon for
peripheral peaks.

In a recent paper, Kogitz, Logan, and Tanaka'
discussed a direct-channel resonance model for
two-body inelastic scattering. They saturated
the inelastic amplitude with the resonance spec-
trum of the statistical bootstrap model with spin
of Chiu and Heinmann' (hereafter referred to as
I), which is an extension to the statistical boot-
strap model proposed by Hagedorn' and refined
by Frautschi. ~ By comparing the experimental
inelastic differential cross sections in the peri-
pheral region, Kogitz et a/. were able to dis-
criminate between various solutions considered
in I. They demonstrated that one of the solutions
gives a reasonable description to a large number
of peripheral peaks. These authors also observed
that if one wants to reproduce more refined ener-
gy dependence of peripheral peaks, such as the
shrinkage phenomena, it will be desirable to
explore a new possible solution to the bootstrap
equation, which contains some additional logarith-
mic factor. We have investigated their proposal
in some detail and find that the proposed form is
indeed an asymptotic solution to this equation. In
particular, for large m, where m is the mass of
the bootstrap system, it satisfies the equation to
the accuracy of O((lnm)/m), which is comparable

to those solutions discussed in I, where the cor-
responding accuracy is of O(l/m).

Our main purposes here are two. Firstly, we
derive a statistical bootstrap amplitude similar
to that in Ref. 1. We use a somewhat different
language, to reiterate their conclusion, that the
spectrum of the statistical bootstrap model can
lead to a sharp peripheral peak. Secondly, we
demonstrate that the above-mentioned possibility
with additional logarithmic factor is indeed a
solution to the bootstrap equation.

Within the approach of I, one explicitly takes
into account the angular-momentum content of the
bootstrap states. There the angular-momentum
bootstrap is achieved through imposing conserva-
tion of angular momentum along some arbitrarily
specified direction, say the z direction. The boot-
strap is for the density of states a(m, J,), where
m is the mass and ~, thez -componentpolarization.

For simplicity, here we only exhibit the Fourier-
transformed bootstrap equation. With the Fourier-
transformed density of states defined by

E(m, n) = dJ,e' ~o(m, Z,),
aOO

the transformed equation is given by

1 .W~P m-m2-V

E(m, n) = „, dms(m„n) dms (m„n) p (m„~;m; n),
V

(2)

where the kernel P is specified by some finite-
interaction-volume dynamics. We ref er the reader
to I for its form. Here we use the symbol E(m, n)
in the place of o (m, n) of I. We recall that the
level density of the original statistical bootstrap
equation of Hagedorn and Frautschi for large m
is given by" '

n( )mme'™. -

Notice from Eq. (1), at n = 0,

E(m, 0)=f dJ, e(m, J)-=g v(m, z)
a ()O J»aao

—= n(m), (4)

and Eq. (2) is reduced to the precise bootstrap
equation of Hagedorn and Frautschi. In general,
to solve Eq. (2) one has to take into account both
the m dependence and the n dependence simulta-
neously.
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Among all the solutions discussed in I, the solu-
tion preferred' by the data turns out to be the one
having essentially the largest width in J. It has
the form

involve summing over the complete sets of angular
momentum states for both the initial and final two-
body states.

Now we make use of the usual relations, '

or

n(m) 1
2Dm cosh(v J,/2Dm) '

E(m, o.) 1

E(m, 0) cosh(Dmo. )
'

(5)

and

((, JM~~p,.(0))=( ) d„,(0)

(sr+()"'~ (lo)

From Eq. (3) one sees that for large m, the
bootstrap system has high degeneracies. In its
rest frame the statistical system has no pre-
ferred direction. There are equally populated
(2 J+ 1)-magnetic states for each level with spin
J. Denote the level degeneracy for a given spin
J by p(m, J). Then the total density of states at
a given mass m is

co J
n(m) =Q p(m, J)

J=p =-J

2J+ 1
(pz(8) iZ'M') = ( d„.,(6),

where d;,.(8) is the rotation matrix. For a moment
let us fix the initial angular momentum to be at 4.
Among all the angular momentum states of ln& and

!f), owing to conservation of angular momentum
only those states with spin J and J,= 0 (they are,
respectively, ln')—= ln, JO) and lf, JO)) will con-
tribute. So

Q &f, J'M'IAln&&nlA'I~, JQ&

= P (2 J+ 1)p(m, J) =—g p(m, J ),
nt

(f, J'Q!A ln, J'0)(n, JQ!At
l j, JQ)

where p(m, J) is the density of states with spin J.
Comparing Eqs. (4) and (6), one finds that

o(m, J,) = Q p(m, J) .
J= I J8I

This leads to

p(m, J)= o(m, J,) —o(m, J,+ 1)
l ~

o(m, J,) l~
8 8

(8)

Next we turn to the model of Ref. 1. They con-
sidered the imaginary part of the amplitude for
the two-body inelastic scattering. We shall ignore
the spin complications. Denote the process by i
-f, with P;(0) the initial c.m. momentum along
the z axis and P&(8) the final momentum along the
direction with a polar angle ~ and azimuthal angle
0 . The unitarity relation is given by,

=Q Q Q (pf(8)lf, J'I'&(f f'~' tA ln&
JiMi JM

x &nlA' lf, J~& &f, JM! p;(o) ) (9)

In the first equality, we have saturated the inter-
mediate states by the spectrum of Eq. (3), with
n running through all the degeneracies. In the
last step, we have inserted two identities, which

y'"' rn y' '"' m

= p(m, J)yq(m)y, *(m) . (11)

In the second step we have introduced the couplings
y',." ' and y&" '. In the last step we have made the
statistical assumption that the couplings are in-
dependent of their label ~'. Notice that the de-
generacy for these ln') states is p(m, J). Sub-
stituting Eqs. (10) and (11) into Eq. (9), we arrive
at

ImA&;(m, cos8) =g (2J +1)y&(m) y, (m)

x p(m, J)Pz(cos8), (12)

where d„(8)=Pz(cos8) was used. Apparently
from Eqs. (5) and (6) and Eq. (12) with the ap-
propriate choice of the parameter D, one pre-
dicts a sharp peripheral peak, "' in general agree-
ment with the data.

We mentioned earlier that, since the bootstrap
system is a statistical system, in its rest system
there is no preferred direction. At this point it is
instructive to contrast the angular distributions
between the decay of this statistical system and
the two-body scattering. First consider the decay
process of n-f, where the initial state is unpo-
larized and f is one specific final state with two
spinless particles. Averaging over all the mag-
netic states of v, the normalized decay distribu-
tion is given by
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&(m, n) f,(n)
E(m, 0) cosh[n(D+D'lnm)m]

' (17)

P g l(p, (g)lrz, zM) l'

4„Z 2 d~~(t')« i~.(8)

P (2 J+ 1)p(m, J ) = 1/4zz .1
7lrz m J'

(13)

In the second step we used Eq. (10), and in the
third step the crucial identity

Z d'~(e) d ~; (e) = ~&; .

For the last step, Eq (6) w. as used. As expected
the distribution in Eq. (13) is isotropic. On the
other hand, for the two-body scattering problem,
the situation is quite different. Owing to the con-
servation of angular momentum, only J,= 0 states
contribute. Thus the intermediate state is, in
fact, highly polarized. This leads to the possi-
bility of peripheral peaking.

To conclude this part of the discussion, let us
now locate the position of the nearest t-channel
singularity in terms of the parameter D of Eq.
(5). This singularity is of particular interest,
since it is responsible for the presence of a sharp
peripheral peak near t = 0. We recall, that in
general, the high-4 behavior of a partial-wave
amplitude is controlled by the nearest singularity.
In particular, if this singularity is at t = to or z
=s, = 1+2 t, /m2, for large J and large m, the
partial-wave amplitude"

A(J, m) -exp [—J in[a, + (s,2 —I)'t2]]

2 fQ

On the other hanc', , from Eqs. (5) and (8), for 4
» (2D/~)m,

The machinery for the bootstrap model and tech-
nique in analyzing trial solutions have been dis-
cussed extensively in I. To save space, we will
not reproduce them here. %'e will use the nota-
tions of I and directly quote equations and argu-
ments from there. We refer the reader to I for
necessary information.

Analogous to discussion in Sec. VIB of I, we
set d= 0 and insert into the integrand of Eq. (3.10)
of I the additional factor,

1

coshG(m„n) coshG(m„n) ' (18)

where

H(m, n) =np, (D+D'+D' lnm) .

The extra factor in the right-hand side of the boot-
strap equation now becomes

1
coshG(m, n) coshG(p, )ncoshH(m, n)

1
1 —tanhG (m, n) tanhH (m, n)

'

The situation here differs somewhat from that
in I. To see this difference, it is instructive to
consider first the & region, where

IH(m, n) I
=tz(D+D'+D'lnm) ln l»1 . (21)

Since we are interested in the case m» p, from
Eq. (») we have IG(m, n) I» IH(», n) l»1 In
turn,

With the substitution m, -m —p due to the peaking
effect, ignoring terms of the order of m ', we
have

coshG(m —p, , n) - coshG(m, n)coshH(m, n)

&& [ 1 —tanhG(zzz, n) tanhH(m, n)],

p(J, m) -exp(-m J/2Dm) .

So the nearest singularity is at

(15)

(16)

1
1 —tanhG(m, n) tanhH(m, n)

m2llB+

Ilail

(22)
1 —tanhlH(m, n) I

For the solution of Ref. 1, where & = 1.5 GeV ',
correspondingly et, -0.5 GeV. This is a typical
mean mass value for low-lying mesons. So it
appears to be not unreasonable.

Now we come to the second part of our discus-
sion. To allow shrinkage phenomena, we con-
sider a trial solution essentially the same as the
one suggested in Ref. 1,

In I, one investigates trial functions for a
special combination of the & and m dependence
[ see Eq. (3.6) of I] . A glance at Eq. (22) shows
that, in contrast to the situation of Sec. VIB of I,
for the present trial solution in the & region of
interest it is not possible to choose f,(n) to give
an exact match for the bootstrap of E(m, n). How-

ever, this is not serious, since essentially we
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will be concerned with the quantity o(m, Z, ), which
involves an integration over &. It turns out that
the o. region where Eq. (22) is valid gives a neg-
ligible contribution because of the strong damping
of the [coshG(m, (x)] ' factor in Eq. (20).

We proceed now to give a quantitative analysis.
We make the choice

2 p.R'
f,(a)=coshG(n, a) (ts C(a)) (23)

I.HS=
coshG(m, (z.') '

So the mismatched factor is the quantity in large
square brackets in Eq. (24).

The corresponding final Fourier-transform
spectrum is given by

0'(m sJ ) = dot e' zl ~ ~ s)nm
27r

(26)

where the quantity in curly brackets is either the
RHS or the LHS expressions. Since these expres-
sions are even in o(, Eq. (26) can be rewritten as

and will demonstrate that this does the job. After
an integration similar to Eq. (3.12) of I, the right-
hand side of the bootstrap equation becomes

RHS=
coshH(sn, a)[1—tsnhG(sn, a)tsnhH(ns, a)] )

f,(~)
coshG(m, n)

This is to be compared to the left-hand side,

1nm
coshH(m, (z. ) = 1+0

1 —tanhG(m, ot)tanhH(m, ot) = 1+0 lnm

(29)
and

f, (o.) = 1+O(1/nz') .
Taking into account these expressions, the mis-
matched factor in Eq. (24) is of the form 1
+ O((lnm)/m) and is thus essentially unity for
present considerations. Furthermore, in this
region one may also replace f, ((z. ) by unity.

In region II for large nz, G(m, n)» 1, and

-
H exp[ —nz (D+ D ' lnm) (x ] . (30)

This implies that the magnitude of the envelope
of the integrand in Eq. (27) peaks at the lower
limit of the integration. This is important. We
will make use of it below.

For present purposes it is sufficient to give an
upper-bound estimate for the ratio of the contribu-
tion to Eq. (27) due to II to that due to I. For this
purpose we will suppress the factor cosa 4, in
Eq. (27). Since the cosine factor has more os-
cillations in region II, this suppression tends to
overestimate the contribution in II more than that
in I. This is in accord with the upper-bound esti-
mation.

Suppressing the cosine factor, from Eqs. (24)
and (29) for region I, we have

o(m, J, ) = dn cosn J 1 ~ ~n(m)

0
(27)

da RHS
0

1nm

m coshG(m, c()
Divide the n range of integration in Eq. (27) into

two regions:

0 —Q + Qg = c!PE~

II: n (28)

where c is a parameter. The quantity a~ has
been chosen in such a way, as we shall see, that
with c properly restricted, the contribution from
II may be negligible.

In region I, H(m, c() -In"n/m«c1. We have

-G'(m 0.)
Pl

e-C(m, e~)

m(D+D'lnm) '

In the second step we have used (coshx) '& e ",
for x & 0, and in the last step the expression
G(m, o.~) =c(D+ D' lnm). On the other hand for
II, from Eqs. (24) and (30),

f,(n) exp[ —nz(D+ D' lnnz ) ]
2[ 1 —tanhG(m, n) tanhH(m, o.)]

2[1 —tanhG(m, nH, )tanhH(m, o.zz)] nz(D+ D' lnnz)

lnm ~ mxP(- ) (D- D. l )
. (32)
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In the second step in evaluating the integral we have made use of the peaking effect at n = a„. Comparison
between Eqs. (31) and (32) shows that if we choose c such that

cD'& 1 (33)

the contribution from II is to be suppressed as compared to I by more than the order 0(m '). So II is now

negligible . Inserting back the cosine factor, one finally arrive s at

dn e "~~(RHS}= 2 1+ 0 d& cosnZ,
1nm 1
m ' coshG m, o!

Co

da e' ~(LHS} 1+0
~CO m

So we see that Eq. (1V) with f,(ci) = 1 indeed leads to a bootstrap solution for o(m, J ) to the stipulated
accuracy of 0((lnm)/m). Analogous to Sec. VIB of I, we finally arrive at the new spectrum,

1 dn e' ~8

2w cosh[ m(D+ D' Inm)n]

n(m) 1
2(D+ D' lnm)m coshfs Z, I[2m(D+ D' Inm)]}

(35)
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