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A general formula is derived for the contribution of an s-channel resonance to finite-energy sum rules for t-
channel helicity amplitudes. All amplitudes of the form R' + 3» R" + 4 are considered, where particles 3
and 4 have arbitrary spin and R', R" are Reggeons or particles. Guided by the requirement that the
nucleon and 6(1232) contributions to the zeroth-moment sum rules should cancel, the formula is brought into
a simple and transparent form. It is shown that the algebraic expressions have a natural interpretation in
terms of spin diagrams. An appljcation of the sum rules yields predictions for the relative magnitude and
helicity structure of all couplings R34, for all Reggeons it = tr B, p-A-„A, and particles 3,4 = N(938) or
5(1232).

I. INTRODUCTION

Experience has shown that s-channel resonances
are highly correlated to the high-energy behavior
of hadronic amplitudes. Technically this is ex-
pressed as a semiloeal saturation of finite energy
sum rules (FESR's). The FESR's have traditional-
ly' been used mainly to constrain the high-energy
Regge parameters in reactions for which phase-
shift analyses exist at low energy. However, the
FESR's also impose restrictions on the resonances
themselves and on their couplings. This becomes
apparent when one considers that the given set of
resonances must conform to duality in many dif-
ferent amplitudes. For example, one may write
down FESR's for amplitudes where the external
particles are resonances or Reggeons. Although
such amplitudes are in general not directly mea-
surable, duality may enforce restrictions on the
couplings of the resonances that contribute to the
FESR. These couplings may then be experimental-
ly tested in some other reaction. Thus it would

seem that a systematic investigation of how the
FESR's are satisfied for many different amplitudes
could lead to a better understanding of duality
phenomena. It should also provide us with a num-
ber of experimentally testable predictions for the
resonance couplings.

An example of how duality can be used to deter-
mine resonance couplings is provided by a study'
of the g& -m& charge-exchange reaction. From
the requirement that the prominent resonance
contributions vanish at t = -0.6 it was, e.g. , found
that the &(1232) produced through the decay
&P(1950) -tt& should have helicity +—,'. This was
later strikingly confirmed by the data. '

The work of Gell et al.' also illustrates the ob-
vious technical difficulties associated with a study
of duality in amplitudes having high-spin external
particles. A given s-channel resonance, in gen-

eral, has several kinematically allowed couplings
to the initial and final states. Furthermore, the
contribution of the resonance to specific t-channel
helicity amplitudes is expressed through a com-
plicated s-t helicity crossing matrix. If there does
exist a simple duality connection between s-chan-
nel resonances and t-channel Begge exchange one
might guess that it can only hold for a special
type of resonance coupling. The challenge is thus
to understand whether semilocal duality can be
valid for general amplitudes, and to develop a
formalism which makes transparent the regular-
ities in the resonance contributions to t-channel
amplitudes.

In studying the duality properties of general
amplitudes it is advantageous to consider, in ad-
dition to ordinary quasi-two-body amplitudes,
amplitudes with external Reggeons. Let us em-
phasize from the beginning that we shall never
need to specify what we mean by a Reggeon
"state"—our Beggeon amplitudes are always de-
fined through appropriate high-energy limits of
multiparticle amplitudes. Figure l(a) shows the
general type of Reggeon amplitude with which we
shall be dealing in this paper. An s-channel res-
onance contribution to the discontinuity of this
amplitude is shown in Fig. 1(b). It can clearly be
expressed in terms of the amplitudes for the
(quasi-two-body) processes 2+ 3 -1+s and 5+ 4
-6+s.

The analytic structure of the six-point ampli-
tude in the high-energy limit of Fig. 1(a) has been
studied, using both the dual resonance (Bs) model
and a general class of Feynman diagrams. It has
been shown that ordinary FESR's can be derived
both in the forward limit' (corresponding to in-
clusive cross sections) and in the more general
case of nonvanishing momentum transfers. "' The
analyticity of the Reggeon amplitude is, however,
equivalent to that of ordinary four-point ampli-
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(b)

FIG. 1. (a) Reggeized six-point amplitude; (b) s-chan-
nel resonance contribution to discontinuity of the six-
point amplitude.

tudes only when certain subsidiary conditions are
satisfied, which specify the value of the azimuthal
(Toiler) angles of particles 1,2 and 5, 6 in Fig. 1.
These conditions are automatically satisfied in the
forward limit, but must be explicitly imposed in
general. In the examples considered in this paper
we shall clearly see how the conditions simplify
the expressions for the resonance contributions,
and make the dual structure of the Reggeon amp-
litude analogous to that of particle amplitudes.

From the theoretical (FESR) point of view, there
is thus every reason to include Reggeon ampli-
tudes in a study of duality in general amplitudes.
This conclusion is further supported by the re-
sults of a considerable number of phenomenological
applications of the Reggeon FESB's to multipar-
ticle data. ' All these studies indicate that the
FESB's are satisfied in the same semilocal sense
for Heggeon amplitudes as they are in ordinary me-
son-nucleon scattering. The diversity of phenom-
ena is, of course, much richer for Reggeon amp-
litudes, since more quantum numbers and kine-
matic variables are available.

Once we do demand that Reggeon amplitudes be
dual, the constraints on the resonance couplings
become much stronger. This is well illustrated
by the work' on the N(938) and &(1232) contribu-
tions to FESB's for the mN-mÃ, pN-mN, and
pN- pN amplitudes (where p is a Reggeon). Based
on fairly general arguments, it was shown that the
N and & contributions must approximately cancel
in zeroth-moment FESR's. This requirement led
directly to a constraint on the pNN coupling: lt
must be dominantly helicity flip. Thus, by con-
sidering only the lowest-mass contributions in

Reggeon FESR's, one already derives a result
which has important implications for the higher-
mass contributions to, e.g. , mN-gN FESB's:
The I, = 1 helicity-flip amplitude (vB ' ') built up
from the resonances must be much larger than
the helicity-nonf lip amplitudes (A" ').

The calculation' of the N and & contributions
also gives us a good example of how, for certain
values of the couplings, the s-channel resonance

contribution to t-channel helicity amplitudes simp-
lifies. It is by no means obvious that there exists
any set of pNN and pN& couplings for which the
N and & contributions cancel in all zeroth-moment
FESR s for the amplitudes pN- mN and pN- pN.
In fact, such a requirement imposes many more
conditions than there are adjustable couplings.
In the calculation of Ref. 6, where invariant amp-
litudes and couplings were used to evaluate the
contributions, the solution was made possible by
a large number of seemingly accidental cancel-
lations. It became apparent that the N-~ cancel-
lation mechanism could provide an excellent test-
ing ground for developing a formalism in which
the existence of couplings that satisfy the duality
constraints can be more easily understood.

The primary aim of this paper is to derive an
expression for the s-channel resonance contribu-
tions to t-channel helicity amplitudes that makes
it transparent how semilocal duality can be satis-
fied. We consider all amplitudes of the type shown
in Fig. 1. Particles 3 and 4, as well as the s-chan-
nel resonance s, can be mesons or baryons of ar-
bitrary spin and isospin. 8' and 8"denote any
meson trajectory. By factorization, the spins of
particles 1,2 and 5, 6 are unimportant; for simplic-
ity we shall assume that these particles are spin-
less. Any of the Reggeons 8', R" can be replaced
by a m (or K) meson by going to the particle pole
on the corresponding trajectory. Thus our formu-
las will be applicable also to the familiar pseu-
doscalar meson-baryon amplitudes.

The formula we derive will be completely gen-
eral; no approximations or assumptions of a dy-
namical nature will be made. Since we want to
treat arbitrary spins, it is clear that we have to
use the helicity formalism. ' Note, however, that
we also have dynamical reasons to choose the
helicity basis for the couplings. The solution to
the N-& cancellation problem' discussed above
was a simple helicity structure (flip) at the pNN
vertex. Similarly, in the & —,"(1950)- m& decay
only a single helicity (a-, ) of the & contributes. '

As we already indicated above, we shall con-
sider FESR's for t-channel, rather than s-channel,
c.m. helicity amplitudes. Again, this is in accor-
dance with standard practice. The kinematic sin-
gularities in s of the t-channel amplitudes are
easily removed. Furthermore, for couplings such
as nNN where only one t-channel helicity coupling
is kinematically allowed, there are several nonvan-
ishing s-channel couplings (as specified by the
crossing matrix). Finally, it is only for t-channel
amplitudes that N, & contributions can be made to
cancel' in all zeroth-moment FESB's.

The over-all framework of our formalism can
thus be fixed on quite general grounds. The der-
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ivation of our formula would hardly been possible,
however, without the explicit test case of N-&
cancellation. A central requirement on our ex-
pressions was that they should simply and natural-
ly explain how the cancellation can simultaneously
take place in so many amplitudes. This is indeed
accomplished by our final formulas. The important
point to note here is that we achieved this within the
general framework outlined above. The formulas
can therefore readily be applied to other processes
and, we hope, will prove equally useful for de-
scribing the corresponding duality phenomena.

The derivation of our formula for an s-channel
resonance contribution to a f-channel helicity
amplitude is given in Sec. II. Because of the gen
eral case we consider, the expressions are some-
times rather lengthy. Fortunately, however, the
derivation has a very simple diagrammatical
interpretation. In fact, one could derive the final
result (possibly up to a phase factor) directly in
terms of the spin diagrams. It is also satisfying
that spin and isospin are treated in a completely
analogous manner.

In Sec. III we apply our formula to study the
N-6 cancellation. We extend the analysis of Ref.
6 by considering the complete set of amplitudes
for which the cancellation may be expected to oc-
cur. Thus'', 8" in Fig. 1 can be any I=1 meson
trajectory: p-A„m-&, or Ay The external particles
3, 4 can be NN, N&, or &&. All together we therefore
study a total of 18 reactions in terms of 212
crossing-odd helicity amplitudes. Because of the
efficiency of our method this requires only a little
more effort than counting the number of amplitudes.
We find that the cancellation is indeed a very gen-
eral phenomenon. Within our approximation (we
neglect the Ã-6 mass difference and momentum
transfers compared to the baryon masses) it can
be imposed on all amplitudes except those where
both external baryons are 6's, in which case there
is only a partial cancellation. The constraints
lead to definite predictions for the Reggeon coup-
lings, several of which can be compared to ex-
periment. This and other aspects of our work are
discussed in Sec. IV.

In deriving our formula, we make extensive use
of the symmetry, reality, and crossing properties
of helicity amplitudes. We found it necessary to
make a comprehensive study of these. The dis-
cussions given in the literature, in general, ad-
dress themselves only to a part of the relations
we need, and often use different conventions. We
studied the symmetries by investigating the prop-
erties of effective Lagrangians, expressed in
terms of the (2j+ 1)-component fields constructed
by Weinberg. ' Appendix A gives an account of our
results. In Appendix B we study the kinematic

singularities of the helicity amplitudes that are
relevant for our FESR applications. The singular-
ities of the Reggeon (and, more generally, multi-
particle) amplitudes differ in some interesting
respects from those of standard two-body amp-
litudes. Finally, in Appendix C we give the re-
lation between the Weinberg fields for spin —,

' and
1 and the more commonly used spin- —,

' Dirac field
and the vector field. We also express some famil-
iar Lagrangians in terms of the Weinberg fields.
This makes it possible to translate our discussion
in Appendix A to a more standard language (in the
special case of low spin).

II. GENERAL FORMULA FOR RESONANCE CONTRIBUTION

A. Wigner rotations and velocity diagrams

The contribution of a particular resonance to the
discontinuity of the six-point amplitude in the
variable s =— (p, -p, -p,)' (Fig. 1) will be denoted
by 9. The purpose of this section will be to treat
the kinematics, spin, and isospin of K in a way
which differs as little as possible from one set
of spins and isospins to another. Moreover,
our treatment of spin and isospin will be close-
ly related to each other. As discussed in the
Introduction, the derivation of our formula for a
resonance contribution V is guided both by general
consistency arguments and by the requirement that
it should give a simple explanation of the N, 4
cancellation. ' In order to make these arguments
clear, we shall start by giving a general outline
of our approach.

In the high-energy Regge limit of the six-point
amplitude shown in Fig 1, whe.re s' = (p, -p,)'
and s" = (p, -pJ'- ~, a given Regge-pole contri-
bution is expected to factorize in a manner de-
scribed by Fig. 1. Thus we can think of the lower
part of this diagram as describing the 2-2 pro-
cess Reggeon (R') +particle (3)- Reggeon (R")
+particle (4). (The angles describing the azi-
muthal orientation of the momenta 1, 2, 5, and 6
with respect to the 3-s-4 reaction plane require
further discussion, to be given later in this sec-
tion. ) As is commonly done for 2 2 amplitudes,
we shall impose the FESR constraint on t-channel
helicity amplitudes. We therefore consider the
s-channel resonance contributions [Fig. 1(b)] to
the discontinuity of the six-point helicity ampli-
tudes K~ ~, where the helicities of particles 3

3
and 4 are defined in the t-channel c.m. , with
t= (p, +p~) . Particles 1, 2, 5, and 6 serve mere-
ly as the source of the Reggeons and will always
be assumed spinless. (Baryon trajectories will
not be considered here).

The aim of our approach is to obtain dynamical
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information about the couplings at the 3-s-8' and
s-4-R" Reggeon vertices by imposing FESR con-
straints on the six-point amplitude. Such coup-
lings are defined by the factorized 4-point amp-
litudes for 2+ 3- 1+s and 4+ 5- 6+s. The con-
sistent use of t-channel helicity amplitudes for
describing 2- 2 processes would therefore dictate
that the Reggeon vertex 3-s-8' be described in
terms of helicity couplings defined in the c.m. of
the process 3+s-1+2, i.e., in the t'-channel
c.m. frame, where t' = (p, +p,)'. Similarly, the
s-4-R" vertex should be expressed in terms of
t"-channel c.m. helicity couplings, where t"
= (p, +p.)'

The helicity states of particles 3 and 4 are in-
itially defined in the over-all t-channel c.m. Since
the helicity label of the resonance s is summed
over, its axis of quantization is immaterial. For
the present discussion let us take the states of s
to be t-channel c.m. helicity states. The reso-
nance contribution V' ', written in terms of R' and
R" helicity couplings in the t' and t" c.m. frames,
respectively, will therefore involve Wigner rota-
tions" corresponding to boosts from the t-channel
c.m. to the t'-channel c.m. and from the t-channel
c.m. to the t"-channel c.m. All the relevant Wig-
ner rotation angles can be collected on a single
velocity diagram shown in Fig. 2, which is identi-
cal to the diagram' often used to discuss crossing
properties of:4-point amplitudes. Qn this diagram
each point represents a frame, each line repre-
sents a boost (in general, a complex boost defined
by appropriate analytic continuation of the boost
parameter), and all angles can be computed in
terms of invariants by using the rules of hyperbolic
geometry. The Wigner rotation induced on the
wave function of a particle by a given boost 'is the
angle on the velocity diagram which is subtended
by the boost in the rest frame of that particle.
From Fig. 2 it can be seen that, in boosting the
four-point amplitude for 3+s- 1+2 from the

FIG. 2. s-channel. velocity diagram.

t-channel c.m. (T) to the t'-channel c.m. (12), the
wave functions of particles 3 and s acquire rota-
tions of co, and 0', respectively. Similarly, the
wave functions of particles 4 and s in the ampli-
tude for 4+s- 5+6 are rotated by &~ and 0",
respectively, in boosting from T to 56. Note that
the angles (d, and &~ are just the familiar crossing
angles for going from the s-channel to the t-chan-
nel center of mass of the Beggeon particle ampli-
tude, and that the difference 0'-0" is the s-chan-
nel c.m. scattering angle 0, .

It is instructive to study the angles of Fig. 2 in
the kinematic regime relevant to the N-6 cancel-
lation mentioned in the Introduction. Thus, con-
sider m, =m, =m„(nucleon mass) and Ws=m„or
mz=m~, and suppose that the momentum transfers
t, t', and t" are small compared to the nucleon
mass. Under these conditions, the triangle 3-4-$
on the velocity diagram, Fig. 2, becomes small
in the sense that all three of its sides represent
boost velocities «1, i.e. , particles 3 and 4 are
both moving slowly in the s-channel c.m. The
"hyperbolic excess" of this triangle (analogous to
the spherical excess of a triangle inscribed on the
surface of a, sphere) is therefore vanishingly small,
and a certain relationship obtains between ~„&~,
and 8„namely 8, + (z -&u,) + ~~ = n or ~,-~,= 8,. In
addition, because m, =m4=ns~, and t', t" are small,
the velocity of the boost ST tends to infinity. " If
we again neglect the curvature over the short
distances s3 and s4 in Fig. 2, this implies 0 = &,
and 0"= &4. Thus the two Wigner rotation angles
for the 3-s-R' vertex are equal, as are the rota-
tions acting on the s-4-A" vertex. This motivates
us to define certain irreducible combinations of
the t'- and t"-channel helicity couplings at the
Beggeon vertices which lead to a Clebsch-Gordan
reduction of the two rotation matrices acting on
each vertex. Again we are led by consistency to
define similar irreducible combinations of the
over-all t-channel helicity amplitudes 9'.

The procedure we use to define irreducible
amplitudes resembles that of an LS coupling
scheme where one defines channel spins by vector
addition of the spins of the particles in the initial
or final state of a given channel. However, the
representation labels which characterize our ir-
reducible amplitudes (to be called l, l', and I"
for the over-all amplitude K, the 3-s-R' vertex,
and the s 4 R" vertez, -re-spectively) are not
channel spins. The representation label we de-
fine for, say, the 3-s-R' vertex (l') is, in fact,
related to the spins of particles 3 and s by vector
subtraction, i.e., l' describes the angular momen-
tum which is added to the spin of particle 3 to give
the spin of particle s. For example, the label for
the gNa vertex (which has only one allowed coup-
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ling for a real pion) is just the orbital angular
momentum in the decay 6-Ng, which must be
P wave. The gNA vertex is therefore pure l=1
by our definition. For the same reason, the pe%
vertex is also l = 1. A key to the aforementioned
cancellation conspiracy among the p, p, X, and
6 is that the correct couplings of the p Reggeon
which satisfy all FESR constraints (pure flip for
pNN and Stodolsky-Sakurai Ml coupling for pNA)
are also pure l=1.

The final step in our treatment of spin is to
write a resonance contribution to the over-all ir-
reducible amplitudes in terms of the irreducible
vertices and observe that a certain triangular
combination of Clebsch-Gordan coefficients is
proportional to a 6-j symbol containing l, l', l",
and the spins of particles 3, 4 and s. This pro-
vides a pleasant simplification of the formula,
and may in itself be seen as a motivation for our
choice of amplitudes. It should nevertheless be
stated that our motivation for this choice comes
primarily from experience with the N and ~, and

any more general physical reasons are unclear
at present.

The treatment of the isospin of 1 is straight-
forward except for the ubiquitous problem of
phase conventions for crossing, which is discussed
in Appendix A. We consider six-point amplitudes
with definite isospin in the t' and t" channels
(the isospin of the Reggeons, to be called I'and I").
A given resonance contribution also has a definite
isospin in the s channel. It is related to ampli-
tudes with definite isospin I in the t channel by an
isospin crossing matrix or, equivalently, "a 6-j
symbol, containing I, I', I", and the isospins of
particles 3, 4 and s. Thus, the treatments of iso-
spin and spin bear a considerable resemblance to
each other.

B, The azimuthal angles

It has been shown previously'" that the FESR
for the Reggeon process R'+ 3-8"+ 4 (Fig. 1) is
only valid when a certain kinematic restriction is
satisfied by the momenta of particles 1, 2, 5, and
6 in the six-point amplitude. The purpose of this
subsection is to translate this kinematic condition,
which was originally stated in terms of invariants,
into a restriction on the angles p' and P", where
p' is the azimuthal angle of particles 1 and 2 with
respect to the 3-s-4 reaction plane (taken to be
the x-z plane) in the t' center of mass, and p" is
a similarly defined quantity in the f"-channel
c.m. The dependence of the 4-point amplitudes
3+s- 1+2 and 4+ s - 5+ 6 on these azimuthal
variables can then be separated out trivially.

To state the restriction on the six-point amp-

tl + telp„=p,+p, = - 2,—qsin8„0, -qcos8, , 2.16

PI p2 ps p6Po- S23 SQ3 S45 S45

1 1 1
(0, cosG„i, -si-nG, )+0

2p sin8, S23 S~5

Note that these momenta are all defined in the
t-channel c.m. To calculate the azimuthal angle
p', we must boost p, and p„hence p„ to the f'
c.m. This can, of course, be done by brute force,
but there is a much simpler method which makes
use of an intriguing property of the vector p,.
Consider a hypothetical spin-one particle with
mass m and four-momentum
k&= (E, k sinG, o, k cosG), and define the polarization
vectors for the three helicity states of this parti-
cle in the usual way:

1
e„(k,+1)= w

— (0, cosG, +i, —sinG),

e„(k, 0) = (k, E sinG, O—, E cos8).1
(2.2)

It is now seen that the vector p, can be written

1
(pg ~p „.„8,(p„, — )

t
(2.3)

The physical significance of this fact is unclear
and may deserve further investigation. We use
it here only as a mathematical convenience which
allows us to boost p, from one frame to another
with ease, because of the property of the polar-
ization vectors

Aq"e, (k, A) = eq (Ak, A,')Dq ~(R q, (k, A)). (2.4)

(A sum over repeated helicity indices is implied. )

litude necessary for the validity of the FESR, let
us define s,, and s,,~ to be the invariant mass in
the ij or ijk channel in Fig. 1, e.g. , sy56
=(p, +p, +p,)', s23=(p, -p,)'=s, etc. The
R'+ 3-8"+ 4 amplitude will be FESR analytic
in the Regge limit s», s~,- ~ if the ratios s»Js»,
s„,/s4„and s„/s, p4, are all vanishingly small.
The fact that these conditions are compatible with
the four dimensionality of space-time (which im-
poses one condition on the nine s, ~ variables) has
been verified' by explicitly constructing a set of
four-momenta in the t-channel c.m. which satisfy
the conditions:

p, = (-,'Wi, o, o,p),

p, =(-,'Wf, o, o, -p),
t+ t'- t"

p»--p~+p2= -,gsln8], 0 tgcos8
2v t
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Since the crossing angle ~» is real in the s- (and
f )c-hannel physical region, &P' must have the
form

Q' = —+i('
2

(2 7)

where g' is real. It follows from Eq. (2.6) that

1 + cos(01~e' =-
Sln(d1~

(2.8)

FIG. 3. t-channel velocity diagram.

COSco»
(2.5a)

Equation (2.5a) determines &p' up to an additive
factor of z, which we fix by the convention

cos&p' =+ i cot~»,

1sinP' =—
sin 601~

(2.6)

Here A is some arbitrary Lorentz transformation,
D' is the usual j= 1 rotation matrix, and R~(k, A)
is the signer rotation' induced by the transforma-
tion A on a particle of four-momentum k.

If we let A be the transformation from T to L'
on the t-channel velocity diagram in Fig. 8, then
in L' p1p will be parallel to p„which we take to
define the +z axis. It can also be seen from Fig.
8 that the Wigner rotation R~(p», A) is simply
related to the ordinary S-T crossing angle &»
of particle 12. The azimuthal angle p' is given by

( pd.
(Ap, )„

6:„(Ap», X)d', ,(—7/ —~»)

A similar method can be used to find the azi-
muthal angle Q" of particles 5, 6 in the f" c.m.
The boost A now takes the T frame into L" in
Fig. 3. The result is

2
tan&p" =

COSM56
(2.5b)

Consistency with the convention (2.6) requires

(2.9)

where P" is real and satisfies

1 —cos ~56
sin+56

(2.10)

The Wigner angles in Eqs. (2.8) and (2.10), as
well as all other angles on Figs. 2 and 3, are
calculated from the law of cosines for hyperbolic
geometry. For our purposes, this law is most
conveniently stated in terms of invariants by not-
ing that each of the frames of interest is character-
ized by the fact that the spatial components of a
particular four-momentum vector vanish in that
frame (i.e. , it is the rest frame of a certain par-
ticle or channel). In general, if frames 1, 2,
and 3 are the frames in which the momenta k1,
k„and k„respectively, are purely timelike,
then the Wigner angle subtended at frame 1 by
the boost from frame 2 to frame 3 is given by

where

4 [(k,' k, )(k, k, ) - k, '(k, k, )]
X '((k + k )' k ' k ')~ / ((k + k )' k ' k ') ' (2.11)

X(a, b, c) = a' + b' + c' —2ab —2ac —2bc. (2.12)

For the angles v» and (ds6 we obtain in this way

(s+ f' —m 2)(f+ t' —f")+2t'(m ' —m ' —f'+ f") . 2(f'@)'/'
12 x'/2(s m ' t')x'/'(f t' f") $1/2(s m f )/&1/2(f f f l)

(2.18)

(s+ f"—m,2)(t+ t" —f') —2f"(m, ' —m, ' —t'+ f")
56 x'/'(s m ' f")x'/2(f f' f")

2 (5I IC&) & /2

56 gl/2(S m 2 ill)gl/2(f tl ill)
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C. Spin diagrams

The steps involved in the subsequent derivation
can be greatly clarified by a diagrammatic ap-
proach to representation theory. It seems likely
that the diagrammatic rules and manipulations to
be described in this section could be formulated
precisely and the entire derivation carried out
diagrammatically, but we will not attempt to do
so here. We will instead present a more conven-
tional algebraic derivation and supplement the
formulas with their diagrammatic interpretation.

Our convention" for the 3-j symbol in terms of
the usual Clebsch-Gordan coefficient is

r ( ,)',-',-;
1),),(j„j;&,& lj -& ).

X, X2X3f (A+
(2.14)

The 3-j symbol, as depicted in Fig. 4(a), is a,

basic component of the spin diagrams. " The fa-
miliar (2j+ 1)-dimensional unitary matrix repre-
sentation of the rotation group D'(R) and its spe-
cialization to rotations around the y axis d'(ro)
will be portrayed by a line with a coil wrapped
around it, as shown in Fig. 4(b). In both of these
symbols, the lines themselves carry representa-
tion labels j. An unadorned line, Fig. 4(c), can be
thought of as the 2j+1-dimensional unit matrix
and used, for example, to connect the legs of two
3-j symbols.

We have found it convenient to employ Wigner's"
covariant notation for spin indices, in which a
helicity index is written down (up) according to
whether it is covariant (contravariant). The mean-
ing of covariance here is abstracted from the
transformation properties of spin states and is
best explained in context. The Lorentz transfor-
mation property of a single particle spin-j he-

where 4 is the usual Kibble function" that vanishes
on the boundary of the physical regions.

licity ket state is described by the D J matrix rep-
resentation of the Wigner rotation. A bra hel-
icity state transforms via the complex-conjugate
representation. The helicity indices of ket and
bra states are called covariant and contravariant,
respectively. Accordingly, the "metric tensor"
which converts a contravariant index into a co-
variant one is just the unitary matrix which trans-
forms D' into its complex conjugate, explicitly

C~, = (-1)&+~5~,= (-I)"C~~,
Cxe ( 1)j+s5 ( 1)2' ax

(2.15a)

(2.15b)

(Here and elsewhere we avoid confusion due to the
changing position of indices by always using lower
case Latin letters j, l, ... to denote the representa-
tion and using lower case Greek letters X, p. , v,
o, ... for helicity indices. ) The matrices D~~,,
themselves should be thought of as having one
contravariant index X and one covariant index X',
although in this case we will conform to the stand-
ard notation and write both indices in the down
position. The phase in the definition of the 3-j
symbol (2.14) is chosen so that all three of its
indices are covariant, as exemplified by its fun-
damental invariance property

(2.16)

~ ~ ~

A j2 ~; (A j2 jsh—cL~k(I (2.17)

Another useful form of Eq. (2.16) is obtained by
applying in inverse rotation to one of the free in-
dices and using the unitarity of the D' matrices,

(x, j, j,) /x,'j, j,)

(A summation over repeated helicity indices is
always implied. ) This invariance is depicted in
Fig. 5(a). 3-j symbols with one or more contra-
variant indices are obtained by applying the metric
tensor (2.15) from the left, e.g. ,

(2.18)

X2

(a) (b) (c)

]', R IIR

FIG. 4. (a) The 3-j symbol; (b) irreducible represen-
tation of a rotation, D&&~ (R); (e) (2j+1)-dimensional
unit matrix.

(b)

FIG. 5. (a) Rotational invariance property of a 3-j
symbol; (b) a convenient spin-diagram manipulation.
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X {2j+I)

J2

(a)

)2

(2j+I)

l2

for reducing the direct product of two D matrices.
Another familiar combination is the triangular con-
traction of three 3-j symbols shown in Fig. 6(c).
By repeated use of Fig. 5(b), it is easy to see that
Fig. 6(c) has the same rotational properties as
the 3-j symbol and is thus proportional to it. The
representation-dependent proportionality con-
stant is just the 6-j symbol or Racah coefficient.
Algebraically, we define the 6-j symbol by"

(
A f2 &3 (&. j2 f3 &i &2 j3 4 j2 js (A j2 j3

X, o, l, ~l, &, o, ko, l, ~, t, /, l, (~, ~, &

(2 .21)

D. Derivation of the formula

In the first part of this derivation we treat spin,
and consequently suppress all isospin indices.
We consider the six-point helicity amplitude (Fig.
1)

FIG. 6. (a) Orthogonal. ity property of 3-j symbols;
(b) completeness property of 3-j symbols. [Note: In
Figs. 6a and 6b a factor (+1), depending on the repre-
sentations invo1ved, has been suppressed. ] (c) a 6-j
symbol times a 3-j symbol.

This equation, pictured in Fig. 5(b), expresses
the fact that when a coil appears on two legs of a
3-j symbol it may be pushed through onto the
third leg. The 3-j symbol also obeys two ortho-
gonality relations,

j~ j2 j /X~ X2 X' 5~,&5~i
~ ~ ~

~ ~

~

I 2j + 1
(2.19)

shown in Fig. 6(a), and

(2.20)

shown in Fig. 6(b). Some familiar formulas can
be derived by simple combinations of these dia-
grams. Por example, by applying rotations to
both sides of Fig. 6(b) and using the identity in
Fig. 5(b), one obtains the Clebsch-Gordan series

where all quantities are evaluated in the t-channel
c.m. frame p, =- p4. In accordance with the pre-
vious discussion, we have assumed that particles
1, 2, 5, and 6 are spinless. We do not include a
"particle-2" phase' for the spinning particles.

In order to evaluate a resonance contribution to
the discontinuity of the amplitude (2.22) in the
variable s = (P, —P, —P,)' we will use crossing
symmetry to express (2.22) in terms of the s-chan-
nel process 2+3+ 6-1+4+5, for which the s-chan-
nel resonance appears as a term in the unitarity
sum. The crossing properties of helicity ampli-
tudes have been extensively investigated, "usually
in the context of 2 -2 processes. The results of
these investigations can be applied straightforward-
ly to the case we consider here. The crossing
relation between the t-channel and s-channel c.m.
amplitudes is thus [cf. Eq. (A18)]

The expressions for the crossing angles ~3 (J04

are standard. " Alternatively, the angles can be
read off the velocity diagram in Fig. 2 by observ-
ing that the d matrices in Eq. (2.23) must rotate
the spin quantization axes of the s-channel ampli-
tude into those of the t-channel amplitude. Using
Eq. (2.11) we get in this way

(s+ m, ' —t')(t+ m, ' —m,2) —2&n, '(m, ' —m, ' —t'+ t")
y~t2(s, n~ ' t')y~t2(t, m ', m ')

(s+m, —t")(t+m, —m, 2)+2m42(m32 —m42-t'+t")
cos(0~ =—

x&t2(s, m, ', t")x&/2(t, m, ' m ')

(2.24)
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FIG. 7. Vel.ocity diagram for the s' channel. .
f

with sine, &0 and sin+~ &0.
Our next step is to write down a particular spin-j, resonance contribution to the generalized unitarity

sum" for T'". Thus, we write

Disc T" = (2ii)5(s —M*')v'" +'"
8 XX4 X3Xy (2.25)

where the ellipsis stands for other terms contributing to the discontinuity ln 8. Here M+ ls the mass of
the resonance, and T'" is given in terms of 4-point amplitudes by

~"l, = &a„&,;P, IT"IP., ~.;a.&(P., &.;P, I TIP. , &.;v.&

c=&P., &.;e.ITIe„&.;P,&*&&., &;,P, IHIP. , &,;a.&.

z'GJ —e im i~( 1)j3+X-3T
XSX~ Xg'

From now on, an unsuperscripted amplitude will represent the c.m. amplitude for either 3+s -1+2,
4+ s -5+ 6, or 3+4-1+2+5+6. (The subscripts on the helicity labels will always be sufficient to dis-
tinguish the three possiblilities. ) Now, combining Eqs. (2.27) and (2.28) with Eqs. (2.23) and (2.25), we
obtain the resonance contribution to the disconitnuity of the six-point t-c.m. amplitude in terms of the
four-point t'-c.m. and t"-c.m. amplitudes,

(2.28)

v' =e'" d' ((u )T* e-""'"'""if' (-8 )T e"'""""if" ((o )C'
PgXg 4 Pq 8 P3~P~ PS@ 3

Here we have explicitly exhibited the dependence of the four-point amplitudes on the azimuthal angles Q
and P" defined in Eqs. (2.V)—(2.10). Note that, although the azimuthal angles needed for the validity of
the FESR are complex, &f&" in (2.29) has not been complex-conjugated. This is because the unitarity re-
lation (2.26) must first be expressed in terms of physical states (i.e., real angles Q', Q"), and then ana-

(2.29)

In this expression q,= —p„where p, are the momenta in the f channel (Fig. 1).We have not yet specified the axis of
quantization for the spin j, of particle s. The s-channel c.m. frame is just the Gottfried-Jackson (GJ) frame
for the process 2+3-1+s. Similarly, it can be seen from Fig. 2 that the s-channel c.m. frame rotated by
an angle ~, is the GJ frame for the process 5+4-6+8. Thus, we may write

g(s& = T(oi',&+buffs„{ 8 )Ties). (2.2'7)

Finally, we want to relate the amplitudes in the GJ frame to the t'- and t"-channel c.m. amplitudes. The
crossing relation for the amplitude T~ ~ is again of the form {2.23); however, the crossing angles should
now be read off the velocity diagram in Fig. 7. Since the spin of the resonance 8 is quantized along the
direction of the incoming momentum P, in the GJ frame, the boost connects a frame X slightly below s in
Fig. 7 to the t'-channel c.m. T'. The crossing angles for particles 3 and s are both seen to be equal to z.
The crossing relation between the GJ amplitude and the t'-channel c.m. amplitude is thus
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II
II

J~

(c) (e)

pro. 8. Spin-diagram derivation of the s-channel resonance formula: (a) t-channel six-point amplitude in terms of
t'- and t"-channel four-point amplitudes; (b) definition of reduced amplitudes; (c) reduced six-point amplitude in terms
of reduced four-point amplitudes; (d) result of using Fig. Gb; (e) result of using Fig. 6b.

lytically continued to the unphysical region.
The expression (2.29) can be represented as a spin diagram by Fig. 8(a). Because all the rotations here

are around the y-axis, it is not obvious which indices should be considered covariant and which contravar-
iant. The arrows in Fig. 8(a) are drawn heuristically to indicate the subsequent development. Guided by
our previous discussion regarding the magnitudes of the %'igner angles in the N, & case, we define the
reduced amplitudes for 3+ s -1+K by

~ ~

(fI )I I) (2fl + ] )
~3 ~s II@'Illa' /2T

x, x. l
(2.30)

with a similar set of amplitudes T4,(l",X") to describe 4+s -5+ 6. This reduction is represented graph-
ically by Fig. 8(b). The over-all six-point amplitude is reduced in an identical way:

E(l, X) = (2l+ 1)&' ' '
~~e

"~~'f
(x, x, l 1

(2.31)

The phase factors here and in Eq. (2.30) are not essential, but have been chosed for later convenience.
Note that the parity relation for the reduced amplitudes is, according to Eq. (A28),

(2.32)

where o' is the naturality of the Heggeon, and g~, q~ are the parities of particles 3 and s.
Now, inverting Eq. (2.30) by the orthogonality relation Eq. (2.20) or Fig. 6(b), Eq. (2.29) is written in

terms of reduced amplitudes as (noting that f, l', and /" will always be integers)
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g (l l) (2l+ 1)e&/4e&x/2 (~3 4 t&P4'la ( 3 8(' X li / l" (u v V'&

&&2'4~ (&o,)d/s„( 8,)d/, (~,)T„(l',X')T,",(l",&"&)e~
' ~"", (2.33)

where &t&' and &C&" are defined by Eqs. (2.7) and (2.9). The diagram for this expression is shown in Fig. 8(c}.
Next we define a new set of angles ~', e", and X by

(0 = 7J' —(03+/ )

(d =(0 +X,

(o'+ (o"=m- 0,.
(2.34)

This particular choice of angles is dictated by the requirement of simplicity for the N-& case. Note that

X is just one half the hyperbolic excess of the triangle 3-4-8 in Fig. 2, and is thus small when this triangle
is nonrelativistic. In fact, this choice seems somewhat more auspicious because, for a momentum trans-
fer t small compared tothe external masses I,= nz„one side (3-4) of the triangle is always short, and

X therefore never becomes very large in the s-channel physical region. In the equal-mass case m3 PB4 Pl

[see Eq. (3.1) of Sec. III], sinx is of order Wt/2m even as s -~.
Replacing &a„&u„and 8, in Eq. (2.33) by &o', &o", and y, it is seen that a rotation of v-&o' acts on the

j, and j, legs of the j,-j;l' 3-j symbol in Fig. 8(c) and can thus be "pushed through" onto the P leg

by virtue of Eq. (2.18) [Fig. 5(b}]. Similarly, a rotation of ~" can be pushed through the j,-j;l" symbol

onto the I" leg. This leaves only rotations by the hyperbolic excess X remaining on the central triangle in

Fig. 8(d) or, algebraically,
x I x' v'l" ' ' I'

g(l ) (2l 1) &.~, i.i/. ~ ( z ~ ( "s s s

"""
&, &&, j, l«, j, j, l&" k&&,

' z,' lz'I

d„'g(~') d~- tt((0")dj4~. (X )d~/P~ (X)T„(l',X')T4~,(l"y
X")e (2.35)

We wish to identify the central triangle in Fig. 8(d) as a 6-j symbol. By Eq. (2.21) [Fig. 6(c)], this is
automatic when X -0. For the more general case, we are led to define the following functions of X,

(2.36)

(2.37)

etc. Note that when the angle X is set to zero, we get

&9/'(j j,;X) =II' '~
'iI

' '
~d' (y)d .(X)(-1)".

(x,' j, p,J&&j, x, xl

This looks almost like the Clebsch-Gordan reduction of two d matrices but the indices are tied together
in reverse order, and it therefore does not reduce to a single representation. We will extend the covari-
ant-contravariant notation to include the functions (2.36). Thus for example,

~ ./$(73tI4! ) 2+
(2.38)

Now, when a "completeness sum" of two 3-j symbols [Eq. (2.20) or Fig. 6(b}] is inserted in Eq. (2.35), the

X dependence takes the form (2.36), and the remaining three 3-j symbols form a 6-j symbol by Eq. (2.21}.
This corresponds to the graphical operation which takes us from Fig. 8(d) to Fig. 8(e). In this way, Eq.
(2.35) becomes

Ill
~ ~l ~/I ~9'(l, &&)

= e" (2/l 1)+(2j 1)+e"~ '(-1)' 83+/+'"

g4g32, /' l" P

xd&&i&, i(ur')d~z:, ,„(u")&9,"~&(j„j,;X )T„(l',&&')Tf (l",X")e i (2.39)

We now consider the isospin dependence which has been suppressed in Eq. (2.39) and the preceding ana-

lysis, Our procedure will be to define an isospin-reduced six-point amplitude T(I, I', I") in terms of the

s-channel amplitude E&'&. ..., for 2+3+6-1+4+5 where a; is the isospin index for particle z. [This is,
aia~a5,'a&a3a6

of course, the same amplitude that appears, for example, in Eq. (2.26) except that now helicity indices

are suppressed. ]
Q3 I4 a Ii a2 a Is a6 a

g (I I Iii ) ( 1) &+214+z 5q &s& I I II I Ii I I ir
ly ll4'gs ~/~3~6 3 aq a] a, aa a (2.40)
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FIG. 9. u-channel. resonance contribution to discontinuity of the six-point amplitude.

It is not difficult to show, by using the isospin crossing rule derived in Appendix A, that 9 (I, P, P') is that
combination of amplitudes which has definite isospin in the t, t', and t" channels. The phase factor in
(2.40) has been chosen so that when this equation is inverted, it expresses 9"'" as a sum over the channel
isospins of 'Z(I, I', I") multiplied by 3-j symbols of appropriate covariance, without extraneous phase fac-
tors. In a similar way, we define the reduced four-point amplitudes for 2+3-1+s and 5+4-6+s as

and

I' I
(P) ( ] )2Ii+2/ 1 2 3 s T(s')

3s =
g I I P I g a&a', a2a3

1 2 3 S
(2.41)

a " I"a I
z (PI) ( 1)21+2I s 2 (2 s s T(s")

s
Q I Il P QI I I Q 6gs' g@g

6 5 s
(2.42)

Now the procedure which led from Eq. (2.26) to Eq. (2.39) can be carried out on the isospin-reduced amp-
litudes by inserting Eq. (2.26) into the right-band side of Eq. (2.40). Then writing the four-point ampli-
tudes in Eq. (2.26) in terms of their isospin-reduced counterparts Eq. (2.41) and Eq. (2.42), one obtains the
reduced s-channel resonance contribution to the discontinuity of the six-point amplitude, E(I,P, P'). This
expresses &(I,I', I") as a product of T„(P), Tss,(I"), and eight 3-j symbols. The two pairs of 3-j symbols
involving the isospins of particles 1,2 and 5, 6 can be contracted away by the orthogonality relation (Eq.
2.19). The remaining four 3-j symbols can be manipulated intothe familiar tetrahedral form of a 6-j symbol.
This manipulation involves two convenient symmetries of the 3-j symbol, namely, that it is symmetric
(antisymmetric) under permutation of two columns if the sum of the three isospins is an even (odd) integer,
and that a fully covariant 3-j symbol is equal to a fully contravariant one. Since the mechanics of this
calculation are straightforward, and the result differs little from the familiar isospin crossing matrix
for the four-point amplitude, we omit the details. The expression obtained for the reduced K is

g (l y.l P PI) ( 1)12 I sI+ls-I {2j+1)(21+1)cia~ 2eisis( 1)is is+A+i"

I'I" I /~ltd j &I &nj

d„', (~')d,'„',„(u)")(9„",(j„j,; X)T„(l',X', P)

x Tg (IPI ) ll. Ill)~ x%l' 1"ijl" (2.43)

This expression and a similar expression for a resonance contribution to the discontinuity in the u-channel
(see below) will be used extensively in Sec. III to discuss the cancellation between the nucleon and 6(1232)
contributions to FESB's and to derive constraints on their couplings to I=1 Beggeons.

In general, a given resonance or set of resonances will contribute to an FESR via both the s-channel and
the u-channel discontinuities. Therefore our discussion would not be complete without a formula analogous
to Eq. (2.43) for the FESR contribution of a u-channel resonance (shown in Fig. 9), which we will denote
by 9 . The pattern of the derivation for 1'is quite similar to that which led to Eq. (2.43). That is, we use
crossing symmetry to write the c.m. amplitude for the t-channel process 3+4-1+2+5+8 in terms of the
u-channel c.m. amplitude for the process 2+4+ 6-1+3+5. A u-channel resorbence then appears as a term
in the generalized unitarity equation for the u-channel c.m. helicity amplitude. (See Fig. 9.) It is deter-
mined by the four-point amplitudes for 4+ u -1+f and 3+u —5+ 6, and hence by the 4+ u -8' and 3+u -R"
vertices. For the applications which will be considered in Sec. III, the vertices which appear in the
u-channel resonance contributions can be related to those which appear in the s-channel contributions by
charge-conjugation invariance of the Reggeon gouplings.
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—ezlfg3djg ((g )TQ e l4 (la3+llg)ddt ( 9 )T e ldl (v4+v )$24 ((g ) +94
QX4 V3X3 4 V -W„ y,„v„g &4- &~ ~ v4~ 3 @4&4'

Here g"» is the u-channel resonance contribution to the t-channel c.m. six-point amplitude, T and
4 &3&uT„„are the c.m. amplitudes for 3+I -5+ 6 and 4+u-1+2, respectively, and the t -n crossing angles

which appear in (2.44) can be obtained by making the following substitutions on both sides of Eq. (2.24):

(2.44)

After going through the detailed derivation of the s-channel resonance formula [Eq. (2.43)], it will be
most instructive to obtain the u-channel formula by analogy. This will serve to emphasize the slight but
important differences between the two expressions and, in particular, to trace the origin of the relative
phase between the s- and u-channel discontinuities which is of paramount importance for FESR applications.
(Recall that FESR's are satisfied by amplitudes which are odd under s —u crossing. ) Consider first the
spinology of a u-channel resonance, suppressing isospin. The steps leading to Eq. (2.29) can be repeated
for the u-channel as described in the previous paragraph, leading to the analogous formula

473 ~ 40»

(04 ~ (04)

S ~Q)

SZ3 ~R24 ~

(2.45)

In Eq. (2.44), 8„ is the u-channel scattering angle. Note that for the case of equal external masses m, = m„
the contribution of the same resonance to the s- and u-channel discontinuities (e.g. , the &' and &" contri-
butions to )) p-m p) involves the same angles, i.e., co, =&a„and v, =&a, and 8„=6,. This provides a consid-
erable simplification for the N, & discussion of Sec. III.

Except for some obvious substitutions, Eq. (2.44) for &
~ ~ is identical in form to Eq. (2.29) for K~, .
3 4 3 4

We of course want to define the reduced F(l, X) in the same way as we defined the reduced &(l, X). (Tbey
are, after all, discontinuities of the same amplitude. ) Hence, we write

(2l+ 1)F23 Jg Iek )./2g

Using symmetries of the 3-j symbol, Eq. (2, 46) can be written (letting l = integer)

(j, j, )).

F(l, -X)= (2l+ I)(-1)~&'~~'~ e "" '&

(2.46)

= (2l+ 1)l
k)), x, l)

Thus, by analogy with Eq. (2.39), we obtain

(2.47)

'F(l, -X) = Q e "~~(2l+ 1)(2j+1)e "~ '(-1)~~~4+~""

(2.48)

where co', +", and X are defined in terms of co„co„and 6)„exactly as their s-channel counterparts, i.e.,
by the obvious analog of Eq. (2.34). In Eq. (2.48) T,„and T,„are, respectively, the amplitudes for
4+u-1+2 and 3+u-5+6. Now we want to change Eq. (2.48) to an expression for F(l, X) by changing the
sign of X on both sides and then pushing the minus sign of X on the right-hand side through the function,
through the 3-j symbol, through the d matrices, and into the four-point amplitudes. To do this we employ
the following identities (with j, l =integers):

+, (j„j3'X) =(-1)' '(-1)" '6)P,'(j.,j.;X), (2.49)

(2.5O)

(2.51)

Noting that p, '+ p" = p because of the 3-j symbol, and assuming that X is an integer (always true if particles
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1, 2, 5, and 6 are spinless), it is seen that the net phase factor from all these operations is (-1)"'"
(—1)~'~"i". Hence

iI )ft j ~t ~It j
&(I, X) = g e"'s(2l+ 1)(2j+1)e"' 2(-1)'» '4+'+'"

j )C gCC j~ j4 j l / p,

&& d,",,,((o')d,",,',„((o")S"(j j,;lT) T,„(l', -V) Ts*„(l",-X")e'4"'"~"(-1)"""(-1)""'. (2.52)

We can use the parity relations Eq. (2.32) for the reduced four-point amplitudes to change T4„(lc, -&') to
T4„(lc,X') and similarly for T,„. It is also advantageous to employ charge-conjugation invariance at the
Reggeon vertices to rewrite T,„and T,„, which refer to 3+u-5+6 and 4+u-1+2, in terms of T,„and T,„,
i.e., the amplitudes for 3+g -5+ 6 and 4+u -1+2. In the discussion of the N and 4 in Sec. III, the s- and
u-channel contributions will then involve the same set of Reggeon couplings. The implementation of parity
and charge-conjugation invariance is discussed in detail in Appendix A. Using formula (A32) for charge
conjugation at a, vertex, along with the parity relation Eq. (2.32), we can write

T4„(l', -X')Tss„(l",-X")=C 'O'C "II"rP~qpq'cqp( 1)"-"T4„(l',X') Tss'„(l", y"), (2.53)

where C', C" are the charge-conjugation parities of Reggeons R', R", and 0', a" are their naturalities.
The q~ and q~ phase factors are the parity and charge-conjugation parity of particles 3 and 4. At this
point, the 86'~ theorem plays an essential role in resolving the apparent arbitrariness of these latter
phases when, for example, particles 3 and 4 are distinct baryons. The result which is needed is derived
in Appendix A and is given by (A24). This allows us to make the replacement

sl'cvPpIi'cRp = (-1) 2 'R'rsvp'r-

1)12-14 (2.54)

(Here we are assuming that the t-channel isospin exchange is integer. The more general case is easily
treated along the same lines. ) The last step in Eq. (2.54) employed the choice of time-reversal phase
(A26). As discussed in Appendix A, a different choice of Ilsr and sl4z would also imply a different relative
phase for the Reggeon couplings, thus rendering all the subsequent discussion independent of phase con-
ventions.

The isospin dependence of the u-channel resonance formula can also be obtained most easily by analogy
with the s-channel formula Eq. (2.43). Except for a phase factor, whose origin will be discussed presently,
the u-channel isospin dependence can be obtained from Eq. (2.43) simply by the interchange I, I4, I, I„.
Aside from interchange of I, and I, in the isospin 6-j symbol, this simply replaces the isospin factor in
front of Eq. (2.43) by

( ] ) 14 I»+I+Is ls (2.55)

However, note that by the isospin crossing rule (A19), when the six-point amplitude is written in terms of
the isospin- reduced amplitude Eq. (2.40), the ordering of the lines in the 3-jsymbols must be the same in all
channels. In particular, the I,-I,-I symbol will be the same in both the s- and u-channels. Hence, if we
want to cast the u-channel unitarity equation in a form which is analogous to the s channel but with I, I4
everywhere, we must interchange the lines of the I, I,-I symbol. Th-is, along with a factor (-1)'Is because
the u channel involves an outgoing antiparticle [see Appendix A, Eq. (A19)] gives an extra isospin factor

( ] )212( ] )12+14+1 (2.56)

Finally, we note that the particular form of Eq. (A32), and hence, of Eq. (2.53) for charge conjugation at
a vertex resulted from the convention that the ordering of lines in the isospin 3-j symbol is always BBR.
Thus the amplitudes T,„and T,„will involve isospin 3-j symbols at the BBBvertex which have different
ordering from those which appear for T„and T4, in the s channel. In putting the right-hand side of the uni-

tarity equation in a form analogous to the s channel, we incur a factor

( ])I +V+I„( 1)I24pel» (2.5'7)

Collecting all these factors, including the one which arose from the 8d 1' theorem Eq. (2.54), we find that
the net isospin factor for the u channel is

( ] )I I»+I+Is ls( 1)ls 14( ].)212( l)Is+14+I X ( 1)I +I+I»( ])124P+I ( ].)Is I +I P+. Is ls (2.58)
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With the expression for the isospin factor and inserting Eq. (2.53) (sans 86' factors for 3 and 4) into Eq.
(2.52), we obtain the u-channel resonance formula

g (I g. l 11 I ) g o g o ( 1)l~-lan+I' I"+
g 15

x g (2j + 1){2l+1)e"~~'e"'3( I)'u-'4 ""

x Igl{~ ~
.
X) T {Il ~l)T@ (Ill yll)ek'IV+I"Ir'{ ])l{ I)&+&'+~" (2.59)

Before going on to discuss applications of Eq.
(2.43) and Eq. {2.59), we must mention one prob-
lem which arises when one tries to form the
combination of s- and u-channel discontinuities
which enters into FESR's, i.e., which is odd under
v--v where v =s-u. The difficulty is that dis-
continuities & and V' are related not by interchang-
ing s and u, but by interchanging P, and P, (com-
pare Figs. 1 and 9), which also causes s» —s24

and s35 s45 Fortunately, we are saved by the
kinematic restriction [Eq. (2.1)]which was nec-
essary for FESR analyticity of the six-point amp-
litude. Because of this restriction s» =-s„and
s3 5 s4 5 Hence s» —s„and s3 5 s45 is equiva-

lent to s» —-s» and s„—-s„, which introduces
signature factors v' and 7" for the Reggeons R'
and R". Thus, the combination of amplitudes
which is odd under v--v is V'- T'7

III. APPLICATION TO THE N AND b, CONTRIBUTIONS

In this section we shall show how the general
formulas derived in Sec. II can be used to give a
simple description of the cancellation between the
nucleon N and 6(1232) contributions to FESR's. As
we already mentioned in the Introduction, this prob-
lem, in fact, served as a guide in developing our
formalism. A detailed discussion of the dynamical
reasons for the cancellation may be found in Ref.
6. Let us only mention here that the cancellation
is expected to be accurate to within 20% in zeroth-
moment FESR's. We consider all amplitudes of the
form R'B3-R"B4, where B, and 84 can be either
6 or &. The Reggeons R' and R" can be any I= 1
meson trajectory: p-A„Yt-B, or A, . We thus get
predictions for couplings that were not considered
in Ref. 6, such as p~4, mN4, A,N&, etc. Some of
these predictions can be compared with experi-
ment.

A. The approximations

The small mass difference between the N and the 4
is an important ingredient for understanding the
proportionality of their FESR contributions. In

fact, it was found in Ref. 6 that neglecting the N-&

mass difference and the momentum transfers in

comparison with the baryon masses, in general,
changed the exact results by less than 20%. We

shall next discuss the implication of this approxi-
mation for the angles &u, y, and g that appear in
the formulas of Sec. II.

A prominent feature in the expression for the

angles is the presence of kinematic factors that
vanish at or near s-channel threshold. Thus, e.g.,
the formula for u&, in Eq. (2.24) has a factor
A.

' '(s, m, ', f') which blows up at Ws= m, +V f'. Sim-
ilarly, g is singular on the physical region boun-

dary C =0 according to Eqs. (2.8) and (2.13). It is
evident that an approximation like v s = m~=m„
would not make sense if applied directly to these
angles.

The resolution to this dilemma is that the full
six-point amplitude does not have any kinematic
singularities in s. The singularities must there-
fore completely cancel each other. Consider first
the threshold and pseudothreshold singularities
arising from the factors X(s, m, ', p) and
X(s, m, ', f"). It is a well-known'0 property of f-
channel helicity amplitudes (see also Appendix B)
that they do not have s-channel threshold singulr-
ities. In the expression (2.39) for 9' the singular-
ities in the angles co' and su~ must thus be canceled
by corresponding singularities in the vertices
T(l', V) and T(l", A. ). In fact, the t'- chanenl helic-
ity amplitude T(I', A'. ) is singular at the t'-channel
pseudothreshold f' = (m, —v s)' (which is the same as
u s= msv i'). The behavior of T(l', X') at pseudo-
threshold is discussed in Appendix B. We have
explicitly verified that these singularities indeed
cancel out in Eq. (2.39).

Suppose now that we substitute the regularized
amplitudes T(l', X'), T(l", X") defined by Eq. (BV)
for T(l', Ã) and T(l", Y) in the expression (2.39)
for &. All the singularities can then be eliminated,
and the approximation ~~ =m„can be applied to the
remaining regular expression. This is, in effect,
the approach chosen in Ref. 6. For notational sim-
plicity we prefer in this paper to apply the approx-
imations directly to the expression (2.39) for 'f.
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According to the above discussion this is legitimate
provided we interpret the relations obtained for
T(l', X') to hold, in fact, only for T(l', X'). The
true relations for T(I', X') can then be reconstruc-
ted from Eq. (BV) by using the exact values for the
masses in the kinematic factor.

The situation is analogous with respect to the
singularity at the physical region boundary 4 = 0.
The singularity in g' and g" now appears in the
full six-point amplitude, however. [The vertices
T(l', X') and T(l", X") are, of course, regular at
4 =0.] The behavior of the six-point function at
4 = 0 is discussed in Appendix B and given in Eq.
(B5). Since this singularity is always removed
from the amplitude before writing the FESR, the
divergent behavior of $' and P" is automatically
canceled. All expressions are thus smooth around
4 = 0, and the approximation m~ =m~ can be ex-
pected to be reasonable.

We shall assume then, that we can put s = m'
for both the N and the & FESR contributions, where
m =1 GeV is some average mass m„~ m & m~.
This implies that all the angles u&, (, and y will
be the same for N and 4. Furthermore, the fact
that m is close to s-channel threshold means that
y and g are both small angles. In Sec. II we al-
ready pointed out that X is the "hyperbolic excess"
angle for a triangle whose sides are proportional
to the s-channel momenta. Close to threshold the
area of. the triangle becomes vanishingly small and
so X-0. We can verify this by calculating X ex-
plicitly from Eq. (2.34) and (2.24). In the equal-
mass case m, =m4, t'=t" the exact value of sinx
is

(3.1)

where

4 = —t[(s —m, ')' —2t'(s+ m, ')+ st + t"]
is the Kibble function for the Reggeon amplitude.
Even if we disregard the smallness of the numer-
ator C'~' (which may be canceled by a C

'~' from
g, as we argued above), the denominator is large
enough to make X = 0 a good approximation.

According to Eqs. (2.8) and (2.13) the exact ex-
pression for sinhg' is, in the equal-mass case,

sinhg' =
)pc 1/2 (3.2)

The factor 4 ' ' can be disregarded as it will can-

cel out in the expression for V. For s = m, '= m'
and small momentum transfers I;, f,' it then follows
from Eq. (3.2) that (=0.

The approximate relations for the angles which
make the proportionality between the N and &
FESR contributions possible can thus be summar-
ized by

tt
+N 4& +E b, t

(3.3)

In the remainder of this section we shall assume
that Eqs. (3.3) hold. It follows from the above dis-
cussion that this approximation should be reason-
able. It is, of course, more difficult to estimate
quantitively the error it induces in &. We rely in
this respect on the numerical calculations of Ref.
6, which indicates that Eq. (3.3) changes the exact
results generally by less than 20%.

B. The R'N~R "N FESR's

We first consider amplitudes for which the ex-
ternal baryons B, and B, in Fig. 1 are nucleons.
Since we want to write zeroth-moment FESR's
we have to form a combination of the s- and u-
channel discontinuities & and P [Eqs. (2.43) and

(2.59)] which is antisymmetric in the variable s-u.
As discussed in Sec. II, this antisymmetric com-
bination is &-v'w"T, where v', ~ are the Reggeon
signatures. Furthermore, we have to remove the
kinematic singularities in s of V and F. The sin-
gularities all occur at the physical region boun-
dary 4 = 0 and are explicitly given by Eq. (B5)
[when both Reggeons are spinless particles one
may use Eq. (Bl) instead]. Since sin8, has the
same value for the N and ~ FESR contributions
in our approximation m„=m~=m, we need not
explicitly remove the common factor (sin8, )

'~'

from our expressions. However, because sine,
has the opposite sign in ~ and F, the proper anti-
symmetric contribution is

(3.4)

Substituting B,=B4=N and I' =I"=1 in the expres-
sions (2.43) and (2.59) for 9 and g we get, in the
approximation (3.3),
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The subscript s in Eq. (3.5) is N or &, depending on which contribution we are considering. ln order to
isolate a given naturality o in the t channel we form the combinations [cf. Eq. (2.32)]

(l, A.; I) =—&' '(l, A.; I)+o'( —1)'&' '(l, -A.; I).
We find then

l' l l 1 1 I, „p.' p,
" l

'T,' '(f, ; I) =i Q (-1)' (2l+ 1) T"„,(l', X')T~,'*(l",X")
j, ~ 2 I, (l l

&& d' (&u')d'" (&u")e"' '[(-1)" oC'—~'C"7 "][1+a'o'o'"(-1)' +' ].

(3.6)

(3.7)

This equation gives the contribution of the N and
~ resonances to the zeroth-moment FESR for the
amplitude R'N - R»A', with t-channel quantum num-
bers characterized by l, A, I, o and v = -r'v" (—1)".
A sum over l, l», X', X», p, 'p, » is implied. The main
advantage of this formula is that, as we shall next
explore, the vertices T(l', A.') and T(l", A, ) are
nonzero only for a single value of I', I', lX'l, and

The sum therefore in practice need only be
done over p, ' and p,".

Let us first apply our formula (S.V) to the fa-
miliar case of nN elastic scattering. Since the
g is spinless, we must have A.

' = A.
"= 0. The par-

ity condition (2.32) requires l'= l" = 1 for both the
AN and pe vertices. This ensures that the de-
pendence on e'=~" mill be the same for s =N and
s = d. The only difference between the N and b
contributions is thus in the over-all normalization,
which is determined by the relative magnitudes of
TJ~(1, 0) and T~~(1, 0) together with the j„I,de-
pendence of the 6-j symbols. We want to fix the
value of the single parameter lT„'~/TJ, „l so that
the hvo contributions cancel in all nonzero ampli-
tudes.

The last bracket in Eq. (S.V) requires o =+, as
expected. The other bracket then implies

( 1)/+I 1

Since l and I both can be either 0 or 1, it follows
that there are enly tmo nonzero antisymmetric
amplitudes, having l=0, I=1 and /=1, I=O, re-
spectively. The f =1 amplitude must have lXl= 1
according to Eq. (3.6). The two amplitudes of
course correspond to A." ' and 8" in standard
notation.

We can now understand why a single value of
the parameter lT„'~/T„'Jl guarantees the cancella-
tion in two amplitudes. Since l'= P'=1 and j,=I,
for s=N and 4, the product of the two 6-j symbols
is the same for both amplitudes. From either am-
plitude we thus get, by substituting the values of
the 6-j symbols, "

T (1,0)1=~2IT (1,0)l (38)
As discussed above, the cancellation constraint
relates the regularized amplitudes T, defined by
Eq. (BV). The relation (3.8) is very well satisfied
by the known pNN coupling and the zN6 coupling
measured by the b zN decay width.

With no further effort we can also see how the
cancellation works when the pions are Reggeized.
Because of the ev symmetry relation (A35), there
is still only one allowed nNN coupling, T„'~(1,0).
However, there are four possible couplings at the
Reggeized pNh vertex. As in the above on-shell
case, the N and 4 contributions will be propor-
tional provided T~~(1, 0) is the only nonvanishing
coupling, even for Beggeized pions. Since unnat-
ural parity exchange (o= -) is now allowed in the
t channel, we have to study four pN- rN ampli-
tudes. Because of the couplings we have chosen,
A.
' = V' =0 in Eq. (S.V), and so the last bracket

shows that neither the N nor the 6 re'sonance ap-
pears in the o = -amplitudes. This is, of course,
a special way of ensuring that the N+ 4 contribu-
tion to the o = —FESR's is small. For the 0=+
FESR's the cancellation works exactly as in the
on-shell case. The relation (3.8) must there
fore hold also for Reggeized pions at moderate
momentum transfers t'l, t"

l
60.6.

From the above argument it is, of course, not
clear that the set of physical couplings we ob-
tained is the only solution to the cancellation con-
straints. We strongly suspect that this is so, how-
ever, because the equations are overconstrained.
Furthermore, in the case of the pNN and pNb,

couplings it was explicitly shown' that there is
only one solution, namely the one which emerges
naturally from Eq. (3.7) (see below). We shall not
attempt to establish the uniqueness of our solutions
in the present paper.

2. pN~pN

The kinematically allowed values of l' in the
T„'„(I',A.') and T~P~(l', X') couplings are I' = 0, 1
and l'=1, 2, respectively. For the N and 4 con-
tributions to be proportional we must therefore
have l'=1 in both couplings. The parity relation
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(2.32) then requires X'l = 1. Thus the pNN coupling
must be helicity Qip. It can also be easily verified
that the pNE coupling is of the M1 type. Both cou-
plings are known to be strongly favored by the da-
ta.

The fact that lA.
' =lX"l=1 in the last bracket of

Eq. (3.7) ensures that the N, 6 cancellation works
precisely as in the mN- zN case. Thus neither
resonance contributes to the 0 = —FESR's. Can-
cellation in the o =+ FESR's requires again

V„,(1, 1) =~~lv;„(I, 1)l. (3.9)

For this coupling we actually have T = T, accord-
ing to Eqs. (BV) and (B9)~ The relation (3.9) then
implies

do , „ 3 do—(v'P -H~") =-—(~-p -Hn},
dt 2 dt

which is in good agreement" with the data.

(3.1O)

4. A, N~A, N

The Cr symmetry relation (A35} implies that
T„"~(1,1)= T"„'„(I,-1) is the only allowed A,NN

coupling. We are thus led to require that the only
nonvanishing A,NA coupling T„~(l', X') has P =1,
lX'l =1. The main difference between the A, tra-
jectory and the p, p trajectories treated above is
that Cw= -1 for Ay . For the elastic reaction this
quantity enters squared in Eq. (3.V), and so the
cancellation is once again guaranteed by

I&"' (I 1)I=~217"'"„„(I,1)l. (3.11)

5. mN~AiN

This process provides a consistency check on
the previously derived couplings, given by Eqs.
(3.8) and (3.11). The cancellation works out dif-
ferently from the cases considered above, because

3. n'N~pN

All the relevant couplings have been fixed (up to
a sign) by our consideration of the elastic process-
es above. The mN- pN reaction thus serves as a
consistency check on our approach. In fact, the
only difference in Eq. (3.7), compared to the pre-
vious cases, is that o'o" = -1 and (-1)""=-1 have
changed sign. The two sign changes compensate
each other, and the cancellation thus works as be-
fore. The relative phase between the R'NN and
R'Na couplings, not fixed by Eqs. (3.8) and (3.9),
must be the same for R' = g and R'= p.

T"' (l' X') = v'C'r'( 1)i'+)'T" (l' X') (3.12)

For the physical couplings derived above, the
phase factor in Eq. (3.12) is -1, for all trajec-
tories R' = m, p, &,.

The expression for the contribution of the N and
6 resonances to the R'N-R" 4 FESR is simplified
by the ansatz that the only nonvanishing couplings
have /'=1 and satisfy

T~,'(1, X') =P,T~,'(1, X') (s =N, 6). (3.13)

Owing to our phase conventions [cf. Eqs. (A25) and
(A26)], the factors P, are real. We furthermore
assume that P, does not depend on R', f', or X'.
From the R'N-R"N FESR's

p„=+vY. (3.14)

The derivation of the resonance contributions to
the amplitudes W,

' '(l, A.;.I) proceeds just as in Sec.
III B. With our assumptions I' = l" = 1 and Eq. (3.13)
the result is

the product e'o" (-1)~"~"=—1 has changed sign. The
last bracket in Eq. (3.7}now shows that the N and b,

resonances do not contribute to natural-parity-
exchange (e=+) FESR's. For o=-, the first
bracket in Eq. (3.7) requires l+I to be odd. Since
l =0 is a natural-parity-exchange amplitude [cf.
Eq. (3.6)], we must have l= 1, l=O. The two o=-
amplitudes correspond to X=0 and lXl=1. The
product of the 6-j symbols in Eq. (3.7) is thus the
same in both amplitudes, and furthermore is equal
to what it was in all the cases previously consid-
ered. The N and 4 therefore cancel in the 0 =—
FESR's when Eqs. (3.8) and (3.11) hold, provided
only that the relative phase between the R'NN and
R'N~ couplings is the same for R'= p and R' =A, .

6. pN~A)N

The cancellation is very similar to that for the
process gN-A. ,N, as the few sign differences
compensate each other in Eq. (3.7). Thus the N
and 4 do not contribute to 0 =+ FESR's, and can-
cel in the o = —FESR's for the couplings estab-
lished above.

C The R'N~R "6FESR's

The requirement of N, 4 cancellation in the R'N
-R 4 ampl'tudes imposes constraints on the T"„~,
T~~„', and T~«couplings of Sec. II. The first two
couplings are related by Cv symmetry [cf. Eq.
(A34)]:

1 1 l 1 1 I
1,' '(l, X; I) = ie "~ '(2l + 1) Tg; (1, X') T~,"*(I,X")

p,
' p~

x d~,~,(e')d~„„„(v")[(-1)tI vCi7'iC 7' ][1+oa o ( 1P"q-]
1 1

(3.15)
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The structure of this equation is very similar to that of Eq. (3.V) for the 8 N-It "N amplitudes. Thus the
only nonzero contributions are to amplitudes having (—1)'r = -1, i.e., (/, I) =(1,2) or (2, 1). The N and 6
cancel in all FESR's provided the couplings satisfy Eq. (3.13) with

PN4=2. (3.16)

With Eq. (3.16) the relative magnitudes of all couplings T3~4(I', V) have been specified, for R' = m, p, A, and

3, 4=N or h. The helicity structure of each coupling depends only on R': R'=p has /'=1, X'=0, while R'
= p and A, have I'= I, ~A.'~=1. The coupling strengths satisfy

(3.17)

There is no constraint on the relative magnitudes of couplings with different R'.

D. The R'D~R "6FESR's

The R'4-R" Lh, amplitudes logically belong to the set of reactions we are studying. All couplings having
been fixed by the considerations in Sec. III B and III C, it is of considerable interest to see whether the N
and 4 cancel also in the R'4-R" 4 FESR's. The expression for the resonance contributions can be de-
rived as in Sec. III 8. In the approximation (3.3) we obtain the by now familiar-looking formula

l'l" l 11I
W,

' '(I, X;I)= ig-(-I)'"e""r'(2l+ 1) T~~,'(I'X')T~~,"~(I"X")
g', l" 2 2 g 2 2 I

t tt

x ~'
d' ((u')d~ (&o")f(—I)&+r rrC z C z ][1+@0o'( I)v.v]

( Il IIl
(3.18)

The parameters /, I that characterize the R'6
R"4 amplitudes have the range 1=0, 1, 2, 3 and

I=O, 1, 2. Now from the 3-j symbol in Eq. (3.18) it
is clear that neither the N nor the 6 contributes
to the E= 3 amplitudes when l' = l" = 1. Thus the
FESR constraints are trivially satisfied for these
amplitudes.

With the couplings established above, the A and
6 contribute only to amplitudes v", '(I, X;I) with
(-1)"r= -1, i.e., (/, I) = (0, 1), (1,0), (1, 2), (2, 1).
As usual, the relative size of the contributions is
unchanged when / I. By substituting the values
of the 6-j symbols and Eq. (3.17) we find the ratio
of the two contributions to be

—=— (I, I) =(0, 1), (1,o),
5

(3.19)

g
= —

I6 (I I) = (1 2) (2 I).N 25

Thus in FESR' s with (I, I) = (0, 1) and (1, 0) the N
and 6 contributions add, while for (/, I) = (1,2) and

(2, 1) they partially cancel.
To see the significance of the noncancellation,

in particular for the (l, I) = (0, 1) and (1,0) ampli-
tudes, let us briefly recall the reason for expect-
ing a cancellation. It stems mainly from the cor-
responding gN- gN amplitudes A" ' and B"where
all resonance and Regge contributions are accu-
rately known. In those amplitudes, the N and 4
contributions are almost an order of magnitude
larger than the resonance contributions at higher

masses. Furthermore, the N and 6 separately
would oversaturate the FESR's by a large factor,
even with a reasonable cutoff around vs = 2 GeV
(for a graphical illustration of this, see Figs. 3
and 4 of Ref. 6&. The validity of the FESR's there-
fore requires a rather exact N, 4 cancellation,
which actually is observed.

Comparing Eqs. (3.7) and (3.18) for (I, I) = (0, 1)
and (1,0), we can see that the N, 6 contributions
have a similar magnitude and angular dependence
in the gN- mN and g4 -7t 4 amplitudes. However,
as observed above, while they cancel each other
in zN-zN, they add in 7t ~- m~. According to the
above argument we should then expect that the
higher-mass resonance contributions and/or the
Regge terms are considerably larger in n4- m4

than in zN zN. By factorization arguments and
Eq. (3.1V), however, the high-energy amplitudes
should be comparable to the pN- gN amplitudes.
The only possibility then seems to be that there
are resonances that couple strongly to 7t4 and
cancel the combined N, d contributions to the
gh- g4 FESR's.

Finally, it is interesting to observe that the
N+ 4 contribution is small in the I = 3 and (to a
lesser extent) in the I = 2 ~b - 7ra amplitudes. The
Regge terms for these amplitudes should be small
for all isospins (and helicities). Thus, since the
resonances cannot build up a Regge exchange in
FESR's of any moment, we may expect duality to
be more locally satisfied.
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IV. DISCUSSION

The main objective of this paper is to develop a
convenient framework for calculating s-channel
resonance contributions to FESR's for t-channel
helicity amplitudes. The amplitudes we considered
are quite general, in that the external legs can
have arbitrary spin or be Reggeons. We imposed
certain general conditions on the formalism, which
one may expect to be necessary in any duality boot-
strap scheme. However, the most important con-
straint in practice was that the formalism should
give a simple description of a special but nontrivi-
al duality phenomenon: the cancellation between
the N and 4 contributions to zeroth-moment
FESR's.' The formula derived in Sec. II fulfills
these objectives. Moreover, the generalization
of the formalism from the particular example just
mentioned to resonances of arbitrary mass and
spin seems so natural and unique that we believe
the methods developed here will be applicable to
many different phenomena. This will, of course,
provide the definite test of the usefulness of the
ideas presented in this paper.

One of the general consistency requirements we
imposed was that all three-point vertices should
be described in terms of analogously defined cou-
plings, namely t-channel helicity couplings. Our
special example clearly showed, moreover, that
it was advantageous to form certain irreducible
combinations T(l, X) of the helicity amplitudes, de-
fined by Eq. (2.31). For an (s-channel) vertex
R+ 3-4, in a frame where all momenta are col-
linear, X is the helicity of 8 (=f-channel helicity)
and l represents the spin that is added to the spin
of 3 to give the spin of 4. Such couplings are, in
fact, familiar from other applications. E.g., they
are identical to the multipole couplings commonly
used in electromagnetic transitions (R = photon). "
Also, since the pion is spinless, it is clear that l
is the orbital angular momentum in decays like
4 -v+ 3 (particles 3 and 4 having arbitrary spin).
It is encouraging that our approach naturally leads
us to use couplings that have a simple physical in-
terpretati. on.

In deriving our formulas we found it very illu-
minating to give a diagrammatic interyretation to
the quantities appearing in the algebraic expres-
sions (3-j and 6-j symbols, D' functions). Such
symbols can be joined to form spin diagrams, as
long as any two lines that are joined have the same
sense. Algebraic identities such as orthogonality
and completeness for the 3-j symbols, and the
Clebsch-Gordan reduction of D~ functions, corre-
spond to simple and natural rules for the spin dia-
grams. These rules make it possible to do all
derivations directly in terms of the diagrams.

This has the considerable advantage that the
structure of any expression always is clear, and
the steps that lead to a simplification become
evident.

The spin-diagram rules that we formulated in
Sec. IIC made it possible to give a diagrammatic
interpretation of the derivation and final structure
of our formula. However, the rules were not pre-
cise enough to account for all helicity-independent
phase factors. We therefore used the diagrams
mainly to guide the algebraic derivation. In the
future it should prove useful to find a complete
set of rules that makes it possible to write down
the final expression directly from the spin dia-
gram. Long and tedious algebraic manipulations
would then become superfluous in a variety of
spin-related problems. "

Having derived the general formula for a res-
onance contribution to the FESR, we applied it to
study N, 6 cancellation for all amplitudes R'+ 3
-R"+4. Here R', R" stands for any I=1 meson
trajectory, i.e., z-B, p-A„or Ay The external
particles 3, 4 can be N or h. A subset of these
reactions, namely those with R', R" = m or p and

3, 4=N, were studied previously' using a more
cumbersome technique. It was found that the can-
cellation requirement uniquely fixes the helicity
structure and relative magnitudes of the AN,
gN4, pNN, and pNA couplings. The predicted
couplings are in very good agreement with the
experimental data. '

In the present paper we extended the results of
Ref. 6 by considering off-shell v (or B) and A,
Reggeons. We also studied amplitudes where one
or both of the external bax'yons are 4's. We did
not prove that the couplings we obtain are the only
solution to the cancellation requirement. How-
ever, the equations are so severely overcon-
strained that the existence of another solution
seems higMy unlikely.

All couplings RNN, RN4, and RAh were deter-
mined by imposing N, 6 cancellation on the am-
plitudes R'N-R"N and R'N-R 6 only. The he-
licity structure of each coupling depends only on
the Reggeon R. In terms of the reduced couplings
T(f, A) of Eq. (2.31), all couplings have /=1. The
f-channel helicity flip is X= 0 for the v-B and ~X

~

=1 for the p-A., and A., trajectories. The relative
magnitudes of the couplings for a given Reggeon
are specified by Eq. (3.17).

Apart from the couplings already considered in
Ref. 6, there is one coupling (BNh) obtained in
this paper that can be confronted with exyeriment.
Data on the reaction v'P —orb" at 7 GeV/c were
recently analyzed" in terms of the same ampli-
tudes T(f, X) that we used in this paper. The bulk
of the cross section was found to be due to one
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natural-parity- (p) exchange amplitude T(1, 1) and
one unnatural-parity- (B) exchange amplitude
T(1,0). These are precisely the couplings pre-
dicted to be important in our scheme.

From a more theoretical point of view, we find
it very satisfying that the simple couplings we ob-
tained guarantee an N, b, cancellation in the large
number of zeroth-moment FESR's that can be
formed from the R'A-R 1V and R'R-R 4 ampli-
tudes. This indicates that the sum rules are sat-
isfied in an analogous way for many different am-
plitudes, with the external lines being either par-
ticles or Reggeons. The final set of amplitudes,
describing the reactions R'4-R"4, served as a
consistency check, since all relevant couplings
had already been determined. We found that. the
W+ 4 contribution indeed is small for all R'~- R"4
amplitudes with I = 3. For the l = 2 amplitudes
there is a partial (64/p) cancellation. For the l = 0
and /=1 amplitudes (that correspond to the A" '

and B"amplitudes in the vN-nN), however, the
N and 4 contributions have the same sign. Thus
for these two amplitudes the FESR's for the R'N
-R"N and R'4-R"4 processes must be satisfied
differently, higher-mass resonances being rela-
tively more important in the latter process.

It is interesting to ask' whether the coupling sys-
tematics obtained here is consistent also with the
first-moment (n= 1) FESR's. If the N and 6 can-
cel in an n = 0 FESR they, in general, will not
cancel in the n =1 FESR, which involves the s-u
symmetric amplitude. Thus, if A'+ b is dual in
a semilocal sense to a t-channel Regge exchange,
that exchange must be nonzero. On the other hand,
in amplitudes where A and 4 vanish separately in
the n= 0 FESR, they will vanish also in the n = 1
FESR. For these amplitudes, then, the t-channel
exchange must also vanish.

It is straightforward to study the n =1 FESR's
using the formulas of Sec. III (but taking the sym-
metric combination of s- and u-channel contribu-
tions). For l, I being 0 or 1 (which are the only
allowed values in R'N-R"N) one finds that the
n=1 FESR's are fully consistent with the couplings
established above. Thus the t-channel exchange is
nonzero in precisely the same amplitudes where
the R+ 4 contribution is nonvanishing. In particu-
lar, from the results of Sec. III it is immediately
clear that the A and 4 will contribute to n=1
FESR's only when (—1)'I=+ 1. This agrees with
the trajectories studied in this paper (v, p, A, ),
which all had I=/, = 1. Furthermore, it predicts
that the I=0 trajectories f, e must have I = 0, i.e.,
a helicity-nonf lip coupling to nucleons. Converse-
ly, the N and 4 do build up a nonzero exchange in
the 1=I=0 amplitudes.

In view of the contested status of the 4, res-

onance and exchange, ' we want to point out that
neither the n =0 nor the n= 1 FESR constraints
considered above determine the magnitude of the
A., couplings. The only amplitude in which the
R, 4 s-channel resonances are dual to +y exchange
(with the proper coupling) is pN-A, N with (l, I)
=(1,1). However, in this reaction the A, also ap-
pears as an external particle. Hence both the s-
channel and t-channel couplings involve the A„
allowing a solution where all the A, couplings
vanish.

In conclusion, we feel that the compact and
transparent formula we have developed, together
with the success of the applications considered
here, makes an investigation of FESR duality con-
straints for other reactions and resonances both
feasible and attractive. By considering simulta-
neously the resonance contributions to several
different FESR's one may hope to gain an under-
standing of how the sum rules are satisfied, and
how the resonances must couple to each other.
Eventually, other resonance parameters such as
mass, spin, and parity should be constrained by
the requirement of over-all self-consistency. Al-
ready in the example at hand, it is quite difficult
to conceive of any resonance, with parameters
different from those of the 4, that would be able
to cancel the N contribution in the FESR's we con-
sidered.

APPENDIX A: SYMMETRY PROPERTIES
OF HELICITY COUPLINGS

1. The Lagrangian

We shall investigate the properties of helicity
couplings by means of the effective Lagrangian that
describes the coupling. Since we want to treat par-
ticles of arbitrary spin j, the Lagrangian is most
conveniently expressed in terms of the fields con-
structed by Weinberg. ' These fields are written
in terms of creation and annihilation operators of
helicity states, and transform according to the(j, 0)
or (O, j) representation of the Lorentz group. In ad-
dition, we shall assume that our fields belong to
some irreducible representation I of SU, (=isospin).
The presentation here will be self-contained, but
we refer to the original papers' for a more corn-
plete discussion of the fields. In Appendix C we
also give the relation between the Weinberg fields
and the more conventional representations for j = —,

'
and 1.

We shall denote the creation operator for a sin-
gle-particle state ~p, j, A.; I, r) of momentum p, spin
j, helicity A. , isospin I and l~ = x by a'„(p, X) (the spin
and isospin labels will be suppressed). The nor-
malization of these operators is such that
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[a„(p, X), a'„, (p', X')],= (2~)'2p'5'(p p') 5„

(A1)

where p' = (m'+p 2)'~' and a denotes a commutator
or anticommutator. The helicity states are as usual
defined by

Ip, ~, y; I, &)=U(A, )lo, j, ~;I, ~),
(A2)

Ap=R (@)R,(9)R.( 4)&-.(l p I) =-R(» e)R.(lp
I
»

where p= (Ip I, 8, (t)). From the well-known trans-
formation properties of the helicity states" it fol-
lows that under a general Lorentz transformation
A that takes p into p',

U(A)at(p, X)U '(A) = D)', ~(A&. 'AA&)at(p', X'). (A3)

D~: J=J"',
pj. g g(j) (A6)

where J"' is the standard spin-j representation of
angular momentum. Thus for pure rotations the
matrices D' and 3' are the same; in general, the
relation is

extra helicity-dependent phase factor. We leave
this out —thus our antiparticle states transform ex-
actly as the particle states.

Next we want to define field operators that trans-
form according to the (j, 0) or (0,j) representation
of the Lorentz group. We denote the corresponding
representation matrices by D~(A) and 3~(A), re-
spectively. The generators of rotations and boosts
are represented by

Here and in the following a sum on repeated indices
is always implied. Equivalently,

U(A)a„(p, X)U '(A) = D~, (A& 'A A&, )a„(p', X'). (A4)

Similarly, under an isospin rotation Ri we have

D (A) =D t(A-').

This can also be written

3&+(A) = C'D'(A)C„

(A7)

(A8)

U (Rz)a„(p, A. )U '(Rz) = D„„,(RI ')a& (p, X). (A5)

We shall take our antiparticle creation and anni-
hilation operators bt(p, X), b„(p, X) to obey the same
relations (A1) and (A3) —(A5). Note that the anti-
particle operators are sometimes defined with an

where C~ and C; = (C~) ' are the (2j+ 1) x (2j+ 1)
matrices defined by Eqs. (2.15) of the text.

The fields (t)', „(x) and X', „(x) which belong re-
spectively to the (j, 0) and (0,j) representations
of the Lorentz group and carry isospin I are de-
fined by

d3
(t)', „(x)=

JI (2 ),2, CD',,(A~)a„(p, x)e '~ "+D",,(A~)C", C,"~b'„.(p, x')e'~'"],

X...(e)= I (2 ) 2, I))'., (Ae)e, h&, z)e "*e( ()")),(A)C&"-C b'', ()e, V)e'e'"*]. ,.

It is straightforward to verify the transformation laws:

U(A)y', „(x)U '(A) =D~. .(A--')y', , „(Ax),

U(A))j „(x)U '(A) =3,',, (A ') y', , „(Ax).

Under isospin rotations,

(A9)

(A10)

(A11)

(A12)U(R )Q', „(x)U '(R ) =D„(R ')Q', (x),

with an identical relation for X,
' „(x).

We can now write down the general form of the Lagrangian that describes the interaction of three parti-
cles of spin j, and isospin I„(k= 1, 2, 3):

~ I, I,)
~(x) = X'.,',(x)R"'"(ie, ie)el;.(x)e",, (x)1 + H'.

I, s t
(A13)

Any invariant trilinear Lagrangian can be brought
into this form by utilizing the derivative relations
that connect fields (of given spin) belonging to dif-
ferent representations of the Lorentz group. Ex-
amples of these relations and of the Lagrangian
(A13) are given in Appendix C. The differential
operators in R ~" act on the fields X') and (t)'2 only;

I

this can always be arranged by partial integration.
Invariance of the Lagrangian under Lorentz trans-
formations imposes certain conditions on R ~",

which can be worked out using Eqs. (A10)-(A11).
We shall not need those here. Finally, isospin
invariance is explicitly guaranteed by the 3-j sym-
bol in Eq. (A13). For a discussion of the definition
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and properties of the 3-j symbols see Sec. IIC of
the text. In particula, r, using Eq. (2.16), it can
easily be verified that the Lagrangian is invariant
under isospin rotations.

We shall make use of Eq. (A13) for two purposes.
First, we want to find the precise connection be-
tween amplitudes in different channels that are
related by crossing symmetry. The crossingprop-
erties of helicity amplitudes have, of course,
been extensively studied previously. " Here we
shall see how isospin can be naturally included in
the same formalism. Second, we take advantage
of the simple behavior of the fields (A9) under
('(P& symmetry to derive the relation between the
charge-conjugation, parity, and time-reversal
quantum numbers of any particle. A correct treat-
ment of both of these questions is essential for the
derivation of our formula in Sec. TI.

u», , (A,,)c,". ' = ( 1)'"'D'.2, (A,,). (A15)

Our task is now to find the relation between the
wave functions when p' is analytically continued
to the unphysical value —p. As is well known, the
relation depends on the path of the analytic con-
tinuation. "'" We shall choose the path

(p~t2)1/2 (p~2)1/2

8' m —9,

Q'- Q+ 1/.

In terms of the boost parameter g',

(A16)

2. The crossing relation

From the form (A9) of the fields it is clear that
an amplitude with an incoming particle of momen-
tum p is related to the amplitude with an outgoing anti-
particle of momentum -p. Since all other factors
in the interaction (A13) are identical for the two am-
plitudes (in particular, It ~" is the same function of
the momenta) the connection is determined by the wave
functions multiplying the creation and annihilation
operators of the fields. We shall firstdiscuss the
helicity-dependent part of the wave functions, and
then go on to the isospin dependence.

To be specific, consider the amplitude that has
an incoming particle of spin j„helicity A., and a
physical momentum p (po&m). The particle state
is annihilated by the field Q~/2, of Eq. (A13), leav-
ing the wave function

(A14)

The same field annihilates the antiparticle of helic-
ity ii and physical momentum p' (p' &m) in the
amplitude where the antiparticle is outgoing. The
helicity-dependent part of the wave function is

E' =Icosh/',

= ei"2(—1)"&"~D"(A ). (Al'I)

Comparing Eqs. (A14) and (A17) we have the fol-
lowing rule.

Heli city crossing rule: The amplitude T~(p) de-
scribing a vertex with an incoming particle of spir,
j, helicity A. , and four-momentum p is related to
the amplitude T1(—p) for the same vertex with the
particle replaced by the outgoing antiparticle of
the same helicity A. and momentum -p by

T1'„(-p)= e'"'(-1)'" T1(p) (p & m), (A18)

when the path of the analytic continuation is given
by Eq. (A16).

It can be readily verified that the same rule holds
when the particle is annihilated by a X field in the
Lagrangian. On the other hand, if "particle" and
"antiparticle" are interchanged everywhere in the
above rule, so that the states are annihilated by
the fields Qt or yt, there is an additional factor
(-1)"on the right-hand side of Eq. (A18). Finally,
"incoming particle" may be interchanged with "out-
going antiparticle" without any change in Eq. (A18).

Turning next to the isospin part of the wave func-
tion, we want to find a simple rule that

(i) expresses the vertex in each channel as a pro-
duct of an isospin reduced vertex and a 3-j symbol,
and

(ii) gives the connection implied by crossing sym-
metry between the so defined reduced vertices.

The simplest rule is obtained if we associate the
isospin-dependent part of the wave functions with
the 3-j symbol. The isospin-reduced vertices will
then, by construction, obey the helicity crossing
rule (A18). Thus the only problem is to specify
how to write the 3-j symbol in each channel.

This becomes clear if we consider a few exam-
ples. For I+2+3- vacuum, i.e., when all lines
are incoming with I,= x', s', and t', respectively,
we see from Eqs. (A9) and (A13) that the isospin
factor is

the continuation (A16) (together with E'- -E) im-
plies" g'- jvt —g. The transformation A

&
for the

helicity state with four-momentum —p is thus

-i(g+n) Jz -i (n'-8) J&
"P

)& e 3(4~)JZ -i(in'-C)Kze z

where we have defined the continuation of the third
Euler angle so that A ~ is independent of P when
9= 0. After the continuation p'- -p the antiparticle
wave function (A15) is
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Isospin crossing ale: In each channel of a
three-point vertex write the amplitude as a re-
duced amplitude multiplied by a 3-j symbol with
the I, components in the "down" position for in-
coming lines, in the "up" position for outgoing
lines. Include an extra factor (-1)'~ for each out-
going antiparticle of isospin I. Then the crossing
relation between the reduced amplitudes in dif-
ferent channels is given by the helicity crossing
rule (A18). The ordering of the lines in the 3-j
symbol is arbitrary, but should be the same in
all channels.

(A19)

The above crossing rules were derived for the
special case of three-point vertices. However,
it is clear from the derivation that the rules can
be applied also to amplitudes with more than three
external particles. For example, the isospin de-
pendence of the reaction 1+ 2 3+ 4 can be de-
scribed by summing over the isospinI, of the 12 —= s
system. There are two 3-j symbols for each term,
corresponding to the vertices P,IQ, ) and (E,IQ,).
Crossingtothe t channel2+ 3- 1+4 can be done ac-
cording to the above rules by treating each vertex
separately. The amplitude is still expanded over
the s-channel isospin, however. An expansion in
terms of t-channel isospin can be obtained by
means of the usual s-t isospin crossing matrix.

As a corollary to the rule (A19) let us write down
the crossing relation for the full amplitude (i.e.,
including the isospin 3-j factors). If T„ is the am-
plitude for a vertex with an incoming particle of
isospin I and I,= r, then the amplitude T~ for the
same vertex with the particle replaced by its out-
going antiparticle that has I,= r' is given by

Z
c

( 1)2l~r'xZ (A20)

If we had crossed an incoming antiparticle into an
outgoing particle, the factor (-1)'~ in Eq. (A20)
would have been absent. Here we have suppressed

r I, I, I, I, I,
" (I, s' t') (~' s' t)

Similarly, in the case of 2+3-1 we have

(eI, I)
(I, s' t')

whereas I+ 2-3' gives

,,„„,, (- . .l &, . i,„
(I, s' t$ (r s' I,j

These examples adequately illustrate the following
rule.

eat(p„X)e-' = q, (-1)'-"C,""f,', (p„Z),
(Pat(p„A. )6' ' = q~C~„~ at( —p„X'),
&at(p„A)& ' = grat(-p„X) .

(A21)

Here p, is a momentum along the positive z axis.
The helicity state created by at( —p„A) is defined
by Eq. (A2) with 8 =x, P =0. v =0 (2) for integer
(half-integer) values of I. The phase factors
gg 'Qp and q~ can be chosen to be +1~ We define
the phases q&, qp, and qr for the antiparticle
states exactly as in Eq. (A21), with at —bt every-
where. The requirement that the annihilation and
creation parts of the fields (A9) transforms in the
same way under t', t, and 9' then leads to the
relations

nc = (-1)"nc

n~ =( 1)"n~- (A22)

fir =71r ~

The transformation properties of the fields can
be worked out using Eqs. (A21) and (A22) and the
relation (A8) between the (j, 0) and (0,j ) repre-
sentations. Here we only need the combined re-
sult

MV' p, „(x)& '(P '6 '=(-1) "9c)ls Or/, „( x),'-
(A23)

6+& y.„(x)& 'tP '& '=( 1)"( 1-)' "q&n-&qr X'.„(-x).
The t 6'& invariance of the Lagrangian is guaran-
teed provided

(-1)' "ncnJ nr =1

for each field. Indeed, we see from Eq. (A13)
that the combined operation of a @(PI transfor-
mation and a reversal of the ordering of the fields
[which takes care of the factor (-1)'~ in Eq. (A23)]
amounts to

Z(x) -Z'(-x)
and thus leaves the action unchanged.

For mesons that are eigenstates of &, Eq. (A24)
determines g~. For baryons, on the other hand,

qc must be fixed by convention. Eq. (A24) then

all the dependence, given by Eq. (A18), on the spin
and helicity of the particle.

3. The 8(P&connection

An important property of the Weinberg fields
(A9) is that they are essentially invariant under
SP& conjugation. This makes a proof of the SPY'

theorem straightforward, and establishes the re-
lation between the C, 6', and 9 quantum numbers
of any particle.

We define the quantum numbers of the particle
states under the discrete symmetries by
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FIG. 10. Four-point amplitude for BIT MM.

specifies the value of q~ associated with a given
convention. This is the fact that we need in our
derivation in Sec. II. The I-channel resonance
contribution in Fig. 9 can be related to the s-chan-
nel contribution (Fig. 1) by charge conjugation.
When particles 3 and 4 are (distinct) baryons, it
might seem that the result depends on the con-
vention chosen for roc. However, by Eq. (A24)
different conventions for g~ correspond to dif-
ferent values for g~. This means that the phases
of the vertices involving baryons 3 and 4 depend
on the convention. For example, using Eq. (A21)
we get for the 3sR' vertex (when the Reggeon is
on a particle pole)

&R'I& I»& =I(«'IT'e '"")«*""II»&]
(A25)

= q", q', q', &R'IZ13s) + .
Thus rl'~-- qsr implies &R'1213s& -i &R'I&13s). lt

can be easily seen that this phase change, together
with the change in sign of q~, makes the calcu-
lation in Sec. II convention-independent.

In Sec. II we shall for definiteness assume that

3 4
'rl T =VENT ~

This choice is always possible when particles 3
and 4 are baryons. In applications where all ex-
ternal particles are mesons Eq. (A26) may not
hold. The relative sign between the s- and u-chan-
nel resonance contributions would then have to be
reversed.

4. Applications to helicity amplitudes

As an illustration of the above methods, we
shall derive some symmetry relations for the
Reggeon couplings that we need in the text. We
consider the high-energy Regge pole limit of a
c.m. helicity amplitude for the process
B,B,-M, M, (Fig. 10). M, and M, are spinless
mesons. B, and B, will be baryons in our appli-
cations, but can also be thought of as mesons. The
spin, helicity, isospin, and I, component of parti-
cle k will be denoted by j„~„,I„and a„. The
Reggeon R is characterized by its naturality o,
signature r, isospin I, I, =a, and charge conju-
gation C.

In accordance with the above discussion of
crossing we define the isospin-reduced amplitude
by writing the complete amplitude as

u, a, I I I, a
T(M, M283B,)=Tg q (M, M B B,) 11 ( 1)24

a3a, I

The ordering of the lines in the 3-j symbols is conventionally fixed to be MMR and BBR (note that the
ordering will therefore be different in amplitudes related by charge conjugation). We do not include a
"particle-2" phase' in the definition of our helicity states. We want to find the symmetry relations im-
posed on the reduced amplitude by parity, charge conjugation, and signature.

Parity. The standard formulas give

Tq g (M, M, B,B,) = q cq'pe(-1)~ (3-1) 3 &T g g (M, M2B38~),

where 0 = g~q~. Note that q~ is the parity of B„not that of B,.
Charge conjugation. The transformation properties of the states under 6 are given by Eqs. (A21)

and (A22). The relation between the complete amplitudes is thus (we indicate I, of each particle in
parentheses)

(A28)

(A29)

(A30)Tash, (MiM2BsB~) =pc qcqcqc Tz, 'x (M~M2BsBs)

Note that all phases pc~ are again defined for Particle states, according to Eq. (A21). For half-integer
I there is an extra factor (-1)"2"~'on the right-hand side of Eq. (A30).

TIM, (a, )M, (a, )B,(a, )B,(a, )] = QI (-1) ~ "pc Cz"'I'](-1)' "' 'TI M, (a,')M, (a,')B,(a,'N, (a,')]

It is now straightforward to deduce the relation between the isospin-reduced amplitudes. Taking into
account the different ordering in the 3-j symbols and the extra phase for outgoing antiparticles we find,
assuming I to be integer,
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(A31)

Chas ge conjugation at one ver&ex T. he above formulas (A28) and (A30) are valid irrespective of the ex-
change mechanism. For a single Regge-pole exchange that is an eigenstate" of 6 each vertex can be
separately charge-conjugated. For a, +a, =a, +a, =0 we have then

T[M,(a, )M2(a, )B,(a,)B (a, )j = (-1)'"3' 'C pc AC,"C;s' s C~~' ~ T[M,(a, )M2(a, )B,(a3)B,(a,')]

~z symmetry. When we combine the charge-con-
jugation relation (A32) with signature symmetry

Tg g (M, M2BSB,)=TT) g (M,M2B, B~) (A33)

we get

Tz x,(M, M2BsB, ) =C7 qcqc Tx z (MiM2Bsg)

(A34)

In the special case when B,=B, =B, Eq. (A34)
simplifies to

(A35)Tg y (M M2BB) =CTTg, g (M,M2BB) .

Combined with the parity relation (A28), Eq. (A35)
forces certain Reggeon couplings to vanish. Thus
for B= N we get the well-known result that the w

trajectory coupling to NN is pure helicity nonf lip,
while the coupling of the A, trajectory is pure
helicity flip.

APPENDIX B: KINEMATIC SINGULARITIES

There are two types of kinematic singularities
that we have to consider in this paper. First,
since we want to write FESR' s for the six-point
helicity amplitude in Fig. 1a, we have to remove
its kinematic singularities in s. Second, in our
application of the FESR's to the N, 6 cancellation
problem in Sec. III we make use of the small mass
difference between the two contributions by putting
m„=mz, . This is a good approximation only for
amplitudes that do not have kinematic singularities
at the t-channel pseudothreshold i= (m~ m„)2-
We therefore need to know the (pseudo-) thresh-
old behavior of the amplitudes T (I', X' ) defined
in Eq. (2.30). In this Appendix we discuss these
two different aspects of kinematic singularities.

1. Kinematic singularities of the six-point amplitude

Consider first the analogous problem for the
four-point amplitude B,B4-M»M56 (i.e. , with the
Reggeons on particle poles). As is well known, "
all the kinematic singularities in s of the t-channel
helicity amplitudes for this reaction occur on the
boundary of the physical region. When M» and
M„are spinless, the singularities can be removed
by writing

which gives

Tg g (M, M, B,B,) =C&j'-qc Ty, y (MM, B3B ) (A32)

T), y (M»M56BBB~)

=(sin8, ) ~ ~ Tq g (M,~M56BsB~), (Bl)

where 8, is the t-channel scattering angle and T is
free of kinematic singularities in s.

We want to find the analog of Eq. (B1) for ampli-
tides with four spinless particles in the final state
(cf. Fig. 1a). One could try to solve this problem
using the general methods developed for studying
the kinematic singularities of N-point amplitudes. '~

For our special application, however, we find it
more illuminating to generalize the derivation
given in Ref. 6, which was based on invariant am-
plitudes.

We shall first give the general (somewhat heuri-
stic) argument, and then check the result using the
explicit calculations of Ref. 6. Consider the ampli-
tude for the process B,B4-M,M, M,M, of Fig. 1a
evaluated in the t- channel c.m. In the standard
reference frame, where B, and B, move along the
~ axis withp, +p, and p, +p, lying in the x~ plane,
the particle momenta are given by Eq. (2.1) of the
text. The energy which we disperse in is
s=(P, -P, —P, )', and the angle 9, between

p, and p, +p, is the t-channel scattering angle for
the Reggeon amplitude. Note that the conditions'
required for FESR analyticity have already been
imposed in Eq. (2. 1). They imply that the mo-
menta P„P„P„and P, are all proportional to the
single four-vector P, . As we shall see, this
greatly simplifies the kinematic structure of the
amplitude.

The amplitude consists of the wave functions for
the two spinning particles B, and E4 multiplied by
various combinations of the particle momenta, as
required by Lorentz invariance, and by functions
(= invariant amplitudes) that depend only on the
invariants. As can be seen from Eq. (A9), the
wave functions do not have s-dependent -singulari-
ties. We shall assume that the invariant ampli-
tudes are likewise free of kinematic singularities.
The singularities in s must therefore come from
the four-momenta.

Now by dotting the momentum P of any particle
into p, +P4 and p, —p4, one can easily see that the
expressions for P' and P' in terms of the invari-
ants are regular in s. Thus we only need concern
ourselves with the dependence on P" and P'. This
is dictated by the invariance of the amplitude
under rotations B,(Q) about the z axis. Thepro-
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duct of the wave functions gets multiplied by a
factor e ' 3 4 under R,(Q); this must be com-
pensated for by a proper combination of p" and p'.
Since

P"+ fP" = e"'(P"+ fp'),
&~(@)

the dependence on P", P' must be contained in a
factor

(
x ~py)(), - X4( (82)

where the + (-) sign corresponds to A -A4 being
&0 (&0).

In general, the helicity amplitude can be ex-
panded into a sum of terms, each of which is
multiplied by a factor (82) with different choices
for the momentum P. We want to extract a com-
mon kinematic factor that makes all the factors
(82) regular in s. In the case of our six-point
amplitude, P could be either P» ——P, +P, or any of
the momenta p„P„P„P,. Since P» = 0 and

P»~ sin8, the first choice gives a factor

(sin8 }~ ' 4~ (83)

This would be the only possible choice for a four-
point amplitude, and we see that the result indeed
agrees with Eq. (Bl).

When any of the vectors P„P„P„orP, is sub-
stituted for p in Eq. (82), the situation is, in
general, complicated by the fact that P' is a non-
trivial function of the invariants. However, in the
special case we consider here all these momenta
are proportional to P, [cf. Eq. (2.1)]. Both P",
and P,' behave like (sin8, ) '; thus Eq. (82) becomes

( 8 )-IX~-X4( (84)

The factor (83) can be viewed as a special case of
Eq. (84), since factors of (sin8, )' are regular in s
when they occur in the numerator. We have there-
fore
Tq ), (B~B4-M,M2MSM6)

=(sin8)) s "4 Tg g (BSB4-M,M2MSM6), (85)

where T has no kinematic singularities in s.
The result (85) implies that there is an impor-

tant kinematic difference between Reggeon ampli-
tudes and ordinary four-point amplitudes [which
obey Eq. (Bl}]. To establish this we should still
make sure that T in Eq. (85) cannot, in general,
be factorized into a power of (sin8, )' multiplying
a regular function of s [consistency with Eq. (Bl)
requires that this happen at least when both
Reggeons are put on a spin-zero particle pole].
Let us therefore analyze the explicit calculation
of Ref. 6 from this point of view.

From Eqs. (10a) and (10b) of Ref. 5 we learn,
first of all, that the kinematic singularities of
multiparticle amplitudes, in general, appear not

only in factors of sino„but also in terms in-
volving the antisymmetric tensor e„,, p . The fact
that such terms are not present in Eq. (85) is due
to the constraint imposed on the momenta in Sec.
II. When the momenta P„P„P,and P, are all
proportional to the single vector P„ the only
invariant that can be formed with the c symbol is

p v p o 1 f~ pvpaPopy2 Ps P4 siv" t

Here q is the final-state momentum in the t-chan-
nel c.m. [cf. Eq. (2.1)] and so does not depend on
s. This shows again how the constraint on the
momenta, originally derived" from the require-
ment that the invariant amplitudes should be
FESR-analytic, actually simplifies the kinematic
singularities as well.

All the helicity-flip amplitudes calculated in Ref.
6 have a negative power of sin6I, in the kinematic
factor, as predicted by Eq. (85). The coefficients
of the invariant amplitudes do not have a common
factor of (sin8, )' that could cancel this negative
power. Finally, the invariant amplitudes them-
selves are not proportional to (sin8, )'. This can
be seen, e.g. , by calculating the s-channel nu-
cleon Born term Equati.ons (30) and (31) of Ref.
6 show that the residue of the Born term is con-
stant (i.e., independent of s) in all invariant ampli-
tudes.

We can also see from Eqs. (10d) and (15b) of
Ref. 6 why the power of sing, is positive when both
Reggeons are put on a spin-zero particle pole.
From the definition of the invariant amplitudes, it
is clear that only Q and 8, respectively, have the
spin-zero pole. The coefficients of both of these
amplitudes, however, are proportional to (sin8, )'.

We conclude, then, that the explicit calculations
of Ref. 6 support the general arguments that led to
Eq. (85). The striking fact that the kinematic
singularities of Reggeon amplitudes must be ex-
tracted as a negative power of sin9, may well have
dynamical consequences. It means, in effect, that
the low-mass contributions are, in general, more
suppressed relative to the higher-mass contri-
butions in Reggeon FESR's than they are in the
corresponding particle FESR's.

2. I'seudothreshold behavior of T(l', X')

In Sec. II we describe the contribution of a given
resonance B, to the discontinuity 7' of the six-
point amplitude (Fig. 1) in terms of helicity ampli-
tudes for the processes B,B,-M, M, and

B4B,-M, M,. The energy s that we disperse in
thus enters as an external mass in these helicity
amplitudes. Now it is well known'" that helicity
amplitudes have kinematic singularities at thres-
hold and pseudothreshold. The t'- channel helicity
amplitude T~,z shown in Fig. 10 is therefore
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j3 j~ A,
'

ad@/2~ (B6)

The definition of the 3-j symbol is given by Eqs.
(2.14) and (2.17). Remember also that the helicity
amplitudes T&, ), are defined without a "particle-2"
phase. ' Since

t' —(m, -Ms)'= —[v's —(m, +v t')] [v s —(m, —Mt'}],

we can summarize the behavior of T(l', A'. } at
v s = m, +u t' by its pseudothreshold behavior

T(l', Ã) =[t' —(m, -Ms)'] 'T(l'& X),

where T(t', Y}is regular at t'= (m, —~s)'.
For fs =m, +Mt' the energies E„E,of particles

B, and B, are, in the t' c.m. system,

(B7)

+ Pl3 —S
E3= =+rn3,

Pl SE = ' =+(m, +Mt') =+Vs.s=
2 t

Thus for either value of Ws one of the particles is
related to its rest frame by a complex boost im

singular in s at s =(m, s v t')', where t' is the
Reggeon mass. We know that the full six-point
discontinuity does not have these singularities
in s (see subsection 1 of this Appendix). Hence
they must be canceled by corresponding singulari-
ties in the Wigner angles (we discuss this in more
detail in Sec. III). This is why we can make the
approximation Ms=m~= m„ ir the expression for 6
However, we must be careful to apply that approxi-
mation only to helicity amplitudes T&3&, which are
regular at s =(m, aWt' }'. Here we want to investi-
gate the precise behavior of our helicity ampli-
tudes at these values of s.

We shall use the method for evaluating thres-
hold singularities proposed by Jackson and Hite."
Their procedure has the advantage of exposing the
physical origin of the singularities (a mismatch
between Jand L). It can furthermore be applied
with equal ease to a general four-point amplitude
and to the special case when the Reggeon is a spin-
zero particle ()) or IC). This is important, because
the singularity structure is different in the two
cases.

In Sec. II we describe the process B,B 1VlyMg

(Fig. 10) in terms of the amplitudes T(l', A.') de-
fined by Eq. (2.30) to be

P=l' —~a[1 a'rlsx1J( 1)']. - (B9)

Here o' is the naturality of the Reggeon, and q&, g&
are the parities of B, and 8,. The result (B9) can
be simply obtained also using the approach of
Trueman, "or by direct inspection of the behavior
of the s'-t' helicity crossing matrix.

When the Reggeon is on a J=O particle pole, Eq.
(B9) for P does not apply. Instead, we have L =S
=l' and so J-L = —l'. Thus

(Blo)

when J=0 is the only allowed value of the total
angular momentum. According to Eq. (B7) this
means that T(l', X') in this case is constrained to
vanish at pseudothreshold (for l' )0).

APPENDIX C: (2j+ 1)-COMPONENT FIELDS

In this appendix we present a brief discussion of
the relationship between (2j+ 1)-component fields
for j = 2 and 1 and the more common Dirac and
vector fields. Much of this discussion is contained
either explicitly or implicitly in Weinberg s origi-
nal papers. ' For illustrative purposes, we will
also translate a few familar Lagrangians into the
(2j+ 1)-component formalism. Since isospin is
not germane to this discussion, we write the (j, 0)
and (0,j) fields (A9) as

along the z axis. For example, when Ws =m, Wt'

we have E, = —v s. According to Ref. 25 we should
then construct the total spin S and angular momen-
tum L, using the pseudoamplitudes

(B8)

In addition, the parity of B, should be reversed if
it is a fermion. It can easily be checked that (since
l' is always an integer) the construction of S and L
is completely equivalent in the case when Ws =m,
+Mt'. The pseudothreshold behavior of the ampli-
tude is therefore the same at v s =m, + v t', as we
have indeed already implied in Eq. (B7).

Substituting Eq. (B8) into Eq. (B6) we see that
1'=S, i.e., the amplitudes T(l', A.') correspond to a
definite spin state S of particles B, and B, in the
crossed (s') channel. The calculation of the pseu-
dothreshold behavior of T(l', X') then becomes very
simple. The exponent P in Eq. (B7) is the maxi-
mum value of J-L, which, in general, is equal to
S or S —1, depending on the parities:

(C1a)

X~(x) = „[11~~(Ap)a(p, X)e '~ "+ (—I)'~15~~'(A~)C; bt(p, X')e'~'""]. (C1b)
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As shown by Weinberg, these two fields are related
by a differential operator

@'.(x) = 11'.. (iS)X'. (x), (C2)

where II„,(iS) is a polynomial of order 2j in the
four components of i&v -=i(&/Sx~). It is easy to
show that Eil. (C2) along with the I orentz trans-
formation properties of the fields (Alo) and (All}
require that

~ (Ap} =D~a(A)ilx. (p)&i~ ~ (A ') (C3)

IP...(-p) = (-1)"11'„,(p). (c5)

This can be obtained by continuing the boost and
rotation parameters in (C4) just as we did in (A16)
and (A17), which gives

D' „(A ~) = Di „,(A~)C'„, „e (C6)

PJ (A -1) ( 1)2i ivvCvx'7)i (A -1)

from which (C5) follows. Since IP„,(p) is a poly-
nomial in the components of p, ' the relation (C5)
is actually independent of the path of continuation.

Now consider an ordinary four-component Dirac
field for a spin-& particle,

(C7)

3~
g„(x)=, [u, (p, x)a(p, x)e '~'"

7T pp

+ (-1)i 'v, (p, X)bt(p, X)e'~'"]. (C8)

(Here and elsewhere, a sum over repeated indices
is implied. ) The extra phase factor in the second
term of (C8) is included so that the antiparticle
states may have the same Lorentz transformation
properties as particle states. The spinors in (C8)
are obtained from

u, (p, x) = S,p (A~)up(p(m), R),

v (P, X) =S„(A,)v, (P(m), x},

(C9)

(C10)

The explicit form of II~, , is then obtained by con-
sidering the special case p= p(m) =- (m, 0, 0, 0) and
A=R=pure rotation. Since Rp(m)=p(m), the ma-
trix Ili„,(p(m)) commutes with all the generators
J,'.~' and is therefore a multiple of the unit matrix.
Fixing the constant by inspection of (Cl) and (C2)
gives

lii. .(p) = Di, (A,)3i., (A,-'). (C4)

[In this entire discussion we are tacitly assuming
that II(i&) is being applied to fields in the interac-
tion picture, and we therefore only need to consider
II(p) for on-mass-shell values of p, p'=m'. ] We
may verify (C2) by direct substitution of (Cl) and

(C4). Note that in order to verify that Iii, .(iS) con-
verts the antiparticle term of the y field into the
corresponding term of the Q field, we need the
identity

U(A)P (x)U '(A) =S~(A ')(8(Ax). (c13)

Now, proceeding along the same lines that led
to Eil. (C4), we can show that the Dirac field can
be written in terms of the 2-component field Q'i'

C.( ) = 11'..( S)e.'"(x),
where

II'..(p) =u. (p, X)D,'~'(A ).

(C 14)

(C15)

Again, (C14) may be formally verified by substi-
tuting (Cla), (C8), and (C15) and noting the cross-
ing property of II~,

11' ( p) = .(p, X)(-1)"'-'C"D"'(A -') (C16)

which can be derived by crossing both the wave
function and the D matrix in (C15) (see Appendix
A).

The connection between the Dirac field and the
2-component Q and X fields can be made more ex-
plicit if, following Weinberg, we introduce a par-
ticular representation of Dirac matrices in which
S p (A) is explicitly reduced to 2 && 2 block form
[corresponding to the (—,', 0)9 (0, —,') representation
content of the Dirac field]:

(0 ll

(1 oj

y'= (., 0)' (C17)

(1 0)

~01
It is easy to show that the Lorentz-transformation
matrices are reduced to

g)1/2 A

S(A)=
0 Pl/ 2 (A)f

(C 18)

and therefore, in matrix notation

where S~(A) is the usual Dirac matrix representa-
tion of the Lorentz group, and the rest spinors
u(p(m), X) and v(p(m), A.}satisfy the rotational
property

S„,(R)u, (p(m), X'}D,'!;(R-')=u. (p(m), X) (Cll)

S 8(R)v8(p(m), -W'}D,'!~'(R ') = v (p(m), -X).
(C12)

Using (C9)—(C12) along with (A3) and (A4), it is
easy to show that
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l
IID(p) = S(A~)u(p(m))D' '(A~ ') =

(n'i'(p))
(C19)

fields can now be translated into the (2j+ 1)-compo-
nent formalism. For example, the coupling of a
vector field to left- and right-handed currents be-
comes

where

11;', (p) = D',~(A, )D~. (Ap '), (C20)

and u(p(m)) is the 4 x 2 matrix whose components
are u (p(m), A)=5 ~+ 5, ~. Note that II'(p) is
just the inverse of Il~ and, hence

hatt (x)W'(I+ r') 0(x)p, (x)

= X"~'&'(x)v', X,'i'(x) 11„',(ie)P, (x), (C 27)

-'7(x)r'(1 -r')((x)p, (x)

= y."""(x)7:,y',~'(x)li'„.(ie)y.'(x), (C28)

X'.(x) = 11!.(ie) 4'. (x) (C21) where

It is now straightforward to express interactions
involving Dirac bilinears in terms of the corre-
sponding 2-component fields. For example, the
Yukawa coupling of a nucleon to a pseudoscalar
meson can be put in the form (A13) (suppressing
isospin)

$y'pm= g"~ "tR ~(is, i&)&~i'n, (C22)

where A~ is a 2&& 2 matrix

(p„p,) = -11„'p(p, )ii I", ( p, ) —~„,. (C23)

By a straightforward generalization of the pre-
ceding discussion, one obtains the relationship be-
tween the 3-component fields (C1) for j = 1 and the
4-component vector field, which transforms by
the (2, —,) representation of the Lorentz group. De-
fine the vector field as

0 0
~ng 0.8 ~eg r (C 29)

(C 30)

With a partial integration and the use of (C2) and

(C21), Eqs. (C27) and (C28) can be put in the form
(A13).

In this paper the (2j+ 1)-component formalism
was used primarily to obtain symmetry and cross-
ing properties of helicity amplitudes which were
needed for the derivation in Sec. II. However, it
can also be used in a more direct fashion to derive
Feynman rules for helicity amplitudes which will
then automatically satisfy the constraints imposed
by local field theory. ' The graphical rules ob-
tained in this way lead naturally to the use of spin
diagrams, Wigner rotations, and i-channel (i.e. ,
collinear) helicity couplings. These matters will
not be pursued further here.

+ &,*(p, X)bt(p, X)e'~'"]. (C24)

It can then be shown that

p, (x) =11„,(i&)$,'(x),

where

II~,(p) = q (p, A.)D~, (A~ ').

(C25)

(C26)

Familiar interactions between Dirac and vector
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