
PHYSICAL REVIEW D VOLUME 13, NUMBER 7 1 APRIL 1976

Role of collective phenomena in high-energy multiple production*

Richard C. Arnold and Gerald H. Thomas
High Energy Physics Division, Argonne National Laboratory, Argonne, I11inois 60439

(Received 14 July 1975)

Beginning with qualitative ideas on two-particle correlations and rapidity cluster decomposition, collective

phenomena are studied. These phenomena are found to be important at large multiplicities as well as at high
transverse momentum. The discussion is given in terms of an explicit mathematical model which is formulated

in terms of coupled nonlinear equations. These equations, which are shown to have nontrivial solutions, give

constraints between experimental observables based upon an assumed pairing structure of the S-matrix
elements. These equations provide a mechanism for relating the enhancement of the large-PT cross sections to
the low-multiplicity cross sections. Stronger predictions for PT correlations are found if a nonlinear bootstrap
condition is imposed. Some consequences of this bootstrap are studied.

I. INTRODUCTION

A. Perspective

The notion of a theory of hadron interactions can
have at least three different meanings in current
usage. It can be formal, being a description, for
example, of hadrons through local fields. There
are supposed to be a finite number of bare cou-
pling constants and masses, together with a well-
defined renormalization procedure. In such a for-
mal theory, observables are, in principle, com-
putable at all energies in terms of only a few pa-
rameters. At the opposite extreme, a purely phe-
nomenological description is sometimes referred
to as a theory. In such a theory, typically one
phenomenon is parametrized in terms of a few pa-
rameters. Such a theory is supposed to be a good
model of the data over a limited range of the rele-
vant variables (energy, particle number, etc).
Such a phenomenology is valuable when a formal
theory is nonexistent, or if it describes an effect
where computations in a normal theory are diffi-
cult or impractical.

Intermediate in scope and purpose between these
two extremes, we wish to characterize a set of
ideas or principles as a theory, provided these
ideas admit a precise mathematical formulation,
and allow quantitative predictions. As examples
of the most successful of such theories we recall
the usefulness of local current algebra, SU(3) and
SU(6) symmetries, dual theories, and the Cabibbo
theory of weak interactions. Such principles are
intended to be precisely formulated and testable,
although not necessarily exact or complete in a
strictly formal sense. Moreover, they are ex-
pected to be applicable only in a limited domain.

A primary motive for studying such theories
lies in the hope that they can be ultimately shown
to be compatible with a more complete formal
theory. A secondary motive, closely related, is a

recognition of the role such intermediate theories
play in many mature fields of science where a for-
mal theory may be well established. The under-
standing of complex phenomena is often materially
advanced when less than formal concepts can be
used.

B. Description and motivation

In this paper we propose a set of principles to
be satisfied by S-matrix elements. Precise form-
ulation of these principles leads to coupled integral
equations describing high-ener gy multiparticle
production. The point of view we wish to empha-
size in this work is the dynamic possibility of im-
portant collective phenomena in high-energy parti-
cle production. We have previously suggested'
that local inclusive rapidity correlations and large
multiplicity fluctuations as evidenced by the growth
of f,/f, might be due to such a collective mecha-
nism. We conjecture here that the unexpectedly
large inclusive cross sections at large transverse
momentum may be due to similar phenomena.

To illustrate briefly what we intend by a collec-
tive mechanism, we review in outline a theory to
describe high- energy multiplicity distributions.
In spirit and method this theory resembles the
goals of the present article. The starting point
consisted of the following qualitative ideas: (l)
Rapidity correlations are (technically) long-range
in that they fall off more slowly than an exponen-
tial. (2) The Pomeron, with intercept unity, is
generated by means of summing over inelastic
processes which proceed mainly through secondary
exchanges, modified by the collective effect of
final-state interactions. (3) Though the most sin-
gular part of the Pomeron factorizes, the inelastic
sum need not produce a pole. Indeed, if the cor-
relations are long-range [assumption (i)] one ex-
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pects a critical behavior for the Pomeron singu-
larity. This critical behavior has an analog in
fluid physics; a simple qualitative description can
be obtained in the Van der Waals theory. The
above ideas lead to a phenomenology for the mul-
tiplicity distributions with two parameters, which
are in fact determined by the assumptions, leaving
a strong prediction for multiplicity distributions.
This theory gives satisfactory quantitative pre-
dictions over Fermilab energies, and is expected
to be valid at higher energies.

Besides giving a satisfactory description of
available data, this simple phenomenology sug-
gests at infinite energy that f,/f, -~, as a result
of the long-range inclusive correlations. The im-
portance of long-range correlations does not man-
ifest itself dramatically at the exclusive level for
low multiplicities; there the dominant effects are
the secondary exchanges. The only dominant long-
range effects come through the corrections due
to final-state interactions. These effects, though
individually small, can occur between all pairs of
final particles. For a particular choice of cou-
plings these effects can collectively add up in the
sum over inelastic states to produce anomalous
behavior inclusively. (At other values of the cou-
plings, however, there may be only short-range
correlations. ) The collective effect is also mani-
fested in a buildup of large-multiplicity (n =f,)
cross sections. Since f,/f, -~, the width of the
multiplicity distribution is broader than it would
be in short-range-order models. Thus as f, -~,
there is an enhanced cross section around the mean
multiplicity.

We shall term the mechanism which accounts
for the dramatic buildup of the effects of long-
range correlations collective. It is an example,
and not the only one we claim, of effects in a the-
ory which in the sum are qualitatively different
from the dominant behavior of any single term.

A natural question, to which we have no answer
at present, is whether the observed rapidity cor-
relation at short distances is due to a collective
effect. At the first level of consideration it seems
hardly necessary to invoke such an effect since
many would argue that the correlations observed
are due in a natural way to resonance production. '
Still, there has been no proof, in fact, that this is
so. It may be that a complete understanding of the
correlations may require the inclusion of some
collective mechanism in addition to a correct res-
onance spectrum. In this context collective effects
include absorptive rescattering and stimulated
emission processes.

One other place to look for some collective
mechanism is in the large-P~ behavior at high
energy. The inclusive cross sections above beam

energies of 100 GeV show an enhancement at val-
ues of Pr &2 GeV/c compared to a simple extra-
polation of the lower P~ values. ' In this paper we
give reasons for supporting the idea that such be-
havior is collective.

In formulating a mathematical model in which
to discuss collective phenomena, we are accepting
a body of lore familiar in multiperipheral models. ~

We accept as the most important variables the ra-
pidity of each produced particle and the particle
number (multiplicity). Much of the dynamics is
then a one-dimensional phenomenon. Underlying
these statements is a belief that the multiparticle
amplitude has a factorizable multi-Regge limit
for all rapidities separated from each other by
arbitrarily wide intervals, at least for the leading
Regge singularities which contribute at or near
the average multiplicities. We summarize this
behavior as xaPidity cluster decomPosition. It is
the assumption of a generalized Regge behavior;
the multiperipheral form is not assumed at low
subenergies.

In describing the transverse degrees of freedom
we are influenced by the classical (eikonal) pic-
ture' of rescattering. In this spirit, we choose to
hypothesize a factorization of the S-matrix ele-
ments for fixed impact parameters.

The plan of the remaining part of the paper is to
introduce in Sec. II a mathematical model based
on the idea that pairwise interactions dominate
the exclusive production cross section. Section
III describes a "natural" bootstrap equation which
allows interesting and nontrivial solutions. The
solutions are studied in Sec. IV and are found to
relate inclusive large-P~ behavior to certain ex-
clusive single-particle spectra. A discussion of
the general results of the model are given in Sec.
V. Various side issues are treated in depth in ac-
companying appendixes.

II. BASIC FORMALISM

The fundamental assumption we make is that an
S-matrix theory can be constructed by proposing a
mathematical algorithm for S-matrix elements.
The algorithm would express higher-order ele-
ments in terms of a finite number of lower-order
elements. Explicit justification from an underly-
ing field theory is to be replaced by the require-
ment that the consequences of the theory conform
to the experimentally known facts. Such algorithms
must, of course, not grossly violateacceptedprin-
ciples such as crossing and unitarity. In the pres-
ent formulation, we do not treat spin or internal
quantum numbers. Because of the nonlinear na-
ture of the type of model given below, these sym-
metries are expected to play an important role,
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and are here ignored only to keep the mathematics
manageable.

As one realization of this general program, we
propose an ansatz for the amplitude of the process

a+A-a'+b'+h, + ~ +h„. (2.1)

The matrix element A„(B~fy„b,)) depends on B,
the impact parameter of the initial state, and the
rapidities y; and impact parameters b, of the n
secondary particles; we combine these variables
into a 3-vector r; = (y;, b,.). The ansatz is

energy limit, and taking thenproducedsecondaries
to be centrally produced, we saturate the energy-
and longitudinal-momentum-conservation rules by
setting, in any phase-space integrals to be done
over a' and b',

Xg =Pa~

3'b = X~

[y„—y, =—1' and y, +yb=o
(choosing c.m. frame)].

A„(B~r, r„)=&,(B) [ G(r, B) K(r, r, B).
j kVj'

(2.2)

We do not explicitly indicate s dependences. The
functions h„G, and K need to be specified for a
complete prescription. We note here several con-
siderations implicit in the ansatz (2.2):

(i) The impact parameter b& is given the physical
interpretation discussed by Webber. ' In the high-

In the same limit, we approximate the conserva-
tion of transverse angular momentum by

b, , =b~,

[b» —b, —= B and b»+b, =o
(special choice of reference frame)].

No other kinematical constraints are retained.

(ii) The semi-inclusive distribution for n produced particles is

J d b J( d'b'r 't -'&
~( dr'd'r„'J ,d'BA(B

~

r, r„.. . , r)A„(B ~r', r„.. . , r)
(2.3a)

where r=(y, b) and r =(y, b ). Similarly the two-particle semi-inclusive distribution is

do' 1n d2$ d2$Id2$ d2$ fein@ ~ (51 +l~e~ P2 "2
dy, d'Pr, dy, d'Pr, (n —2)!

(2.3b)

(iii) Our form for A„generalizes models which argue for non-nearest neighbor two body inte-ractions, "
as embodied in (2.2). The function A„(B~r, r„) is assumed to be cluster decomposable in y and b sep-
arately. ' This is a, constraint on the functions G and K; in particular ~K(r&, r, )~

-1 as ~y&
—yz ~-~. We re-

call that multiperipheral models can be expressed in a form such as (2.2), if G is a constant. Only for
nearest neighbors in rapidity is K different from unity. Alternatively, if K—= 1 and G is nontrivial, we ob-
tain some of the eikonal models studied by Auerbach, Aviv, Blankenbecler, and Sugar. ' Note that unless
G and E are independent of B, the inclusive densities will not obey rapidity cluster decomposition.

With the theory as presented, we can proceed in one of two ways: (a) For the unknown functions h„G, and
K we can make some inspired physically motivated guesses"; or (b) the unknown functions themselves can
be fixed by requiring them to satisfy certain constraints leading to deterministic equations.

We choose in Sec. IG the second way of proceeding. For this we will need an effective approximation
scheme. We proceed by first defining a formal generating functional

/h»(B)/ 0's[(t)]=—g —
]

d't, d'r„A'„(B /r, r„)A„*(B/r, r„)(t)(r,) . +(rB).
n

This functional $~[(t)] has, in general, an inclusive cluster expansion"

(2.4)

(rf) Id ]= J '
(r)d(dr(dR —(] +

~ J d' d' d(r„rr, )r[dr(r, ) —(]Id (r, ) —(]

d'r, d'r„u„(r„ . . . , r„)[(t)(r,) —1] [(t)r„)—1].
tt~~ 3

(2 5)
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To determine g~ and u~, given G and K, we must
have the following two consistency conditions:

(i) By definition, ga(r) is the result of taking a
functional derivative of F by Q(r), setting (t) = 1
and dividing by 5[1]:

(2 8)

terms in (2.5) will be of maximum order V, while
all higher terms will be of smaller order. We
thus arrive at the following truncated expansion
for F:

)ng~(4]=lnge(1]e f d rg '(r)(d( ) r1]

Using the explicit form (2.2) it can be seen that

(r)=IG(r B)l' ' ' ' ' (2.7)g~r= r, ~[1]
where the dot represents the integration variable
of the functional integral [see (2.5) where the
functional integral is defined].

(ii} Similarly one notes that by definition

5'v [1]
» 2 +ga( 2)ga 2 dy[I] 5$(r )5$(r )

(2.8)

The explicit form of A„can then be used with (2.8)
to obtain

ua(r„r, ) + ga(r, )ga(r, )

x [e(rl) —I][e(r.) —1], (2.1o)

valid only when (t) is near unity. A different way
of understanding this truncation is discussed in
Appendix A. A more general kind of approxima-
tion, valid when strong short-range correlations
are important, is given in Appendix B.

Now if we substitute (2.10) into (2.7}, and use
V&&1, the g equation becomes

g(r) =]G(r)]~' erp 2 f d r( g)rV'(r', r') . (2.11)

(2.9)

Similar expressions can be derived for the higher-
order functions u„(r„.. . , r„).

We nowdevelop the theory assuming that V—=K- 1
is small compared to unity. Thus in the expres-
sions for ga, ua, u„, the arguments Q of the func-
tionals F[P] will always be near unity, so that we
expect u/gaga to be of order V and higher corre-
lations u„/ga ~ .ga to be of lower order. Allowing

g~V to be at most of order unity, the first two

Terms of the form @VV, of order V, were dropped
in the exponent of (2.11) relative to gV. The u
equation (2.9) can similarly be obtained to leading
order in V. Dividing u(r» r, ) by the expression for
g(r, )g(r, ) we obtain

(2.12)

The ratio of generating functionals on the right-
hand side of (2.12) is an exponential whose argu-
ment is leading order V, all terms of order unity
cancelling. Expanding the exponential one obtains

=2V(r„r )+4 f d'rg(r)V(r r )V(r, r )+2 f d rd r e(r r')(''V(r'„'r)V(V„V')+V(r„r)V(r„r')].

(2.13)

The two equations (2.11) and (2.13) then accurately reflect the consequences of our basic assumption (2.2)
with

I
V I~~1 but IgV I

of order unity.
To demonstrate the predictive power of the theory we note that once the functions h„G, and K are

given, the consistency relations (2.7) and (2.9), which form two simultaneous integral equations for ga and

ua [explicitly represented by (2.11) and (2.13) under our stated approximations] can be solved for each B.
Other inclusive sums can then be evaluated. For example, consider the inclusive P~ distribution. Using
the form of A„we find

d'b d'b'e' &'~"' d'B h, 8 'G r, 8 G r', B *F~ K r, ~, 9 (2.14)

In view of (2.10), do'/dy d'Pr can be computed in terms of Pa[1], ga, and ua. Later, a more convenient ex-
pression for computation will be derived for this inclusive distribution.
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In addition to the multiparticle inclusive distributions, it is straightforward to compute the overlap inte-
gral in terms of the generating function

1m'.. .,(B)= ~h, (B)~'S,[1] (2.15a)

or

o' d jB Ao B F~ 1 (2.15b)

The meaning of h, (B) can be obtained by direct consideration of o„ the ab-a'b' cross section, given by

o'0= dB hoB (2.16)

We interpret k, as the "bare" or "skeleton" amplitude. We assume no bootstrap relation between h, and
the "dressed" amplitude A„,~. It may be k, represents nondiffractive processes, whereas A,~,~ de-
scribes diffractive processes.

The single-particle exclusive cross section depends upon the function G; with y =y,

dy d'I' d'bd'b'e' r'~"' d'B~h (B) ~'G(r B)G(r' B)*.0 (2.17)

A similar expression exists for the two-particle exclusive cross section, where the interaction kernel
K(r, r', B) appears. Thus h, is determined by the bare ab a'b' amplitude; the single- and double-particle
exclusive cross sections are then determined respectively by G and K.

The form of the single-particle inclusive distributions has a form similar to (2.17):

e)dy, y )=f d'B [h (B)['fd'bd b e' ' '''K [K( B)eK (e', , B)] ( GBe)G ( Be). '

Similarly, the two-particle inclusive density is

ep (y y B B )=f d'B[h (B)[' Jd bd b d bd 'b'e'' '' '"'e'""'
x Ps [K(r. . .B)K(r„,B)K*(r',, , B)K~(r,', ', B)J

x G(r„B)G(r„B)G*(r'„B)GB'(rB,B).

(2.18)

(2.19)

We have now outlined the observables which can
be computed in the theory. To proceed further,
definite choices for the input functions h„G, and
K need to be made.

III. BOOTSTRAP EQUATION FOR E

With the theory presented in Sec. II we can pro-
ceed in one of two ways: (a) For the unknownfunc-
tions h„G, and K we can make some inspired
physically motivated guesses" and then use the
formalism of Sec. II to extract the predictions;
or, (b) the unknown functions themselves can be
fixed by requiring them to satisfy certain con-
straints, leading to deterministic equations. Some
discussion of the first approach is given in Sec. V
below. We discuss here the second alternative.
This approach, we believe, is harder, but in the
long run may lead to a deeper understanding.

We propose for study an additional equation
which is meant to determine K; ho and G are left

as free functions, e.g. , to be taken from experi-
mental data. We note that integral equations for
exclusive quantities such as K are in some sense
a natural way of complementing the integral equa-
tions derived in Sec. II for inclusive quantities
such as g~ and u~. The equation we propose is a
proportionality between inclusive and exclusive
correlation parameters at fixed B."

To keep the notation from being unduly cumber-
some, at certain points of the following exposition
we suppress notation for some of the variables in
the functions, and concentrate only on the func-
tional form of the integral equations. From con-
text, these variables can always be supplied.

As discussed in Sec. II, we have assumed that

V=K-1

is small compared to unity, although the product
gV can be of order unity. We have used these
estimates to simplify the integral equations. One
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u~(r„r, )

( )

'
( )

——cV(r~, r2, B),
ga r ga r (3.2)

consequence is that u/gg will be of order V.
We now assume the stronger statement that u/gg

and V are exactly proportional:

where c is a dimensionless constant of order uni-
ty. We assume for simplicity in this paper that V
and c are real. The proportionality (3.2) provides
a bootstrap equation for K.

Introducing this bootstrap equation into (2.13),
we obtain our second equation relating g and V:

Vr„r, = dxgr Vr, r, Vr, r, + — dxd'x'g rgr' Vr, r' Vr„r Vr»r' +Vr„r Vr„r'
(3.3)

Given G, Eqs. (2.11) and (3.3) form a closed
pair of nonlinear integral equations whose solu-
tions must now be found. There is one obvious
solution, the trivial one:

notation for B, we have

g= iG i'exp[2gv(0, 0)]

and

(3.8)

If V=O, theng=lG I' (3 4)

If 6 is independent of y, a natural class of non-
trivial solutions to look for are those in which V
is translation-invariant in y and b, and in which

g is independent of y. Translation invariance of
V and constancy of g, both with respect to rapi-
dity, are consequences of the assumption of ra-
pidity cluster decomposition. Translation invar i-
ance of V with respect to b is not obviously re-
quired by our equations or assumptions, but we
choose to look for such solutions for simplicity.

For such completely translation-invariant solu-
tions V(r, r', B) is a function only of r —r':

V(r, r', B) = V(r —r', B). (3.5)

If we wish to display y and b dependences explicitly
we write

(
c —2

v(&o, q) =gv(&o, q)'+ cg'u(a&, q)'. (3 9)

The second equation is algebraic and gives three
solutions for each m and q:

gv= ——~0, (3.10)

g e, ~
c —2

[G/2
& )1 P

respectively. The corresponding v(0, 0) are

(3.11)

In particular, these are the three possibilities at
a&, q = (0, 0); so from (3.8), g has three possible
values

U(r, B) = V(y, b, B); (3.6)

the meaning of the arguments of V will be clear
from context. We consistently denote rapidities
by y, impact parameters by b and the vector (y, b)
by r. In what follows it will also be convenient to
discuss the Fourier transform of V(y, b, B);

v(v, q, B)= Jt dy d'b e""'""'V(y, b, B). (3.7)

The notation adopted is that co is conjugate to y and

q is conjugate to b. It is straightforward algebra
to express (2.11) and (3.3) in terms of V(y, b, B)
or in terms of v(&u, q, B).

It is instructive at this point to note that there
are nontrivial solutions to the coupled equations
when ~G

~

is independent of r. (We also expect
solutions when the Fourier transform of G is a
constant. ) Taking g(r) to be real and independent
of r, the Faltung theorem can be used to write
(2.11) 'and (3.3) in terms of u(&u, q, B). Suppressing

The last solution is extremely interesting since,
for reasonable values of c, g is large (strong
coupling) and the Fourier transform fi of the cor-
relation u is also large and positive:

(3.13)

The conditions (3.10) can be interpreted as sum
rules on moments of V(y).

We are now ready to proceed with the task of
finding nontrivial, translation-invariant solutions
to the coupled equations when ~G ~' is damped in b,
as expected in a realistic theory. We expect that
some characteristic features of (3.10)—(3.13) will
reappear in disguised form in our later analysis.

The equation (2.11) is a relatively straightfor-
ward equation of a type frequently encountered in
mean-field theories in many-body equilibrium
physics. " Equation (3.3) is considerably more



ROLE OF COLLEC TIVE PHENOMENA IN HIGH- ENERGY. . . 2019

complicated; it resembles generally some equa-
tions employed by Wilson in his discussions of
critical behavior in many-body systems. ' We
note there are no nontrivial pextuxbative solutions,
~G ~'&&1, of these two coupled equations. Experi-
ence with equations such as (3.3}, e.g. , in Wilson's
work, suggests there are isolated, unstable solu-
tions which must be cleverly located.

IV. STUDY OF ONE-DIMENSIONAL EQUATIONS

Since Eqs. (2.11) and (3.3) are very complicated
in general, we leave to future work a complete
discussion of their. solutions. For the purpose of
here extracting some qualitative conclusions, we
simplify the equations by reducing b to one dimen-
sion. We may suppress the y dependence, since
after Fourier transformation, the equations are
diagonal in ~. In one dimension therefore we study
the following coupled equations:

Then the argument of the exponential in Eq. (4.1)
can be written

((()«2 f 2~
«(q)v(q)e '"=)n[«(S)), (4.3)

where e(q) is the Fourier transform of V(b).
We can formally rewrite this expression as

where ~G ~'=e~+', and only translation-invariant
solutions of (2.11) and (3.3) are considered.

Our strategy will be to reduce these equations
to second-order nonlinear differential equations,
which are coupled only through boundary condi-
tions. Solutions to these equations then can be ob-
tained by standard techniques. " We introduce the
Fourier transform of g(b},

«(s) =I d( « "'(((b)

g(b) =exp ( (b)«2 f db (((b )V('b —5')' (4.1) P(b)+2m i —
b

g(b) =ln[g(b)],
9

(4.4)

c 2
Vb = dblgbt V b~- b

V bt+b

+c db'db "g b' g b~ V b' —b"

x V b' —— V b"+—, 4.2

where the operator is defined by the Taylor series
of v(q) around q =0. Equation (4.4) then is an in-
finite-order differential equation for g, which re-
places (4.1), given Q and v.

Similarly, we may write (4.2) as a differential
equation:

vq =v q+ ——v q ———gb

( i s s ) ( i s [) y ( i a s

1 2 j ( 1 2 J ( 1 2 J bj=b2=0 '
(4 5)

We recognize that such equations may have a
wide range of different types of solutions. If some
of these solutions have slowly varying functions
e(q} and g(b), we can find such solutions by study-
ing Eqs. (4.4) and (4.5), keeping only the lowest
nontrivial derivative operators in the Taylor series
expansion of v. Equation (4.4) then becomes

v"(0)g«(b) + 2v(0)g(b) + (t) (b) = in[g(b)], (4.6)

where we have taken v'(0) =0, a consequence of
V( b) = V(b) [cf. (4.2)].

ln the case of (4.5), we have studied the resulting
equation for v, and find the qualitative properties
of the solution do not depend on the presence of the
cubic term. Furthermore, the properties are not
sensitive to the specific numerical value of c, pro-
vided c &2. Thus, for the purpose of showing the

where we have taken c =6. Note that coupling be-
tween (4.6) and (4.7) appears only through the val-
ues of g(0), g«(0), v(0), and v«(0). Thus we can
study the equations separately. We first discuss
(4.7).

For convenience of notation we introduce

f((f) =g (0)v((f)

and define

-g"(o)
8g(0)

(4.8)

(4.9)

method of finding, and displaying, the character-
istic features of the solutions to the v equation, it
is sufficient to consider the simpler equation"

(e)-g(0) '(e)+ ([ '(e)1'- (e) '(e)}, (4.7)
«(0)
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f(o) — f"(o)= 1
4g(0)

from (4.7),

+2f(0)+ 0(0) = »[g(0)]
"(0)g"(0)
g(0)

from (4.12),

(4.13)

(4.14)

Then a first integral of (4.7) can be written"

—bf" (q) f*(=q) e &o[f(q)]
() )o[f(O)]I.

1 1

(4.10)

All solutions to (4.7) can be obtained from (4.10)
by quadrature. The bracket has a minimum at
f(q) =1; —Xf"&0 whenever f(0) &1. A solution
which approaches zero at large q requires f(0) &1
and X&0. We require this condition, since other-
wise U would be unbounded at b = 0, which violates
our assumption that V be small.

We note the critical points" of Eq. (4.7), those
with f(q) = constant for all q, must satisfy

(4.11)

whose solutions are f=0, 1. These solutions should
be compared with the solutions found for the inte-
gral equations (2.11) and (3.3), when Q is constant;
if the cubic term has been kept in (4.5), the fixed
points would be exactly (3.10), for each value of
c 18

Given a solution f(q), we now must show the g
equation

" 0
N

2 (0)
g(o) g(o)

g"(b) + g(b) + (I)(b) = ln[g(b)] (4.12)

has solutions consistent with (4.7). We note that
only f(0) and fN(0) couple to the g equation, and,
moreover, only g(0) and g (0) were coupled to the

f equation (4.7). To verify the consistency of (4.7)
and (4.12) we need only write equations coupling

f(0), f'(0), g(0), and g" (0). These conditions are

and

[1)(~)= 0(0) —4(~[-f"(o)]'")+4-2f(o) (4 19)

Then (4.12) becomes

R +2f(0)R —lnR =g(z), (4.20)

V DISCUSSION OF GENERAL RESULTS

We now survey the relations between physical
observables implied in our theory. The expres-
sions for observable distributions, in terms of g
and V, take a relatively simple form if we intro-
duce the Fourier transforms of G and b]g. Let

G(P, B) =f d'be' '
G(b, B);

then (2.17) becomes

(5 1)

where all constraints are satisfied if the solution
satisfies R(0) = 1, R'(0) = 0, and R - 0 as g -~,
with R (0) =4[1-f(0)]&0. There are clearly many
functions 8 with these properties. For any such
R, (4.20) defines an associated function g, and
hence IG I', which satisfies our conditions. We
conclude that the one-dimensional differential
equations (4.6) and (4.7) have acceptable solutions
for a wide class of functions

I
G I', for any choice

of 0&f(0) &1 and fN(0) &0.
We have studied the cubic version" of (4.7), and

conclude that under similar conditions that there
are consistent solutions to the coupled one-dimen-
sional integral Eqs. (4.1) and (4.2).

We therefore believe it plausible that the coupled
two-dimensional integral equations (2.11) and (3.3)
also have acceptable solutions for suitably restric-
tive assumptions on IG I' Thus, for any given IG I'

we anticipate there may be many solutions to the
coupled equations. This means our theory will
not predict unique correlation functions, but will
rather predict certain constraints between dif-
ferent observables.

g"(0) & 0 and f(0) & 1

from the discussion after (4.10), and

g(b)-0 as b-~,

(4.15)

(4.16)

dBAOB 6 Pz, , B

If 6 is independent of B, we obtain simply

(5.2)

which is guaranteed if Q —~ as b- ~, which in
turn is true if IG(b) I'-0 as b- ~. Thus given (][),

f(0) & 1, and f"(0) & 0, the initial values g(0) &0 and
g"(0) &0 are then determined by (4.13) and (4.14).

The remaining task is to show that for at least
some reasonable functions IG I', Eq. (4.12) in fact
has solutions for f(0) &1 and f"(0) &0. To demon-
strate this, we define

R(~) =g(z[-f'(0)]'")/g(0), (4.17)

& = b/[-f" (0)]'" (4.18)

where

o = d2BA B

We can derive a similar expression for
ap—= do/dyd'Pr, if (2.11) is used together with
(3.7). Defining

P(P, B) fd b e '
[d(b,=B)l'e

(5 3)

(5 4)
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we obtain [cf. (2.15a) and (2.18)]

P(y, P,) = —f d'Blb. (B)I'P.((lid(P, .B)l'

From this, we can find

n
dy d'PT p(y, PT)F

If g is independent of B, we see

p(P, ) = lF(P,)l'

and

d'bg(b).r

(5.7)

(5 8)

( d'BIb, (B)I'P [1]f db d(b, B). (6.6)
For two-particle exclusive cross sections, we
have

~I'd BIb ('B)I' f d'6 d 6 d b'd''6'e'""''-"
2l P2

Let D be defined by

&«''2'" "'G(r„B)G*(r,', a)G(r„a)G*(r,', a)Z(r„r„aPC*(r', r,' 5).

D(y „PT,;y PT., &)
l
&.(&)I'd'II ~

Tl cody 2 d PT

(5 9)

(5.10)

If K=1yU, with V small, G and K real and independent of B,

B(y„P„„y,P= )G 2()P( G)Pf f d b,d b, e" '' "'' 'G(r, )P(r, —r, )G(r, ) (5.11)

lf we introduce v (the Fourier transform of V), D as the Fourier transform of D in relative rapidity, and

take G independent of y, we obtain

B(teP„,P„)=2G,(P„,)G(P„)f,e(q) f d bd be'',"""' '"'-'" ""G(b )G(b )

2

)G(P,) 2, v(q, ol)G(P, —q)G(p +q) (5 12)

With G and K independent of B, D is exactly the two-particle exclusive correlation function.
For inclusive two-particle correlations, using (2.11) we find similar expressions with G replaced by

b(g. I et us define C2(&u, P», P») as the relative rapidity Fourier transform of the inclusive two-particle
correlation function

C2 [ p2(yll PTly y22 PT2) pl(y 2 Tl) pl(y22 T2) j'

Then if G and K do not depend on B, we find

2

C2(o); PT„PT,) = 2cF(PT,)F(PT,),v(q, o])F(P» —q)F(PT, + q),

(5.18)

(5.14)

where F is defined in (5.4).
To illustrate a method for more explicit computations we now use the one-dimensional approximations

of Sec. IV. We recall that in this approximation, the only free parameters are v(0), v"(0), and c. Pro-
ceeding as in Sec. IV, we expand v(q) in powers of q, corresponding to our assumption of a sufficiently
slowly varying g(b) We can th. en express (5.14) in one transverse dimension as

vll 0
C, (&u, P „P,) =2cF(P,)F(P,) g(P, +P,) v(0, o]) — ' (P, —P,)'

(5.15)
v" 0 (2] fdbe"' " ' '{d"(b)d "(6)'—I*d '(6)]]I""'

4
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where g(Pr) is the Fourier transform of g(b). A similar reduction of (5.12) yields

D(tv, P „P,)=2G(P,)G(P„,)IG (P„+P,) v(b, vd — ' (P—P, ,)'

~II 0 (g f dbv ' ""'(G(b)G (8)"—[G'(b)l')I (5.16)

Q X, t' d/ A' .

We can write this as

db, db, g b, g b

x v q 0 eiq(b~ b~)

2r (5.17)

Expanding v around q =0, we obtain in our one-
transverse-dimensional model

=v(0) fdbg(b)'

f db(g(b)g (b) —[g'(b")j'), (8.18)

which may be compared with the corresponding
formula for n= f, in one transverse dimension,

dbms(b).Y
(5.19)

This relation can be used as a constraint, together
with (5.17), to determine the parameters f(0) and
f"(0) in terms of f,/Y and f,/Y, when

~

G ~' is given.
The latter can be determined from (5.3), if we
assmne no B dependence in G. The latter assump-
tion can be tested through examination of leading-
particle correlations, in principle.

Specific numerical results will depend on a
choice of c. In terms of observables, the value
of c is directly related to the magnitude of the
two-particle exclusive correlation compared to
two-particle inclusive correlations.

We believe that direct relationships, as ex-
pressed by Eqs (5.1)-(5.14) of this section, to-
gether with (2.11) and (3.3) between p(Pr), o', (Pr),
f„and f2, and the two-particle correlations, re-
flect essential features of a theory of multiparti-

where G2(Pr) is the Fourier transform of G'(b).
If we integrate over P» and P», we can obtain

the second multiplicity moment, but it is more
convenient for our purposes to express f, in terms
of functional derivatives with respect to a con-
stant function z,

5'ln P(z)
5z

cle production dominated by pairing correlations,
as hypothesized in Sec. II, and including the boot-
strap a,ssumption (3.2). Since our equations couple
only + =0 Fourier components, we obtain no pre-
dictions from the present work concerning y de-
pendences of the correlations.

If given rapidity dependences, e.g. , from two-
body resonances, are to be imposed upon the cor-
relations, the constraints from our theory play
the role of sum rules. At each m, certain mo-
ments (integrals over y) of the two-particle exclu-
sive correlations V must obey equations analogous
to (3.12) but for nonconstant g(x), as obtained from
(3.3). These constraints depend on solutions of
(2.11), which involve only the (2) =0 components of
v. We plan to investigate these sum rules in a la-
ter work.

We conclude with a discussion of the prediction
of this type of theory for large-P~ behavior. We
expect to describe cross sections at P~ values
much larger than the mean, but much smaller than
2) s, by such a mechanism. In other language, we
consider only the kinematic regions appropriate
to Feynman scaling (fixed Pr, but s ~) rather
than parton-theory scaling (fixed x,=Pr/Ws, but
both Pr and 2[ s -™).We interpret the growth with
s of cross sections at fixed but large P~ in had-
ronic inclusive reactions as a slow approach to a
Feynman-scaling limit. We do not, and cannot,
predict or discuss behavior of cross sections in
the fixed x„s-~ limit.

A measurement of
~

G ~' from low-multiplicity
final states [cf. Eq. (5.3)] provides the necessary
input for the coupled integral Eqs. (2.11) and (3.3).
A solution g then can be used to compute p(Pr);
if ~G ~' is independent of B, for example, then p(Pr)
is given by (5.7), using (5.4). One mechanism for
large-Pr inclusive enhancement (compared to sin-
gle-particle exclusive cross sections) can be seen
in Eq. (2.11). The correlation V, when positive,
may drive g much larger than ~G ~', at small b. We
speculate that the dramatic enhancement seen in
data may be generated in this way.

There may be other collective enhancements as
well. For example, in Appendix C we outline a
different mechanism which enhances large P~ in a
formalism which, although simplified, allows the
role of long-range rapidity correlations to be esti-
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mated. The connection between these two mecha-
nisms seems a very interesting question to ex-
plore, and we plan to study this further.

where F[P] is defined in (A4). Then from Ref. 22,

(exp i Z(r)g(r)d'r
0

APPENDIX A

The generating functional defined in (2.4) can be
written

~8[&]=g I
—d'~1" d'~.e(~l)" 4(~.)

x

e i Id()pdprle if d(() ()p -)d3r' g
/p

e i f Z(r )(tp (r )d &r

x exp ——' J J d rp( 'rC'(F , F,)P„(F,)P(F,)

where

(A6)

x ... IA(r;, r. , B)l'.
j0k

(A1) d'x C r„r I' r, r, = 6' r, —r, (AV)

Such a structure is identical in form to a grand-
partition function of a system of interacting spins
in thermal equilibrium. Each spin is represented
by b, , located on a site y,-.

"
The functions IG I' are the noninteracting prob-

ability distributions of each isolated spin. In an
Ising-type model, G would be a function of y lo-
calized at a discrete set of sites (yd) on a lattice:
lb I

would take on only one value (e.g. , 1), and only
two orientations of b would be allowed (e.g. , up
and down). The kernel IXI' describes the spin-spin
interaction in the analog system: IA(r;, r;)I'
=exp[U(r,. —r&)], where U is an exchange integral
in a spin system.

A functional integral representation for 7 can be
written, for fixed B, in the form

~[a]= 6q e F(())
&

J(()(r)X(r)d-PF

(A2)

1 6ge F(())-

e'c)"p"&'exp ——, QC(r„, r, ) .
k, l

Now let

ig, (r) = ln
I
G(r)

and

e '")'p'~'= Iz'(r„r,)l'

(A8)

(A9)

(A10)

then we can write the diagonal density-matrix
elements, putting P =1, as

d3~ ~ ~ ~ de, (e i t-tt) (r y )+ ~ ~ '+& (~n ) & &
1 nX /p

determines I' in terms of C. In the special case
Z(r) =K~5'(r —r~), we obtain from (A6) the expres-
sion

where

X(r) eid(r) (AS)

de e iQ (r ) (A11)

Ffpl=-.' J J d rr(' r(F F'r, ), x (p(F, ) „p„(F,))
The generating functional 5 is obtained by return-
ing Q and summing over all n. If we denote by ()d
the functional average with Pp

- gp+ In(II),

x [g(r, ) (f),(r,)],

(A4)
I"(r„r,) can be shown to be the resolvent of

2 ln
I
K I' —= C (r„r,) (see below), and

ei()p(r) ~ (r)

p(p)=g —„', (J'--)')
= exp d'Ye'~"'

exp de r y r (A12)

Thus gp is imaginary. This form (A2) may be use-
ful in making a correspondence with other many-
body methods in high-energy hadron collisions,
e.g. , coherent-state phenomenology" and Reggeon
field theories. "

The form (A2) can be obtained using arguments
from Edwards and Lenard. " Let

where X(r) is given by (AS).
The "field" y directly represents particle den-

sities and correlations. The one- and two-parti-
cle exclusive cross sections are integrals over
B of

65
6~( )

= ()((r))p

1 64e ""f[4]
&f [(1)]&p:

J 6 &-s'r()) (A6)
=X,(r)

i')p (r) (A1S)
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(r )e x &r')d3r'
& (A15)

O2F
= &X(r,)X(r.) e ""'"'"'&.. (A16)

Thus, ~K
' is the propagator of x, while C is the

propagator of P.
The quadratic form of F with displaced expec-

tation value for g, in the functional integral, sug-
gests we could obtain our results Eq. (2.10) as a
strong-coupling limit of a nonlinear field theory in
the P "field, " if the P "Lagrangian" generates a
nonzero ground-state expectation value g, (cf.
Sugar and Cardy's work").

Such functional integral representations have
been used by Wiegel' to show an equivalence be-
tmeen a Van der Waals-type fluid and the Ising
model. It is shown in Ref. 24 that if C(r, —r, ) has
exponential behavior in ~r, —r,

~

and a short-range
repulsive core is present, then F[g] takes on the
Landau-Ginzberg form.

APPENDIX B: DISCUSSION OF MULTIPLICITY MOMENTS,
SHORT-RANGE CORRELATION, AND CRITICALITY

If the dependence of A„on B were completely
factorizable, the multiplicity moments mould be
generated by n(z) = in[6'(s)];

d In[6:(~)]
dg

O' F
=&x(,}x(.}&., (A14)

weighted by ~h, (B}j'. The corresponding inclusives
are similarly obtained from

p, (~) = j [6:,(s; I)].1
(a4)

paper me will investigate the role of finite-range
correlations, since even in this case we will find
the potential for interesting effects at large P~.
We proceed then with approximation (2.10) under
the assumption that the integral fdy u(y) is finite.
In later work we plan to examine the explicit roles
of long-range correlations induced by Y and B de-
pendences in G. Note n(z) will have only a quad-
ratic z dependence in approximation (2.10); for
critical behavior higher powers are required,
which implies the presence of higher-order corre-
lation parameters.

The simple truncated cluster expansion (2.10)
is most useful for estimating the cumulative ef-
fects of a weak pair correlation, provided we can
argue the relative unimportance of higher-order
yarameters. If K contains a negative correlation
which is strong but of short range in rapidity,
e.g. , between nearest neighbors only, as in a
multiperiyheral model with t effects, "it is
yossible to include this "repulsion" explicitly in
F as in the Van der Waals theory, with only a
slight increase in complexity. One of the advan-
tages of such a modification is the possibility of
then obtaining critical behavior without diver-
gences in the integral of functions such as u. We
now discuss such a modification, wherein only the
weak long-range correlations appear in u(&„&,),
and examine briefly the changes in our theory
which mould result.

If there is only a nearest-neighbor interaction
present, the appropriate generating functional F,
can be expressed exactly in closed form. For
simplicity, we first consider the problem without
transverse coordinates, mith t" = constant. Let

and

d' In[6'(s) ]
dz' (a2)

&nag
5O (~; I") = Q dy, ~ ~ dy K, (y, —y, ) ~ ~ ~

nt

x Ko (y„,-y„),

If S(z) is given by (2.5), these would have short
range-order behavior (f„f,™F), provided the jn
tegrals of g and u grow only like Y for Y- .

We expect g to be independent of y, so fg(y, b)dy-Y. If we also have

where K, (y&, y,.+, ) is unity except for y, close to
yg+zr and y~ y&+z

If the Laplace transform of Fp with respect to
Y is introduced, we can obtain a factorizable form
of the integrals

(as) 6'. (s; p) = dYe"~ "F (&' I') (86)

i.e., fu(y}dy convergent where y =(y, —y~), then
f,-F also. This would rule out dynamical critical
phenomena associated with long-range correla-
tions which, we believe, can play an important
role in multiplicity distributions. In the present

K. (p) = dye "K.(y).
0

We obtain
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(z. p) g zn GnP (p)n APPENDIX C

1
1-z GPFO(p)

As Y-~, the generating functional p, (z; Y) will
be dominated by the pole in p, which has smallest
real part. Let po (z) be determined then by the
smallest root of

1-zGKo(p) =0. (B9)

If we now consider the generating functional by, [p],
for a constant function p it can be shown that as
Y'-~, we obtain

—ln(S, [y; Y])-p, (y).1 (810)

with g and u to be determined by

K' ~K/Ko (B12)

instead of K, and G' =1 instead of G.
If Ko (y) is a 8 function of y -y, (a rough rep-

resentation of t,„effects), one obtains with (2.10)
the Van der Waals form for n(z); P,(z) is the solu-
tion of

za=p e'&0 Oi . (B13)

If we then include g and M from (2.10) the resulting
form of In[+(z)] will match that of Ref. 1.

If K, is explicitly treated in such a way, the boot-
strap condition (3.2) must be relaxed, at least for
the short-range parts of U. We would utilize in-
tegral equations, such as those given by (2.8), to
determine inclusive correlations. Integral equa-
tions for inclusive correlation functions will now

contain explicit short-range contributions from
K, as well as the terms appearing previously.

Critical behavior can be induced by weak, long-
range positive behavior in V' =K' —1, provided E,
is included. Under such conditions we may find
V' small everywhere, but of such long range that
the Fourier components of two-particle correla-
tions, C, (&o), at ~ =0, diverge for Y-~. Then
other expansions for P may be more appropriate
than {2.10), and it is possible to obtain integral
equations for correlation functions whose solu-
tions more accurately reflect the behavior of the
exact 5.- Such behavior is well-known in one-di-
mensional, long-range interaction fluid models,
and those techniques are applicable to deducing
the consequences of (2.2)."

The presence of additional weak, long-range terms
will then be included if we add to (2.10) the expres-
sion

(B11)

We discuss here an alternative characterization
of dynamics leading to collective effects in large-
/~ behavior. Consider a noncollective model
based on the intuitive notion that final-state re-
scattering or stimulated emission be described
by the following postulate for single-particle
semi-inclusive 5 distributions:

—„"'„",
5

= YIG,(b)1" (C1)
0'n

where G,(b) is an unknown function to be specified.
The idea is that for n secondary-produced had-
rons, the probability of seeing one at rapidity y
and impact parameter b gets an independent con-
tribution for each final secondary. The function
G,(b) measures the strength with which each par-
ticle rescatters off (or is "produced by") all the
others The. behavior represented by {C 1) is thus
not an independent-emission model for produced
secondaries, although G, can be determined from
single-particle-production cross sections in this
model. We assume G, to be a smooth continuous
function of b with no singularities, as suggested
by low-multiplic ity data.

The model is specified by G, (b)a,nd by a model
fox the (o „). In what follows we assume ]o „j have
the behavior characteristic of short-range-order
models. ' In terms of standard generating func-
tions, this means that we expect

1
o.(z) = —ln Qz "g„(Y)

Y
(C2)

to become independent of F in the limit Y-~, and
that, furthermore, all the derivatives of n(z) ex-
ist at z = 1 (i.e., the Mueller moments f„ increase
at most linearly with Y).

The consequences of (C1) and (C2) for the sin-
gle-particle inclusive distribution can then be
worked out by summing the semi-inclusive dis-
tributions weighted by 0 „:

o(Y)b(b) = $ ~. ((') y~(G (b)). (C3)

The result can be expressed in terms of the gen-
erating function a(z):

g(&) =«' (z) exp [Y[~(z) - ~(1)]]i.=;,(I) (C4).

The model is very constrained then if we assume
G, is independent of Y. To compare with the char-
acteristic behavior seen in data one computes
p(Pr) using (5.7) in terms of F(Pr), the Fourier
transform ofb)g jcf.(5.4)]:
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F(P )=fd be'" 'IG(b),n (G'(b),)] "'

& exp{-,' Y[n(G, (b)) —n(l)]]. (C5)

We assume that G, and, hence, g have no depen-
dence one or on Y. In the limit Y ~ we find
by the method of steepest descent that (C5) has
the form

&(Pr) =[G|((b))n'(( |((b)))] ' '

x exp/ Y[n(t",((b))) —n(1)

—n (G,(&»)) b ~~,(0»)]} (C6)

Inp P,)- YQ,(P,/Y)+ Q,(Pr/Y). (C7)

(We have suppressed throughout the possible de-
pendence of G, on y. If this is included, Q; will
also depend on y.)

The striking prediction of this simple model is
that the single-particle distribution should obey a
scaling-type law. The current trend of data'
argues against this type of behavior. " If Q,- -aPr/Y, then the small-Pr behavior is well de-

where(b), as determined from the steepestdescent
equation, is a function only of Pr/Y. It then fol-
lows from (5.V) that P(Pr) is the square of (C6)
and has the form

scribed by p- e '~&. In that case the scaling be-
havior is trivial. At large Pr, Inp/Y vs Pr/Y should
approach the scaling from above. One proves this
by taking some typical g(y, b) and explicitly com-
puting Q, . The data show the antibehavior; the

Pr/Y scaling is no better than simple Feynman
scaling.

We remark that some qualitative effects we
sought are exhibited by (C4); e.g. , large-Pr slopes
are smaller in high-multiplicity final states than
in low-multiplicity states. However, no striking
quantitative successes emerge. We could find no
proof that a natural variant of the above model
would allow the observed trend of large-P~ data,
unless arbitrary Y dependences are allowed.

We do note however that some striking features
could emerge if the short-range-order hypothesis
on g„were dropped. This would allow for a col-
lective-type model. In the language of the Feyn-
man fluid analog, if the g„produce a phase tran-
sition' then zn'(z) as a function of z will have a
discontinuous jump at some zo. Conferring with
(C6) we see this allows the possibiltity that at
some Pr, FPr) and hence p(Pr) will similarly
show a nonanalytic behavior. The effect will tend
to enhance the large-Pr cross section [i.e. , the
small -b behavior of g(b)] .
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tion.
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