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The NNm and NN V vertices that enter the parity-violating internucleon potential are calculated in the
Cabibbo and Weinberg-Salam models, using a mechanism whereby octet enhancement results from the short-
distance behavior of the current-current product. A quark model is used to calculate the NNm vertex, and for
the NN V vertices, a modified factorization approach is proposed. The Cabibbo NNm. vertex is estimated to be
an order of magnitude smaller than previous calculations had indicated and arguments against the previous
method are given. In the Weinberg model the NNm vertex is A(N ) = 1.3sin'8~A(A ), with only neutral
currents contributing. In both models the NNV vertices have different SU(3) structure than previously found,
and are enhanced. However, reasonable values of the enhancement parameters are not expected to be large
enough to explain by themselves the large circular polarization measured in n + p ~d+~.

I. INTRODUCTION

In addition to being studied at the high-energy
frontier, theories of the weak interaction can be
tested in low energy, parity-violating nuclear
processes. ' The study of such processes may
prove invaluable to our knowledge of the funda-
mental interactions if the condsiderable experi-
mental and theoretical difficulties can be over-
come. Recent experiments, however, yield con-
flicting results. Studies of the decay of n decay
of oxygen' and the y-ray asymmetry' of ' F are in
rough agreement with the theoretical estimate,
while the observation' of the circular polarization
of y rays in n+P-d+y is several orders of mag-
nitude greater than predicted by theory. The theo-
retical aspect is hampered by a lack of under-
standing of weak nonleptonic decays on the one
hand, and by the difficulty with the nuclear physics
involved on the other. It is possible to separate
these two difficulties, so that, if we assume that
the nuclear physics can be done correctly, the
problem of finding the parity-violating internu-
cleon interaction reduces to the evaluation of weak
NNg and NNV vertices. It is here that different
weak-interaction theories yield different predic-
tions. The purpose of this paper is to examine
these vertices in the Weinberg-Salam model' and
in the conventional Cabibbo model.

The approach here will be different from past
attempts at the problem. In the Weinberg model
it has been shown recently, by Gaillard and Lee'
and Altarelli and Majanj, ' that, for 4S= 1 decays,
the octet part of II is enhanced, and the 27-piet
piece is suppressed by the short-distance behavior
of the product of two currents. This provides a
possible mechanism for the experimentally ob-
served 47= & rule. Using similar techniques, the
~8= 0 parity-violating Hamiltonian has been stud-
ied by Altarelli, Ellis, Maiani, and Petronzio. '

The present paper is written within this framework
of enhancement.

Another recent advance used is the construction
of more realistic quark models. ' " Past approa-
ches to the parity-violating problem have relied
heavily on symmetry arguments. However, one of
the results of this paper is that these arguments
are suspect, and a dynamical approach is re-
quired.

The structure of the paper and the major results
are as follows. In Sec. II the mechanism of en-
hancement is reviewed in light of its importance
here. Section GI is devoted to a general analysis of
the NNv vertex A(N') in the Cabibbo theory. It is
shown that within the model A(N ) is an order of
magnitude smaller than most estimates. Since
this result conflicts with the traditional deriva-
tions of A(N'), the latter is reviewed and shown
to be inappropriate if octet enhancement occurs.
In Sec. IV A(N') is calculated within the Wein-
berg model. Only neutral currents contribute and
we obtain

A(N ) = 1.3 sin'8~A(A').

The NNP, NN&u, and NN&f& vertices are evaluated
in Sec. V for both the Weinberg and Cabibbo mod-
els. A modified factorization approach is used.
The Weinberg model vertices are larger than past
estimates of this quantity, due to enhancement fac-
tors. The Cabibbo model may also be enhanced;
however, it lacks a detailed theory of enhance-
ment. Section VI is devoted to a summary and
discussion. The operators, written in terms of
quark fields, that are used in the paper are writ-
ten out in Appendix A. Finally, in Appendix B,
the usual factorization approach for NNV vertices
is examined and found to neglect certain important
pieces. A modified factorization approach is pre-
sented and justified.
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II. CALCULATIONAL FRAMEWORK

We work in a theory where quarks carry an in-
ternal quantum number called color and obey the
usual fermion anticommutation relations. All ob-
served particles are color singlets. For the Wein-
berg model it is necessary to specify that the
strong interactions are mediated by massless,
non-Abelian neutral gauge fields with the gauge
group being SU(2) of color.

The hadronic weak currents in the Weinberg
model are written in terms of quark fields. The
charged currents are

g ~~0(x) = [aP,(x)cos8c T(0',—(x)sin8c]y, (I + y, )8I, (x),

Z „'='(x)= [(P,(x)sin8c+ (P', (x)cos8o]y„(1+y, )X,(x),

where z is a color index and is summed over,
while (P is the charmed quark. This can be writ-
ten as

Since, for massive bosons, the vector-boson prop-
agator Dz(x, M) is sensitive primarily to the short-
distance behavior of the currents, the time-or-
dered product can be expanded in a Wilson expan-
sion:

T[J„(x)J"(0)]= Q C)(x)6)(0). (7)

rents and to the charmed quark (but losing re-
normalizability in the process).

The mechanism for octet enhancement was orig-
inally suggested by Wilson. " The nonleptonic
Hamiltonian in the Weinberg model can be writ-
ten {neglecting possible Higgs-scalar exchange)

)J (0)= M fd''xD (x, M )TIJ'„(x)J "(0))

+ Mx' f dxD (x, M )T[J„(x)J (OH.

Z'. (x) =Z „"-(x)+~", -'(x)

=qy (1+y,)C,q,

where in the basis q= (0",a, X, X)

0 0 -sin9~ cos8~

0 0 cos8~ sin8~
+ Z 2

0 0 0

0 0 0

The hadronic neutral current is

cT
M

= q [yM (1+ y0)CD —2 sin 8Nly@Q]q

= q([C,(1 —2 sin'8)(, ) ——,
' sin'8~]y„

+ C,yM y0}q.

Here 8~ is the Weinberg angle, Qis the charge
matrix, and,

0 0 0

C ——'01 03-3 00-10
00 0 -1

(4)

a = gc,.(M)6, (0), (8)

where

25g' M
C, (M)=C&(1)ll+ ln-

24m m

= C, (1}c'(.

Here (6,.]. is a complete set of operators carrying
the appropriate (Iuantum numbers, while C;(x)
are c-number coefficients which contain the space-
time dependence. It was Wilson's suggestion that
the coefficient function for the SU(3) octet operator
may be more singular than that of the 27-dimen-
sional representation, thereby dominating H when
the integration over g is performed. This has
been verified and explicitly calculated for the
Weinberg model in Refs. 6 and 7 (4$ = 1 decays)
and Ref. 8 (&S=0, parity-violating Hamiltonian).

In asymptotically free theories the short-dis-
tance behavior can be calculated using pertur-
bation theory. The operators (6,}are decomposed
in terms of multiplicatively renormalizable opera-
tors, with an associated dimension d, After the
integration over the boson propagator, the weak
Hamiltonian has the form'

The second form in E(I. (4) follows for fraction-
ally charged quarks.

The action of the charged (neutral) current is
mediated by a charged (neutral) vector boson
W'(dT'), with the relationship M~ =Mzcos8~. The
theory is renorml~abdle" and asymptotically
free." The Cabibbo model contains only charged
currents and can be obtained from the Weinberg
theory by dropphtg all reference to neutral cur-

In this paper we fix constant C, (1) by requiring
that as we turn off the strong interactions (g'-0);
&„approaches the free-field limit. Since g', M,
and m are all unknown, the factor in large pa, ren-
theses can only be estimated to be of order 10.
The various operators will be enhanced or sup-
pressed depending on the sign and magnitude of d',

The size of this effect appears too small to ac-
count completely for the 4l'= —,

' rule, and other
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mechanisms may come into play. '
The group structure of the Hamiltonian can best

be described in terms of SU(4). The product of
two currents bilinear in quark fields gives rise to
terms transforming as

g x 4 x 4 x 4 = 1+ 15+ 20+84 (10)

III. THE CABIBBO MODEL A (N )

The Cabibbo model has been the standard picture
for past calculations of parity-violating effects,
although many other models have been consid-
ered. '" The observation of neutral-current events
with neutrinos on a hadron target" cannot be ac-
counted for within the model. The Cabibbo theory
must therefore be supplanted by a version incor-
porating neutral hadronic and leptonic currents,
such as the Weinberg model. There are several
reasons, however, why it is still worthwhile to
consider the Cabibbo picture here. One is that it
is instructive to compare the calculational method
used here with past techniques. Another is that
most models incorporating neutral currents re-
tain the Cabibbo charged currents. The discussion
here will then apply to the charged current prod-
cut of those models.

We will attempt to calculate the pion vertex in
a theory where baryons consist of three quarks,
antisymmetric in color. The M = 0 parity-vio-
lating amplitude can be formed in the soft-pion
limit as

TABLE I. Charm-conserving SU(3) submultiplets of
SU(4) multiplets.

plus terms which drop out when we take a sym-
metric product. The SU(3) decomposition of the
SU(4) multiplet is given in Table I, while the op-
erators corresponding to the various SU(4) repre-
sentations are written out in Appendix A.

For the Cabibbo theory we assume an enhance-
ment mechanism similar in spirit, though not in
detail, to that of the Weinberg model. The Ham-
iltonian will have the form

= CgHi+ Ci g + C8 8+ g8 8 + C27 (11)

The content of the H, with definite SU(3) structure
is given explicitly in Appendix A. Octet enhance-
ment and the hl = —,

' rule in hyperon and kaon decays
can be accommodated by having c, (and maybe c,)
large, with c»/c, =+, .

(12)

sin'8(: O'XX3I —O'XXX: ]..'2 2
(14)

It is trivial to see that A(NO) vanishes in this
model. This is because II,',, contains the r.ormal-
ordered product of A. -quark fields, while the pro-
ton and neutron do not contain any A. quarks. This
rather surprising result has been obtained before
in other contexts. " Both here and in Korner's
work, " this result depends primarily on the usual
quark assignments for the nucleons. Here we also
take into account strong-interaction enhancement
effects via the short-distance behavior of the Wil-
son expansion. A crucial assumption in both meth-
ods is the neglect of possible quark pairs in the
nucleons (i.e. , the quark "sea").

It might be thought that the traditional estimate
of A(N'), which appears to be based on more gen-
eral techniques, contradicts this result and proves
the inadequacy of the calculational framework.
However, the reverse may be true. It is clearly
worthwhile to review the traditional evaluation of
A(N') in view of the above result If it is. assumed
that H transforms like an octet, then there is a
sum rule relating the AS=0 process to AS=1 hy-
peron decays":

A(N') = (—',)'i'tan8[2A(A') +A. (:" )]. (15)

This can be derived using SU(3) in either physical
limit, where q, '=m, ', or in the soft-pion limit.
A similar equation among 4S= 1 amplitudes, the
Lee -Sugawara relation"

A(A')+ 2A(=-) = v 3A(Z', ),

with f, = m, . As is well known, only the hl = 1 piece
of H can contribute in the soft-pion limit. The
terms that are even under a Fierz rearrangement,

qr, (I +r,)q'q "r"(I+r, )q"'

qr-. (1+~,)q'"q'r'(I+~, )q' (13)

(that is, H„H„H»), cannot contribute to the bary-
on-to-baryon matrix element in this framework,
as first shown by Pati and Woo." This means that
only H, will contribute to A(N') He.re in the nota-
tion of Appendix A

SU(4)
SU(3)

15
8

20
8

84
1+8+27

appears to be well satisfied. It does not neces-
sarily follow that Eq. (15) is also satisfied, since
SU(3) symmetry breaking enters Eq. (15) and Eq.
(16) differently, but one has in the past assumed
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that it would be accurate.
There is one problem that complicates the sit-

uation. In A(NO) we are concerned with the emis-
sion of a virtual pion, while in the M = 1 amplitude
the pion is on the mass shell. In general a BB'm
vertex can be decomposed into a commutator term,
as in Eq. (12), and a residual term. The com-
mutator term gives the vertex behavior in the soft-
pion limit and is the only term we desire for the
NNg vertex. The residual term contains all am-
plitudes that vanish in the soft-pion limit such as
the factorization diagrams of Fig. 1 or vector-
meson pole terms. These are strictly speaking
SU(3)-breaking effects since they depend on the
mass difference of the two baryons, and must be
accurately subtracted off from the physical hyper-
on amplitudes before using Eq. (15). Past esti-
mates" have indicated that the contribution of the
factorization term is about 15/g of the b S= 1 am-
plitudes, and therefore small enough to neglect.
However, if the octet piece of H is enhanced in
a manner similar to that considered here, these
estimates are too small and the factorization dia-
gram's contribution to the residual term is large
enough and uncertain enough to make Eq. (15) un-
trustworthy, as we shall now show.

In estimating the factorization contribution to
hyperon decays within our model, we need the
&S= 1 H written in terms of quark fields, given
in Appendix A. The factorization term for A-pw
is evaluated as

(pv IX,y„(1+y,)a', 0',y" (I+y, )x,. IA&',;„
Im, y, y-,o, Io&&p I

r. ,y"~, I
/t& (17).

This is then known in terms of experimentally
measured semileptonic parameters. Likewise,
using the Fierz rearrangement

&pv IÃ;y, (I+y, )&;s';y'(I+y )0'~ l~&Pa. r,

arp. y.+~ I0&(p I
+p'"~»

I
~&

A(A')
A(w )

2 (20)

The two terms in Eq. (18) cancel exactly. Gro-
nau, " in a pole model, has taken into account the
K*-pole contribution, which is the pole model's
equivalent of the factorization diagram. He es-
timates its strength from experimental kaon de-
cay, and from his numbers we obtain in the soft-
pion limit

The last step follows from the color structure of
the particles. The factorization contribution is
then

A(A ),
( Q) (C8+ 5CB+ 5 C27) X 0 05

If the octet operator is enhanced sufficiently
(c, =10 is reasonable), the factorization term will
contribute more than the 15/0 obtained when con-
sidering the free field H (c;=1). Clearly, when
enhancement occurs it is ill advised to use the
physical hyperon decay amplitudes in Eq. (15) to
find A(NO) unless we can first subtract off such
factorization contributions. Note also that the
factorization terms satisfy the Lee-Sugawara
relation to an acceptable degree, so that we can-
not decide experimentally how much these terms
contribute.

These conclusions can be supported from other
viewpoints also. In any colored-quark model
where the baryons consist of three quarks, we
obtain for the hyperon decays in the soft-pion lim-
it

A(A')
A( )

——-0.56, (21)

so that the cancellation is nearly complete. " Fi-
nally, if one believes SU(4) symmetry currently
in vogue, then the relation

A(A')
A(:- )

(22)

(b)
FIG. 1. The factorization diagram for 8—B'j/I. The

x indicates the action of a current. (b) can be related
to (a) by use of the Fierz rearrangement.

again follows, "although this is merely suggestive
since SU(4) is badly broken. The conclusion that
can be drawn from this is that there may be ade-
quate theoretical reason to abandon Eq. (15) as a
derivation of A(NO) and to look for dynamical
methods for calculating it.
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We can obtain a nonzero value of A(N.') in our
model if we abandon exact SU(2) symmetry. The
factorization diagram will then enter, although
at a much lower level than in hyperon decays be-
cause of the small neutron-proton mass differ-
ences. Using the same methods as above

and A(A'). The result is

A, (N ') sin'8~ 4 I
A(A') sin8c cos8c 3~8 I'

where

E(c)=0.17c '"+0.93c '"+0.08c '"
0 19c o.83

(27)

(28)

where

+ (8cos 8 —1),5 (23) I= dXQ —gBV +V

I = d X Q(p + V(p Q(pQ)t+ V(pVy

(29)

A =f,(M„M~)g„=1.9 x 10-'M~'. (24)

This amplitude is also isovector in character.
Since we do not have a theory of the enhancement
factors, we cannot evaluate this explicitly. How-
ever, a simple assumption, useful for an order
of magnitude estimate, is to take c, =10 and all
other c& small. This gives

A(N ) = 0.28 x 10 s (25)

This is an order of magnitude smaller than the
usual estimate of A(NO). It is interesting to note
that, using Gronau's model, a p-pole term gives
essentially the same result.

(p)8, (0))m)=(a~ f drag(x) G&. (26)

Here lu~& is the spin-unitary spin state of the
proton. Since 6, is written in terms of four quark
fields, the integrand will contain x dependence in
the quark wave functions. "

lt is then easy to compute and compare A(N')

IV. A(N ) IN THE WEINBERG MODEL

To describe the pion vertex in the soft-pion lim-
it we again use Eq. (12). The calculation in the
Weinberg model simplifies considerably since we
can eliminate many operators from H',«. The
SU(4) singlet operators commute with E, and
therefore vanish. 6„(C,, C, ) vanishes via the Pati-
Woo theorem. 6„(C,, C,.) cannot contribute for the
same reason that JI, vanished in the Cabibbo mod-
el, that is, quark content of the nucleons. The
only operators that can contribute belong to the
SU(4) 15&imensional representation, and are pro-
duced by the action of the neutral current.

We will calculate matrix elements by using theo-
ries developed to treat hadrons as extended ob-
jects composed of quarks. There are many avail-
able, ' "but for our final evaluation we will use
the MIT bag model. The quark wave functions for
this model are given in Ref. 11. The baryon-to-
baryon matrix element for particles at rest is
formed as

for a quark wave function of the form

(( )
(iu(~)y„

«0 &X
(30)

I/I =O.57. (31)

The value of A(A') that should be used in Eq. (27)
is the amplitude in the soft-pion limit. In view of
the comment in the last section we feel that to ob-
tain this limit the factorization diagram should
be subtracted off. There may be other factors
which vanish in this limit, but we are not capable
of estimating them. Equation (19) yields

"( -"-' =O.22.A(A') (32)

We therefore estimate the soft-pion limit by mul-
tiplying Eq. (2V) by O. V8, yielding

A(N') = 1.3 sin'8~A(A'). (33)

V. THE p VERTEX

In the past the NAp vertices have been evaluated
in the factorization approximation. " This consists
of

However, if the currents are written in terms of
quark fields, it is shown in Appendix B that this

We have presented the results as a ratio in order
to minimize the dependence on the enhancement
factor and the precise shape of the wave functions.
The enhancement factor E(c) varies only slightly
as we let c range over reasonable values and
equals 1.22 for c = 10. The ratio I/I' is clearly
equal to unity for any nonrelativistic model and for
any relativistic theory' that uses two component
wave functions for the quarks [v(r) = 0]. The bag
model contains both upper and lower components
in the wave function, and numerical integration
using the parameters of Ref. 11 yields
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does not include all terms of comparable size.
For example, the factorization approach would
give different contributions for the two current
products

@,= 6'~y,„y5%;X.y„~+%;y ~y50';6'~y~ X,

62 (P

gyes

y5�(PyKp
p Xf +X)yy y5X)(Pgypg g (35)

even though they are identical since they are re-
lated by a Feirz rearrangement. We therefore
propose to evaluate the p vertex in the modified
factorization approach called for by Appendix B.

Danilov" and Guberina, Missimer, and Tadic"
have argued that, for conventional models (i.e.,
not gauge models), the NNp amplitudes are in
fact divergent. If this is true, the factorization
result given here will be only one contribution to
the total amplitude, with the other contribution
coming from the properly cut off divergent term.
Note, however, that this divergence will not occur
in gauge models. It is related to operators of di-
mension 4 in the Wilson expansion, and Weinberg"
has shown that in gauge theories these terms can
be removed by mass and wave-function renormal-

I

(Np' ijf. iN &&=+M„,

M„=ugly, y,k, (N;) + c„„y,q„k,(N;)

+ xq„y, lp(Nt)]u.

(36)

The terms containing k, and l, can be neglected
as q, -0. It is k, that is calculated here. Ex-
pressed in terms of

Gg~m p'
(37)

the p vertex is

k, (N:) = -k, (N') =A, +A„

kp(NO) = —~0 +&2A, +A„ (36)

k, (NO) = ' —WA, +A„

where in the Weinberg model

ization of the quark fields. The modified factori-
zation approach therefore gives the Weinberg the-
ory's major contribution to the p vertex.

The p amplitude can be expressed in general as

0..8A, = ——(c'"(3cos'8c —2 sin'8$+2c ' "[eos'8c —5 (1i sin'8~)]+ (0.3 —0.2 sin'8v)(2. 92co'"+6.06c '")];
(39)

A =+ sin'8 (0.05c'" —0.03c'"+0.2lc '"—0.33c"'")
1 3

~ ~ ~ ~ (40)

A, =+ —kc "4(sin'8c —2 sin'8$, (41)

whereas in the Cabibbo model
I

A, = ——(Sc,+ c,)(cos'8c ——', )+ ' ' + '7 (4 cos'8c —3), (42)

4h
(43)

4 2
A2 k 9 C27COS g~ o

The e and P vertices can be done in the same fashion:

k„(N;) = B,+B„
k(N,') =B, -B„
k~(NO) =Co+C„

k~(N, ) =Co —C,.
In the Weinberg model

(44)

(45)

B,= — —Ic'"(cos'8c ——,'sin'8v) —2c ' "[cos'8c —-', (1+sin'8~)]
5@2

++(3 —2 sin'8v)(3. 76c'" —11.57c '")},

B,= — sin'8~(0. 05c'" -8.005c'"+0.69c ' "+0.42c '"),2k

(46)

(47)
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Co = -{co' "(cos'8c ——3sin'~) —2c '"[cos'8 —3(1+sin'8~)] + —,', (3 —2 sin'8~)(-2. 75co "+3.36c '")},

C, = ——[c", "(1+sin'8c —2 sin'8~) +2c ' "(cos'8c —2 sin'8~)1 6 1

+ csin'8~(0. 03c", "+ 0.13c", "+0.18c,'"+0.16,'")].

(48)

(49)

In the Cabibbo model

( 6c„'
~c,

' (cos'8, —.')
5@2

+ —' —c, ——"(4cos'8c —3), (50)

4
sin'8c(c8 c„), (51)

I

/

Co (cos 8c 3)— + — (cos 8c —g)
8 ~ x Cz C& C8

5 2

the magnitude of the vertices, although, in the
Weinberg model, not by enough to explain by it-
self the discrepancy between theory and experi-
ment in n+d-p+y. Note that 4?=2 effects are
suppressed by the coefficient functions. McKel-
lar" has pointed out the apparent need for a large
M = 2 contribution if we are to understand n+d
—p+ y without upsetting the approximate agree-
ment with other experiments such as the n decay
of oxygen. ' This model cannot supply this contri-
bution.

—~(4 cos'8c —3), ,
C

C8—6'-
5 5

(52)

(53)

VI. SUMMARY

The parity-violating internucleon potential is
the sum of m-, p-, ~-, and P- exchange poten-
tials. The potential due to g exhange is

In using h in the evaluation of &u and Q vertices we
have implicitly assumed SU(3) symmetry for the
vector meson-to -vacuum amplitudes. We have
used the quark-model assignments of &u and P
(i.e. , Q = XX.) and use them in determining the
(B' ~A „~B)amplitudes. These results are dis-
played in Table II (with sin8c =0.235, sin'8~= 0.4,
and c = 10), where it is obvious that the modified
factorization approach yields different results
from the usual method. The coefficients enhance

where

&( I)&(~) & j.) &~)
12 + ~ ~ +

PI.Z
= P& —P~.

The vector-meson potential is

(55)

-i/2
y g n'N N~n'

SwW2M,

&&~(N )(&'"+ o'"') [p„,exp( m, r)/r]Z-„, (54)

TABLE O. The vector-meson vertex amplitudes, with sin8& =0.23, sin 9~ =0.4, in terms
of h =Gg„mp'-/fp.

Bg

Cabibbo—previous result -0.66h
see H,ef. 27

-0.33h

%'einberg
—unenhanced
(c =1)

-0.60h -0.20h -0.36h 0.15h -0.22h 0.02h -0.06h

W'einberg
—enhanced
(c =10)

-1,03h +0,05h -0,19h -0,33h -0,20h 0.07h -0.26h

Cabibbo—unenhanced
(c& =1)

-0.54h -0.44h 0.14h 0.02h 0.04h

Cabibbo—octet term
only

-0.22csh -0.09c8 h 0.0Vcs h -0.01c8h
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V,= —
1

(o'" {p»,exp( m-sr)/r]H„— o'" {p„,exp( m-, r)/r)H„
&7

- i(P"& x o"i) [P„exP(-msr)/r]H» -i(P" x P").[P„exP( m-sr)/r]H2s ) (56)

for B= p, u&, Q. The H, , are isospin functions

HPq-— v 2 [—h, (N;)r", r "+h, (N )r"'v,"']
+ Qghp(NO) —hp(NO)]r", ir',"
+ —,

'
[h, (N,') + h, (N,')]1'*'T',",

H"„=—'[h„(Ã')+h„(N )]1"1 t'

+ g[h„(NO) —h„(NO)]v~" 1'~~,

Hf, = 2[ho(No)+ hp(N )]1"1"'
+-,'[h, (N', ) —h, (N', )]~,"'1'&,',

Ho = (1+ Pp —p„)HU&

~40 ~td

(57)

(56)

(59)

(60)

(61)

(62)

and Q exchange occurs even in the Cabibbo model.
The amplitudes are enhanced over the old factori-
zation results, although, in the Weinberg model,
not by enough to explain the large discrepancy in
n+ p -d+ y. However, in general a theoretical
explanation of this process may be simple; we
must take into account the operator enhancement
due to the short-distance behavior.
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There are several general conclusions that fol-
low from this paper. If the observed octet en-
hancement and 27-piet suppression occurs because
of the short-distance behavior of the current pro-
duct, then past methods of calculating the parity-
violating amplitudes may not be valid. We have
used a quark model to calculate the pion vertex
A(NO) in the Weinberg theory and have argued that
A(N.') in the Cabibbo model has been greatly over-
estimated. The Weinberg theory's A(N ) is of the
same order of magnitude as past estimates of this
quantity, so that the enhancement does not open
up any new experimental realms. However, if
further experimental work is done it will still be
possible to distinguish between the various theo-
ries. For the p-exchange potential is was shown
that a modified factorization approach is called
for. The potential will contain Al = 0, 1, 2 pieces,
with the hl= 2 pieces suppressed. Neutral p, co,

APPENDIX A: THE OPERATORS

For the Weinberg model we can take the opera-
tors and notation from Ref. 8. If M, N are ar-
bitrary matrices in both SU(3) and color spaces,
then a parity-violating four-quark operator has
the form

8(M, N) = qy„y,Mqqy„Nq. (A1)

Likewise a parity-violating operator involving
the gluon field can be formed:

A—8(M) = VPGA„qypy5Mt"q—. (A2)

[t, t ] =ifAs t (A3)

The multiplicity renormalizable operators which
can be formed are

Here and later ftA) are the usual matrices in color
space satisfying

8, (C;, C, ) = —[8(C;, C,)+ —,', 8(1, 1)] ——[8(C,t, C,t")+—8(t, t )),

8„(C,-, C,.) = —', [8(C,, C, ) ——,
' 8(1, 1)]+—'[8(C,t, C,.t") '8(t, t )], ——

(A4)

(A5)

8(C„1)
8(C tA tA)

8(1,C, )

8(tA tA)

1 8(C,) —8(C,t", t")

615
2 0.43 -0.37 0.56 -0.29 -0.53

6" = -0.82 0.11 0.56 -0.17 0.04

0.42 0.41 0.76 -0.22 0.18

615
5 0

6', 0.48 0.35 -0.27 -0.63 -0.42

(A6)
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8' 0.76 0.42 0.49 8(1,1)

8,' = 063 052 020 8(t", t ) (A7)

8,' 0 0 1 8(l) -8(t", t )

We fix the constants in the Wilson expansion by requiring that H„reduce to the free-field limit when the
enhancement factors are unity. The Weinberg-model Hamiltonian is then

H~= &2G(c„[8„(C„C,)+8„(C„C,)+ (1 -2sin'8 )8„(C„C,)]
+ c„[8„(C„C,) + 8„(C„C,)+ (1 —2 sin'e~)884(C„C, )]

+ „' (3 —2 sin'8 )(6.02c,'8,'+ 6.74c,'8,' —4.3c,'8,') (AS)

—&sin'8~(0. 18c,"8|'+0.34c,"8,"—0.76c,"8,"+0.36c~"8~"+ 0.22c,"8,")).
The exponents d; (c, =10"') for the various operators are listed in Table III.

For the Cabibbo model we will explicitly list the operator that contributes to the AS = 0 and 45 = 1 pro-
cesses. For simplicity of notation we will leave off the Dirac and color indices. Hence

qq =- q;y~(1+ y, )q;. (A9)

The operators that enter the &8= 0 Cabibbo Hamiltonian are [the superscript is the SU(3) representation,
the subscript is the isospin]

6,=:(P~xe -K~X~ -X~~x+9txX~:,

8,=:2(Ro'tPx -%xylo ) —pxX6 -Fo X~+X&Xx -M'D):,
8,'=:%xylo' —Ro'Pm+to D. -P~Xo'+KxXx -R~Xx:,

8,"=:2(RO'FX+ RXP(P) —(PO'FO'+ XXXR):,

8, =:O O PO' —XmZX 2{VX—Xt+ tpd'D. —XXXX —ZXG.):,
8 =:K(P|Px+ %xylo'+P(PPo' + Ex'+ 3XAXx —3g AXo'+go'XA + ZKXx+ XX'):,
8,=:2(o o PtP -RxKx)+PxXtP+ @|PAL. -93~Xx -Rz&. :,
8,=:2(9to o x+9tmgo + o tPeo +9tx9tz) —4GD. —(PxXN+ o o D.+9hXx+ DZx):,
8'=.9to'Fx+ZxFo'+KxXx+ Po o t+DQ. +Xo'P~+tpo D.+R~Xx+ 9M% . .

We can then form the M=O Cabibbo Hamiltonian

H ~= =c JI"'+c'II"'+c II"'+c'H"'+c 9 2 '
1 l 8 8 27

Again when c;= 1 we recover the free-field limit.
The 4S = 1 Hamiltonian is

where

~(l ) 161
6 0&

(A10)

(A11)

with

~ g=l (8) ~ (Si) (27)=C8 &8 l+C8 d S l+C27 (A16)

H(1'j 1 81
12 2

2g
[-' (cos'8 —3)8'+ — 8']

(A12)

(A13)

2
(A17)

H ' ' = ( XO'O'X+|PO'XA. + 2XXXX

+ 2XXD.:},
2gH"'= —,', (cos'ec —3)8,'+ — cl8', , (A14) ~27 COS g SlD~Q fe (27) 56 (27)$

ds=l ~2 15 l. 1/2 + 3/2/& (A19)

cos ~c 6 (A15)

63(]~2) = .%6'+X+ O'O'XA. —'XXgA, :,
8 i~'/72' ——.xo' o'A+ o'o'xx+ 2xxxx —3xxXA. : . (A20)
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APPENDIX B: THE MODIFIED FACTORIZATION APPROACH

In this section the modified factorization ap-
proach is presented and justified. We want to
look at the NNp amplitude for a parity-violating
current product

A=+'p"l' V' '(0)A"'~(0) '
g&

The LSZ reduction technique can be used to write
this as

A = ie,*(q'+ m, ')

Operator Exponent Operator Exponent

61

684(C],C] )

0.35
-0.40

0.54
0.48

-0.24

ei5
815

2
815

3
615

4
615

0.85
0.43

-0.13
-0.35

0.54

TABLE III. Exponents of the parity-violating opera-
tors. The operators are defined in Appendix A. The en-
hancement factor for operator 6~ is c; = c~& with c ~i0.

d4x e "*&X'(T(p'"(x):V'"(0)A'"~(0) )g&

(a2)

The time-ordered product of three currents must
be evaluated. If we write the currents in terms of
fundamental quark fields

plus possible seagull terms. ' The p field can be
replaced by the vector current by using the cur-
rent-field identity" (CFI)

p„(a)
V,"(x)=4(x)~,

2 4(x) (H4)

pi a) (x) P V(e)(x)
P

then we can use Wick's theorem on the time-or-
dered product:

T(V"'(x) ' V"'(o)A""(o) ) = ' V„"(x)V"'(0)A"'(0) + &olT(V"'( )V"'(0))lo&A"'(0)
y(b) y(c)

—(r.)"(r"4)" 2' 2' [&olr(v,":4,.(0)y„„(o):)lo&:q„„(0)y„..(p):

+ &pl 1"«:(x):&».(0)&8;.(0):)Io&:c.;.(0)c„.(0):].
(B6)

Here n, P, 7, 6 are Dirac indices, i, j,k, I are SU(3) indices, and m, n refer to color. The CFI and reduc-
tion can be done in reverse to obtain

A= &p"Iv"'(0)lo&&~ lA' (0)l»
g(b) yc

—(r.)"(y'l.)"'
2

~2' I.&p'&l:4,.(0)4„„(0):0&&x'l:q»„(0)q»„(0):lx&

+ &pt &I: yy, „(0)y„.(0): l o& &zr'I: y„,„(0)y„„{0):Ix&] + ~,*z",
where

i( 2+ ~ 2) P d4x e iq x&~ll . V(a)(x)V(b)(P)A(c)P (P) .
g&

'P

(S6)

The first term is what is normally called the factorization approximation and corresponds to Fig. 1(a).
The second term is similar and will generally be of the same order of magnitude as the first term. It
corresponds to Fig. 1(b), and is improperly neglected in the usual factorization approach. The third term
will not contribute to h, [see Eil. (36)] since q,B'= 0.
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