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Signal-front gravidynamics of vector fields in the ray gauge
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The dynamical evolution of a gravitating vector field (massive or massless) is analyzed along a signal-front

coordinate (or null coordinate). Moreover, we specialize our frame of reference by adding the ray-gauge
condition, which essentially consists of taking the affine parameter of the null geodesics contained in the signal-

front hypersurfaces as the second kind of nonspatial coordinate. Then we extend previous results of Aragone
and Chela-Flores to this matter-source case. We exhibit the algebraic and differential constraints for the
present system, and the reduction process is accomplished. It is shown how the gravidynamics of the vector
fields can be studied in terms of the minimum number of independent physical fields„half the usual timelike

canonical first-order approach. It is found that the signal-front energy density is always non-negative.
Moreover, the connection between vanishing signal energy fields and the Robinson-Trautman and Kundt
plane radiative solutions is also shown. Finally, the limit of the matter signal energy, when the mass tends to
zero, is shown to be (even in an arbitrary nonflat background) the sum of the related Maxwell signal energy

plus the signal energy of a scalar massless field.

I. INTRODUCTION

In two previous papers" the dynamics of linear-
ized gravitation, free Maxwell fields, and matter-
less general relativity were analyzed by taking
as the evolving coordinate u a signal-front (or
null) family of hypersurfaces, i.e. , g""=0. Be-
sides many interesting aspects of this inequivalent
picture of relativistic dynamics (which incident-
ally is the singular case of the Arnowitt, Deser,
and Misner' canonical formulation), we are going
to look in the present article at an illustrative
interacting system, the gravitating vector field.
This system is a good example to show how far the
signal-front approach could be considered as a
more transparent frame for relativistic inter-
actions. We are going to see that the reduction
process is simpler than in the timelike formulation.
The differential constraints are going to be either
two-dimensional differential operators on a two-
dimensional Riemannian variety or ordinary dif-
ferential. equations in the associated quasinull
variable v.

Furthermore, we give a reduced action showing
explicitly the non-negative character of the signal-
front energy density 8", the generator of the
u evolution of the system. This quantity turns
out to be a functional of the minimum number of
independent physical variables needed to represent
each field: three for the neutral massive vector
field plus two for the helicity-two massless Ein-
stein field.

Also in connection with the properties of 8",
we discuss in Sec. V vacuum gravitational fields
of vanishing signal-front energy. We show how
one is led in a natural way, in the frame of the
present dynamical approach, to the Robinson-

Trautman and Kundt shear-free radiative solutions.
In the next section we are going to briefly de-

scribe the tensor-vector interacting system in a
covariant way. We also define the fiel.d variables
intrinsically associated to a 2+2 point of view,
what can be called the signal-front kinematics.
The third section shall be devoted to the first
stage of the reduction process. The fourth shall
be dedicated to the last stage of the reduction
process which leads to the signal-energy density
4" in terms of the physical variables. Final. ly,
in the last section, the results obtained are dis-
cussed. '

II. THE SELF-INTERACTING TENSOR—

LINEAR-VECTOR SYSTEM

A gravitating linear vector field can be described
by the first-order action

A = g, g" 'R „, I') —g)'+ d x

+g2 d x AuvFu +,
' Fu Fuv —g

—,'-m'A„A "(-g)' ]

=-A'+A", (l)

which is the sum of the Palatini Lagrangian A
for the self-interacting Einstein tensor field, '
plus the first-order vector action A". Here the
symmetric quantities g„, and 1 „", represent the
tensor field, A„and F"" the vector field, and

g, and g, are their characteristic strengths, while
mis the mass of the spin-one particle. Regarding
their transformation laws, fg„,) is a tensor,
I'„,, an affinity, A„a vector, and F"' an antisym-
metric density.

20'7
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Independent variations of g„„, I', A, and F yield
the covariant field equations governing the evolu-
tion of this interacting system:

F„,= (-g)' (B„A, —e, A „),

S,F"'+ m'(-g)'~A" = 0,

(2a)

(2b)

82 4'as I
p v = ~

I gv n+ ~ vga o. ~ n pp v 5 (2c)

=~a( g) 'F-„F."-'s(-g) 'F eF 'g„.
+ m'(A „A, —&A A "g&, ) = T». (2d)

In both cases Eq. (3) ensures the pure spin-one
content of the vector field. Now we are going to
study the kinematics of this system when, at least,
one of the four coordinates u is null (or signal-
like). That means that the hypersurfaces u = const
are characteristic hypersurfaces, i.e. , g""=0 ~

Besides this choice, we shall work in the ray
gauge, ' which physically means that the second
"timelike" coordinate v is going to denote an af-
fine parameter along the congruence of rays v

=variable contained in Z„=-{u=const). This con-
dition restrains the family of frames of reference
to those satisfying g, „=0. Moreover, an additional
gauge condition shall be used: g„,= —1, already
mentioned in Ref. 2, where its nondynamical char-
acter was shown. '

After this choice was made, the four-dimensional
contravariant and covariant components of the
metric tensor can be given in terms of the six
independent field variables g,.J, N, and n. They
look like (where a presubscript indicates the di-
mensions of the space where the quantity is mean-
ingful) '

N'=N4gt J g5J 5 4 CL55 R5J 5 5 4gt&5

4 g„„=-2n+N'N, , 4g„„= —1, g„„=0,
(4a)

~5J ~5J 4g"' =0, g 5

(4b)

The four-volume element has the value
(-,g)'"d'x =, g

'~d2xdudv. " It is worth remem-
bering that the 2+2 geometrical structure is de-
termined by the two good tangent vectors e,
=9;( ) plus the two null vectors e&,

&
and e&

Equations (2) imply the divergenceless character
of the energy-momentum tensor T„„aswell as
the antisymmetry of F„„which also constrains
A„ to be either divergenceless or massless:

m'e (-g)'+A" =0.

"unitary" in the sense that e(, ) e( )
= —1. ,

e(, )
. e,. =0 with respective values

e(, )
= —N'8, . +8„+n 8„, e( )

—8„.

At this point, trying to keep the analogy with
the weak-j. inearized case one is thinking of the
Minkowski space as having the structure of a two-
dimensional noncompact (NC) spacelike variety
Z„„—:

&
u = const, v = const, x' = variable) times the

two-dimensional &(u, v)j noncompact 0-signature
variety. However, we are also going to see that
the two-dimensional spacelike, compact (C) variety
times the noncompact (NC) I(u, v)} 0-signature
variety structure enters into the present dynami-
cal approach, in a very natural fashion, on the
same footing with the "noncompact" case. We
shall see, especially in connection with the signal-
like energy density 8", that at a certain point math-
ematical problems make us consider two separate
alternatives, one of them leading to the two-di-
mensional NC && two-dimensional NC structure and
the other bringing to our attention the two-dimen-
sional C ~ two-dimensional NC case.

Once we have broken the four-covariance taking

g.. . N', and n as the independent variables rep-
resenting the Einstein field, we have to be very
careful in the independent variables, which shall
be taken to represent the vector field. It turns
out that A, ,A „=A „e~" &, A„(even if A, =-A „e&",

&

=A„+nA „-iV A, ) and

B=-(2,g) 'e ',F,

E -=4F =4F" ~(-)u~(+).

and

E,, =—4F, ~e(, )

+~4F,.„-N'4F, J instead of 4F"'

constitute a good set of independent variables in
order to analyze the signal dynamics of the vector
field.

In a more precise way, when the loss of the
four-general covariance is mentioned in the pre-
sent context, we mean that one is restricting the
group of covariance to a smaller group. This is
equivalent to picking out a subclass of frames of
reference and l.ooking at the physics on these
frames where phenomena can be better under-
stood.

It was shown in Ref. 2 that the group G' which
leaves invariant both Z„, Z„„=~u =const, v

=const), and the property that the lines v =variable
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are light rays has its elements y of the form
x'-x' =y'(x', u), u-u =}:"(u), v-v=}"(u, v). How-

ever, as we also assumed g„„=—1, G' has to be
pared off, leaving us the final group G' which
we shall. employ throughout this article, "

G' = (x' -x' = y'(x', u), u -u = a, (u),

v v=ui (u)v+0~(u)) . (8)

Now, let us see what the dynamics looks like in

terms of these intrinsically defined 2+2 variables.

III. THE REDUCTION PROCESS: SETTING UP THE SIGNAL (2 + 2) DYNAMICS

In terms of the independent variables g.. . N' n A. A, , A„, B E E. , and E,, the differential vec-
tor action dA achieves the form

K 'dAu= ( —EA-„E'A i.Bg»A A [ C m2 gi/2A
]

+(A, ; -A;, , )N E'„+nm'g' A„' —m'g' A„A,. N'+(A„; -A', )(E,'+nE„'+N'E)

+ g B — g E' —am'g''A A' —& (A E') —s (A E)I d' d„d

where C~ mea, ns" [a ( ~ ~ ~ )=( ~ ~ ~ )' and 8 ( ~ ~ ~ )=(. . . )'I

C~ ———E,',. + ~„g-=E„'+E

(7a)

(Vb)

and Latin indices have been raised with the two-dimensional contravariant tensor, g", the inverse of

g, , For instance, E„'=g "E,„,A'=g"A„etc. , in the above expressions (7). The last two terms of (7a)
being either spacelike or U-exact derivatives shall be discarded from now on; we are going to discuss
what happens after making independent variations of the vector variables in the action (7a).

Variations of E,' and B yield two algebraic constraints

gi/~B-g'}s, A. E —gi~((} A A')

which from now on shall be taken as definitions of the quantities B, E,.„each time they shall be written.
Therefore, after introducing the values of B and E, „give nat (8), we are left with five independent vari-
ables A, , A„, A„, and E (see Ref. 13) and the reduced vector action:

xz dAi = ( —EA„—E'A. -A, [C& —m' g
' A ]+ e N'g' BE'+nm'g' A '

+ ng 'E,„E„'+g ' .E,„EN' —m'g. ' A„A, N' —,'g ~E' ——,—g" B' ——,'m'g' A,.A'j d'xdudv

+ exact divergence d'xdudv,

(8)

where E,, and B are given by Eqs. (8). The vector field equations coming from independent variations of
the fiv e variables ar e

(gl/dg}JA)(glkg i/A)l +gl/2pli B( ihA~ i)'+(1/aA~i)'2(nE})~(NE)(Ni ~B)~.~(NEf )

= m'g' A'+m'g ' A„N', (10a)

(m' —6 )A =g " E' —D'A,',
E+g D'A; —g' i}A„+m'g' A„+2nm'g' A„—m'g' A, N'= (2nE„'+EN'+gBe', N'[, ,

and

(10b)

(10c)

A'-A +g ' E,„N' —g
' E=G (10d)

which are easily analyzed going to the flat case and using the 2-dimensional T+ L decomposition for A,
(p;( )=-(-&,) ' 8;( )), i.e.,

A; =- ~,. r p, A +~,A ~

It turns out that the 3 =2 xi+1 physical dynamical variables (corresponding to the 2j+ I variables that
a j -spin neutral massive field has) are A, A, and E while A„and A„can be obtained in terms of them
through the constraint equations. Eliminating A„ from dA~ we arrive at the final form of the vector action
on a flat space:

PPl'dA}i(giu= I)= }A 'Ar+E', E A~+, A ' ——,E' ——,A,.' ——,m (Ar)' —,'m'(A )'[—d'xdudv, (12a)
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where the typical qq' —z q, ' structure of the signal. -front dynamics appears transparently for the trans-
verse mode. Moreover, introducing the new variables & and a

e-=(m' n. ) '+E a -=m(m' - n, ) '~A~, (12b)

in this action we obtain the null-canonical form

»2'dA, ,
" (g=q)=(A 'A +ee'+a 'a ——,'e(m' —b)e —+, ;' ——,'m (A ) —~a (m' —A)a~}d'xdudv. (12c)

Here we can take the limit for m-0, " obtaining the addition of the Maxwell action in the null-canonical
form»2'dA+'~ =(A 'Ar' + e' e —2A,. ' ——,

' e, '}d2xdud v plus the action due to the scalar massless field a:
» 'dA"' = (a 'a ' —'a a }d'xdudv.

At the level of the gravitating action A+ given in Eq. (9) a similar structure can be reached by solving
the Coulomb constraint (10b). Doing this we have for A„ the value

A„= 2 (g ~E' -D'A,'}.
Introduction of this value of A„ into A+ also makes A„disappear, since A„ is precisely the Lagrangian

multiplier associated to the Coulomb constraint, as can be seen from Eq. (9).
That gives for the final reduced action A~~ which is a functional. of the two-covariant vector field A, and

the two-density E

» dA" = ( —E'A —EA ——'g'~B' ——'g '+E' —,' 'mg'~'A—A'+ng'~C"+N'g'~C. }d'xdudv (14)

where B, E„'=g'"E,„, A„have been defined by Eqs. (8) and (13), respectively, and C„", C,"are the co-
efficients of ng'~ and N' g'~ in Eq. (9).

Now we can recall some results already presented in Ref. 2 concerning the structure of the Palatini act-
ion A after the first stage of the reduction process has been done. This part of the reduction does not
depend upon the matter source one is dealing with; it merely consists of the elimination of the signal al-
gebraic constraints. That led us to A~ given by"

2dAC pg1/2 gf iJ g
&

g -kg &

g y ~I/2 g(g ) yn gihCa +Ni glhCG y
& g1/2g N «N»} d2 xdadv (15a)

where C„, Ci the scalar constraint and the vector quantity originating the vector constraint are respective-
l.y given by

and

C( ~iJ grt 1 giiJ gi

C, =-D, (g', ' —5, 'g,").

(15b)

(15c)

Therefore, the total action of the gravitating vector field, at an intermeciate stage of the reduction pro-
cess characterized by the absence of algebraic constraints either vectoria. or gravitational, being the
addition of Aa~+A", , reaches the form (»' -=»,'», ')

z, 'dA~ = z, dA~ + ~,'dA +

+»'A„[m'g' A„—Co]+ng' (C„+» C„)+g'~N'(C, +»'C,")

+ gill g( g ) + glkg N f &NJ I » glkB2»2g -lrhE2

——,
' »'m'g'~A A'} d'xdudv

Variations of the vector field variables in A yield the set of Eqs. (10), which determines the evolution
of A„,E on an external gravitational field, while the Einstein field evolves according to the equations
obtained from A by making independent variations (in decreasing complexity) of g... N, and n. They
are given by the set of Eqs. (17) and (18):
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gljjggiijglj2g)gkj lg lj2gi gll)j+g 1 jjglj(ggi 1m gag))))

+ Ig jljNif Nji ) glj2gi j Nlr N mi +
I Ij2NI(D gi m D g mi) g ij g ij( lj2NI)i

+ '(g jj(Nilj+N j~i))~ + lg jjNI(D g i Digjj D'g ')+ jj(D N )g

+ gl j2DI( g ~)NI) + gljjDi(g jjNI) Igljjg ijD (gal N I)

= ji'((ng '~E„'E'„—,'ng '~g—"E'E + 'g ISBN-'(ei)EI ye'I E' —e, E g")+ 'E'D—'A„+-,'E'„D'A„

—2g'"E„'D,A —-g '"(g'~B'+g ' E')+ —'gijA E' —',E'A' ——,E'.A'—

+ —,'m'))'~g "(-'A,A' -A„A„—nA '+N'A, A„) ——,
' m'g' A'A'),

(g' g N")' =. g' C. =-g'~C. +Ie g''C,"—= g' (D g'! D, g', )-+z'g. ' e. , E'B+je'g '+E. E —e m'g'~A A.

(18a)

and finally, by independent variations of n:

(18b)

These equations keep up the same structure already discussed in the vacuum case: The first three equa-
tions contain the dynamics, how the tensor field evolves along the signal-front coordinate u, while the
two-vector equation (18a) and the two-scalar equation (18a) have a very different character from a dynam-
ical. point of view. They are both differential constraints restricting the independence of the gravity field
variables, in the same way as the Coulomb constraint determines the value of A„ in terms of the physical
variables A, , F..

Nevertheless, even if they are both differential. constraints, they are not playing the same role in the
present gauge conditions. In fact, while the scalar constraint C„=O is associated to an ordinary Lagrange
multiplier, the vector constraint (18a) does not have an associated multiplier which could be discarded
after solving it. Going one step further in dealing with the difficult nonlinear Einstein constraints (18)
shall be our next goal.

IV. THE REDUCTION PROCESS: DEALING WITH THE DIFFERENTIAL CONSTRAINTS

One of the technical. advantages of signal dynamics lies in the simplification which introduces in the

structure of the arrived-differential constraints. Instead of having, as in the case of the 3+1 Arnowitt,
Deser, Misner (ADM) formulation, differential three-dimensional constraints mixing up the six coordi-
nates, g, , and the six associated momentum variables, n, „, we now have ordinary differential equations

in the variable v, the kinematical complications have been decreased, and the variabl. es look like some-
thing less coupled through the field equations.

It is very easy to find the solution of the vector constraint (18a). After integrating twice we get for the
i

value of N' in terms of g, „(x,u, v2)—:g«, , N (x, u, v())=-N(), N (x, u, v())—= &p and gj'
V V

~(* " ')= l' ~A~11'r"(", .",'')&, ~ ~ '*~"(, '.)d"*) g C(*. . .)'d, ., ()Ba)
Vp Vp 'Vp

So, having explicitly solved the vector constraint, we are allowed to introduce this value (19a) into the
action A (which depends quadratically upon N ) . More precisely, using the constraint (18a) the two terms
in dA+ containing N' become, on the field equations (FE),

Ig ' 'N' C, + 2'g '+g, , N"¹'),.„d' x dud v = I ( g '~g, , N" )' N'+ —,'g '~g, I
N"¹'}„e d x dud v

((gljjg Nj~ N))i gljjg NiiNj )dI2xd~v
= —zg +g, , N" N"'d xdudv+ e.d. d xdudv, (19b)

where N" ean be calculated from (19a}," in terms of g... E, Ai, and A„." But we have also commented
upon the dynamical meaning of the term A„(m'g' A„—C+) in the preceding section; it turned out that such
a term provides the value of A„as a function of g, „, A, , and E. Consequently, feeding back Eq. (19b) with

this information one can now say that & is a function of g... A i, and E, understanding that ~ is given by
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Eq. (19a) and with A„satisfying the Coulomb constraint as shown in Eq. (13).
Moreover, as we are enforcing A„ to verify the Coulomb constraint, A„ is not needed anymore, and this

term disappears from the action A+. In the same way we get rid of the variable n. It is the Lagrange
multiplier associated to the scalar constraint (18b), and once we take for granted that along its evolution

our system satisfies C„=0, we have to rewrite the action A+ without this linear constraint term -ng +C„.
Summing up, the unconstrained action A, can be cast in the form

(g' g g g' ) g( g d
K EAd (( EdA(+g

[ )gl/lg /)/(s ~is + 1 x2g 1/2B2 + 1 2g-1/dE2 d
1 x2m2g 1/2A A i] j d2 x(g~U (20a)

with the following restrictive equations holding:

E;„=g'~(A„;-A';),

(g 1 Ei D A)( )
1

( m2 —&,)

(g'"g;, &"')'=g' Di( g", —()';g''. )

(21a)

(21b)

and

+ (('g ' (e, , E'„B+g 'E,„E—m A„A;),
(21c)

(21d)

In order to reach the shortest expression in

the present signal dynamics formulation we can
take into account a property which shall be dis-
cussed in the Appendix. The property states that"
for a two-dimensional Riemannian variety one

has

(23c)

g u &g1/0+ apl pp/

(23(i)
gQ g2@2glk + 1 2~-1/2g2 + & 2,m2~1/2A Ac

The matter signal energy density 4"„consists
of two parts, the first two terms being always
present either in the massive or in the massless
vector theory. More precisely, if we define new
variables e and a such that

g 1/2(2222 d )1/2 ~

and

li(g 1/2A i —gi I gl/2s [(m2 L)) )1/2( d, ) 1/2(LL]-

+m&" 8 A

it is straightforward to check that the null matter
energy E"„(m)= f8"„d xd v tends to the sum of the
null Maxwell energy E"(Maxwell) plus the null

energy of the scalar massless field represented
by a:

for some R'. Consequently we are allowed to
discard the two-dimensional. Ricci-scalar density
in the action (20a), which achieves the final value

—x'EA „—i('E„'A,. —8"j d2 xd((d v,

(23a)

where the signal-front energy density 8" is given
by

E"„(m)„=2 Jt —,'/(' [B + [(-6,)'/2e]2]d'xdv

+ —,'x'g' g "&,a &, a d xdv (23e).
IV

5'e leave the analysis of the limit when m- 0 of
the dynamical germ of the matter action
( —(( EA„—/( E„A, ]' d'x dud U for later work.
We now proceed with the dynamics of the gravi-
tating massive vector.

Making variations of A& on the field equations
we get the u generator of the present system:

~i/ ~J/ 1/2+ & 2 gl/2g2 (v" ()g, , —(( E6A„

(23b) —(('E„' ()A,.].d' x d v, (24)

From the explicit structure of 8" shown in Eq.
(23b) it is a.lmost trivial to see its non-negative
character. Furthermore, looking at Eq. (23b) we
realize that 8" is the sum of the gravity signal-
front energy density 4~ and the matter signal-
front energy density 8"„, both separately definite
non-negative quantities:

where the nonindependent quantities ((" (see Ref.
19) have been introduced in order to simplify the
notation and ~A, , ~A„, and 6g, , obey all the con-
straints. These quantities n" are defined by

(25a)

They are also useful in writing down the Ein-
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strongly resembling the structure of the con-
straints in the ADM' canonical formulation.

At this point we want to clarify the physical con-
sequences of Einstein's constraint equations [(21c}
and (21d)] because the structure of the vector
field part does not need additional decompositions
to be understood. In fact, even in the massless
(Maxwell) case, after being aware that the lon-
gitudinal part A of the two-dimensional coordin-
ate-dependent decomposition given in Eq. (11) can
be arbitrarily chosen the only thing one has to
do is to pick out some specific gauge. For in-
stance, A = 0 could be taken. Gravity constraints
are more difficult to understand, but the analysis
performed for the linearized theory and for the
vacuum case" shall help us in extending these
ideas to the present situation.

Let us recall that besides the T+L two-dimen-
sional decomposition for two-dimensional vectors
V, ,

V&—:6;,p, V +p, V, p, =-(-a) ' s;( ' ), (26a)

d( ~ ~ )—= s ( ~ ~ )+s (
~ ) (26b)

there can also be introduced a T+ L two-dimen-
sional decomposition for symmetric second-order
tensors t,.;. In brief, each symmetric two-di-
mensional tensor can be split into three ortho-
gonal" pieces t... t.. . and t, , such that t „ is
transverse, i.e.,

(27)

Each of these three pieces can be calculated by
using the flat Riesz operators p,. already defined
in Eqs. (26) yielding (p, p, = —1)

T = T
ii i~ impt pmt t =tii pi pi tii &

ti, =(ei, p, p, +e, i pi pi)E, t =e,, p, p, ti. . (28)

stein constraints (21c) and (21d) in a briefer form,

[g'~g, , N" ]' = 2v"),

+z g' [e, , E„' B+g 'E,„E—.m'A„A, . ],
(25b)

gl/2g ~tiP + ~1 p, m ~id ~ + 1~2Ei E + 1 2~2A 2
O

(25c)

allowing us to use it for analyzing the physical
content of precisely these elements. "

In the following we are going to apply decom-
position (28) to the two-metric g... and we shall
refer to g, g, and g in the sense of Eqs. (28).
There are also two two-vector quantities I",.„and
v,.

-=g "g,, N" which shall be projected according
to (26) giving rise to r, r, and to v and v, re-
spectively:

r",.„=-,'(g„N')' =.„p, r'+ p, r',
(29)

The Einstein scalar constraint C„=O, which in
the absence of matter has already been analyzed,
keeps its significance: It determines g as a
functional of g, g, A i, and E. So we have to
process the information carried by the Einstein
vector constraint Eq. (21c), which is essentially
a two-covariant equation. Taking its T and L
projections we shall obtain respectively

= c„p, [g''C, ](g, g, g, A;, A„, B), (30a)

v = —p v.

= —p, [g' C, ] (g, g, g, A, , A„, E), (30b)

where by A„and g is meant their corresponding
values as given by the Coulomb constraint (21b)
and C„=O.

Equation (30a) provides the value of the non-

gauge scalar function g in terms of v, g, A, ,
and E, while Eq. (30b) determines the value of

' as a functional of g, v, Ai, E if we imagine
that g, g, and A„have been substituted by their
respective values obtained from Eq. (30a), C„=0,
and the Coulomb constraint. That way we shall
end up with an unconstrained action A~, only de-
pending upon the minimum number of independent
physical variables the vector-tensor system one
might expect to have: three for the vector field
plus two for the gravity forces, where the two
gravitational variables should be g T and v T.

This interpretation is supported by what happens
if we make a linearized approximation to our sys-
tem. In that case the signal-energy density J~
tends to

When one is dealing with tensors on a differential
variety, this decomposition has the drawback of
not being eovariant, i.e. , is coordinate-dependent.
On the other hand, it has the advantage of not
depending upon the elements (metric g;, , affinity
I', ,) which enrich the structure of the variety,

and consequently one has for the global signal
energy Eo (recalling that, r",.„=Ã = v,. in the
ray gauge)

(31a}
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Ea Eco= 2N',. N',.d xdv
~u

Substitution of this ansatz into the scalar grav-
itational constraint C, = C, = 0 gives

—1/4C„=—(h 'h')'+ —'h 2h'2=0. (33)

E&0 —— 2V +zg d xdU, (31d)

which is exactly the conserved null Hamiltonian
found for the free linearized gravitational. field in
Ref. 1.

More physical insight about the non-negative
signal energy E~ shall be achieved after studying
its vanishing. This is our next aim.

V. VANISHING SIGNAL-ENERGY SOLUTIONS

If one assumes enough smoothness in the com-
ponents of the metric tensor, then to investigate
the fields for which E"=0 is equivalent to looking
for the fields for which 8"= 0 is verified throughout
the four-dimensional variety.

Because of the complexity of the problem, we
are going to restrict ourselves in this section to
dealing with the pure gravitational case (x' = 0}.
Ne shall see that there is a natural connection
between the family of vanishing signal-energy
solutions and two well-known radiative solutions:
the Robinson-Trautman36 (of spherical type) and
a broad class of the plane-fronted Kundt" waves.

From J~ =-,'g, , N" N" =0 we obtain for N'

v +p v d xdU.
~u

But, in the rigid ray gauge I'"„„=0(see Ref. 25)
and that implies, in the language of the present
variables, that I'~ =2m represents the dynamical
quantity g through

(31c)

Therefore, Ea (linearized) turns out to be

This ordinary differential equation determines
the U structure of h giving rise in a unified way
both to the expanding spherical sol.utions and to
the nonexpanding plane waves, as has been pointed
out in the article of Robinson and Trautman. "
It contains simultaneously solutions of the C XNC

type and of the NC &NC structure, as we shall
see.

The first situation corresponds to the nonvan-
ishing expansion e =-D„e~"

&
while the plane waves

come out when 6 =h 'h' =0 holds. It is worth
mentioning that, because we are working in the
ray gauge, the vector e(

&

—=~, is a nul. l hypersur-
face orthogonal vector and eonsequentl. y we always
have vanishing twist. Moreover, due to the form
shown in Eq. (33) of the gravity scalar constraint,
both kinds of solutions are shear-free. "

Just for completeness, let us recall that the
Robinson-Trautma, n expanding solution can be
written in a frame of a reference system where
N' (x, u) vanishes. That gives us the metric

ds„,' -=v'a(x, u)b, , dx'dx'

—2du [d v —[b(u)v '+-,' a 'a, lna —~lnavJduj,

(33a)

where b(u) is arbitrary and a(x, u} has to satisfy
the equation

a '&a '&I.na =65 lna+46. (33b)

On the other hand, the vanishing signal-energy
plane waves found by Kundt can be written in a
more compact form by going to a system of co-
ordinates in which the two-space variety looks
Euclidean. Making the best use of the gauge group
G' one obtains for the metric

N' =N'(x, u). (32) dsr2 —= 5,, ( d' xN+'db)(uxd'+ Ndbu)

This is an invariant structure for N' under the
elements of G' =[g', a„a2},28 as one can easily
check. In order to solve the 10 Einstein equations
ft„, = 0 [equivalent to the set of the seven equations
(17) and (18) for x' =0 plus the three subsidiary"
conditions R„,=R„„=O]we should have to intro-
duce N' (x, u) g„(x,u, v) and n(x, u, v) into these
field equations and try to obtain their exact so-
lution. However, even at the cost of losing gen-
erality and in order to obtain some results one
could investigate whether some more specific
ansatz for the structure of N', g... and n might
consistently lead to exact solutions. For instance,
let us look for solutions of the type g;, (x, u, v)

=-h(x, u, v)b, , 'o

—2du [d v —[ ~ uN ~+a(x, u)] du}, (34a)

where the function N=N(x, u) is harmonic (r N=0)
and "a" obeys the equation

(34b)

These solutions constitute the whole class of
the expansion free radiation fields of type III, N,
or 0 with vanishing rotation, as has been shown
in the articl. e of Kundt.

At this point one might wonder whether the class
of vanishing signal-energy fields only contains
twist-free solutions of zero shear or if there are
gravitational fields of vanishing signal energy
with non-null e[ ~

shear. %e shall see that the
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last alternative holds. There exist exact solutions
of the vacuum gravity equations which have non-
zero e&

&
shear. In this connection it is very

useful to parametrize the two-dimensional metric
g, , in the form g,„=g' u, , splitting up the two-
volume and the unimodular two-dimensional de-
formation u, ,. More precisely in the following we
are going to represent g, , in the form

e "coshP sinhP )
g, , =—h

(sinhp e coshp f
(35)

(which already ensures the two-volume times the
unimodular tensorial capacity structure of g, ,
mentioned above), and thereafter use this rep-
resentation to compute the Einstein scalar con-
straint and the shear a of the congruence e&

&
~

That gives for C„

C —= 2h 'h" —4h 'h" —4g(o', P, P'), (36a}

with v having the value

o(e& ~) = —,'n "cosh'P+-, P". (36b)

c(e&, ) =-, u 'cos'e & 0, (37b)

showing that the metric (37a) has simultaneously
8u =0 and non-null o(e& ~), in contrast to what
happens in the case of the RT and Kundt metrics.

VI. CONCLUSIONS

We have been able to define good physical vari-
ables to represent the gravitating massive vector
field. By means of these variables we have ana-
lyzed its dynamical evolution along a signal-front
coordinate reaching the unconstrained action A» +,
which is functionally dependent upon the minimum
number of independent and physically relevant
variables. In the present system it corresponds

Equations (36a) shed some light on the problem
because they show that even if 0=0 implies on
the field equations either Kundt plane waves for
h' =0 or Robinson-Trautman solution if h 'h'

=e(e~, ) e0, not necessarily every solution of
the Einstein equations (in particular satisfying
C„=O) with vanishing null-energy, must have van-
ishing shear. Even more, it is possible to exhibit
an exact gravitational field with vanishing signal
energy (of course twist-free} with shear.

For instance, from the well-known class of
plane wave" solutions with h =h(v) =a = o.'(u), P =0
one could select the metric (6 being a real para-
meter}

ds' = v"""
[

u""' dx'+ u
""' dy'j —2dudv (37a)

and taking into account Eq. (36b) calculate its
e~

&
shear. It turns out to be

APPENDIX: THE TWO-DIMENSION AL SCALAR

CURVATURE IS AN EXACT DIVERGENCE

In the reduction process, at a certain point we
stated without proof that in the case of a two-
dimensional Riemannian variety, the scalar cur-
vature density g' Q(g, ) is an exact divergence.

Let us recall." that an old result of differential.
geometry states that every 2-dimensional Rie-
mannian variety is conformally Euclidean. There-
fore, there always exists a transformation
x'-P =f', (x', u, u) such that the two-dimensional
metric g;, becomes

g, , =h(x, a
v u)6,.„, (A1)

to 5, 2 to represent the two helicity components
of the Einstein field and 3 for each of the three
components of the spin of the massive vector field.
Moreover, the reduced action achieves a structure
close to the typical signal canonical flat structure
- q' p —~", with the total signal energy 4" ex-
plicitly showing its non-negative character. An
interesting fact is the different structure shown

by each of the three parts of the massive vector
field; the electric part E contributes to the null

energy J" independently of its mass, the longi-
tudinal part A only given an m' proportional term
while the transverse componentA gives the two
kinds of contributions, a term independent of its
mass plus other term, proportional to m'.

Thereafter, making use of the two-dimensional
coordinate-dependent T+ I. decomposition of the
different fields we clarified the gauge structure
of this system and the consequences of having
chosen the rigid-ray gauge to simplify the calcu-
lations. The role of the three differential gravi-
tational constraints of the present system is care-
fully discussed. It is worth mentioning that one
of the advantages of the signal-front dynamics
seems to be the simplification of the differential
constraints which became either an ordinary dif-
ferential equation (the scalar one) or a differentia, l

operator on a two-dimensional Riemannian variety.
We conjecture here that by employing conformal
two-covariant techniques they shall. be completely
solved. "

In the limit of zero mass one obtains the Ein-
stein-Maxwel. l system in a very clear way, and
A becomes a new gauge function of the theory.

Finally we have seen how the Robinson-Trautman
(spherical, C XNC) and the Kundt (plane, NC &&NC)

solutions fit in a natural way in the present formu-
lation and we presented an exampl. e indicating that
vanishing signal energy does not imply that the
congruence generated by e(, is necessarily shear—
free.
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g'~2K(g„) =rY2in)2 =-(ln)2) —, —, ,

and integrating inafour-volume we have after
applying Gauss's theorem

(A2)

g'~, Rd'&dud v = dud v a-,.R' d'x
Vg UXV ~uv

dudv A' n-,. dL.
VXV ~~u

The four-volume integral can be evaluated by
calculating the flux of the vector A' across the
boundary SZ„„ofZ„„(see Ref. 34) and then in-

where we are thinking of u and v as parameters
which describe a two-dimensional family of metrics
g;, , one for each value assigned to both variables.
Even if the transformation induced by f', on the
general transformation of coordinates group

( f', , a, ( ) =1, a2( ) =0I ingeneraldoesnotbe-
long to the rigid gauge covariance group G', it
is very useful in order to calculate the scalar
curvature density. In this conformally Euclidean
frame,

tegrating on u and v.
Then, if we want to calculate the four-volume

integral of g, A, we can do that by calculating
the surface integral (dl is the differential length
of the curve SZ„„, n,. the unit normal to &Z):

dudv A' n,.dl = 8,. g'+A' d'xdudv
UXV f)Z

(A4)

in the original system of coordinates or as Eq.
(A4) shows, applying Gauss's theorem again, in

the "old" coordinates, where it is an exact two-
divergence.

This is the reason explaining why the two-di-
mensional Einstein tensor G;, =-, R jJ pgj J
vanishes identically, another well-known property
of two-dimensional Riemannian varieties. So,
we are allowed to discard this term from the re-
duced action A++ to obtain the field equations.

Nevertheless, the possible contribution of this
exact divergence to the signal-front energy de-
serves a more detailed analysis because this term
could be the origin of a dissipation mechanism,
especially in the case where the two-dimensional
variety Z„„ is a noncompact one.
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