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Nonet ansatz and hadronic decays of Q and Q' *
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A phenomenalogical model for normal hadronic decays of Q and Q' has been proposed, where these decays
are assumed to proceed via SU(3) vector currents. We predict an approximate universal decay ratio of Q and
Q' into any normal hadronic channels. A potential inconsistency of the quark-line rule has been pointed out.
If we remedy this defect suitably, then the nonet ansatz can explain the puzzling ratio
I (/~err+rr )/I'(/~terr+rr ) = 0.20 + 0.10 in a simple way. Our model predicts also many relations which can be
easily tested experimentally.

L NORMAL DECAYS OF P AND P'

I'(g-II ) =
12 M,

I'(P' ll ) =
12 M, (1.2)

in terms of the same coupling constants f and f'
introduced in (1.1). Here, M and M' are masses
of g and g', respectively, and we neglected small
lepton masses. Experimentally, we know'

I'(q LI )=4.8 + 0.6 keV,

I (g~- II )=2.2 + 0.3 keV,

One year after the discovery of g (3.1 GeV) and
g' (3.7 GeV), it is now fairly well established"
that they are hadrons with 4~=1 andI ~=O

Many hadronic decay modes have been identified'
with a strong indication that g (3.1 GeV) is domi-
nantly a singlet under SU(3).

In this note we shall make a phenomenological
analysis of normal (i.e., noncharmed) hadronic
decay modes of g and g' by means of a specific
model. Especially, we can explain a puzzlingly
large experimental ratio of'

1(y-y~+v-)/r(y-~&+~-)=0. 20~ 0.10,
as we shall see in Sec. III.

Let g&(x) and tjI'„(x) be vector field operators
representing P and g'. If we are only interested
in calculation of decay rates of g and g' into nor-
mal SU(3) hadrons, then we can describe the vir-
tual electromagnetic interaction in terms of the
following effective Hamiltonian:

a,(x) =jp(x) [fy„(x) +f'y'„( )]x,

where jf'"(x) is the electromagnetic current of nor-
mal hadrons If the .leptonic decays of g and g'
into a lepton pair Il (I being either electron or
muon) are entirely due to the elctromagnetic in-
teraction, then their decay rates are computed by

so that we compute

f'/4tr =(4.65~ 0.58)x10"',

(f')'/4rr =(1.79 + 0.24) x10 '. (1.3)

On the other hand, the interaction (1.1) is knownt

to be inadequate to account for all hadronic decays
of P and g' and we must have an additional non-
electromagnetic interaction. Since its explicit
form is unknown, we will write the interaction as

a, (x) =gj„(x)lt„(x)+g'Jf, (x)yf, (x) (1.4)

H&(x) =[gj„(x)+fj ~"'(x)]g„(x),

&t. (x) =[g'&&(x) + f'j s"'(x)l gf (x) .
(1.5)

Now, suppose for a moment that the new interac-
tion is much stronger than the electromagentic
interaction. Then, neglecting the latter, the ratio
of decay rates I'(g-n) and I'(g'-n) of tjt and p' into
a channel "n" consisting only of normal hadrons
will satisfy a relation

r(y'-n)/I'(y —n) = (g'/g)'(&'/a), (1.6)

where 0'and 0 are effective phase volumes of
two decay modes. Actually, the electromagnetic
term is by no means negligible in comparison to
the j& (x) term as we shall see in the next section.
However, the relation (1.6) will still be correct

in analogy to (1.1), where J„(x) and J„'(x) are some
normal neutral hadronic currents with negative
charge-conjugation parity and without carrying
any hypercharge (i.e. , I'=0). They are likely to
be isoscalar, ' but we need not assume this for a
while.

Now, our first important assumption is that
these new two currents are really identical, i.e. ,
Jz(x)=—J&(x). This may imply that the nonelectro-
magnetic decay mechanism of ( and g' owes its
origin to a single common cause. At any rate, ad-
ding (1.1) and (1.4), the normal hadronic decay
Hamiltonians of g and g' are assumed to be
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even in the presence of the electromagnetic terms,
if g and g' approximately satisfy a relation

f'/g'=f/z (1.7)

both in sign and in magnitude. Hereafter, we shall
assume this to be the case. Then, setting

R(n) = F(q'-n) F(q-ei)
1(g-n) 1(g'-all) '

the relation (1.6) will be rewritten as

(g') (0') I'(g-all)

(1.8)

(1.9)

This also holds for the case n = ll because of (1.7).
Since we expect O'=0 in view of a rather small
mass difference between M and M', the right-hand
side of (1.9) should be roughly independent of a
specific channel "n." From (1.3) and (1.7), we
estimate that the common value for R(n) with
O' =0 will be given by

(n) (0 12+0,13)

where we used the experimental values' of
F(g- all) =69 + 15 keV and F(('-all) =225 + 56 keV.
These should be compared to the experimental
values' of

R (K+K r r+) = 0 12+0.&~a

R(r+r+r r r ) 0.09+

R(pj) =0.19+'"

R(ll ) =0.14+0 3~,

R (r p ) ( 0.23+ '"
so that the general agreement is satisfactory. If
the present idea is correct, then we would roughly
expect to have

Next, we will study the SU(2) and SU(3) proper-
ties of the current Z&(x). First of all, it is likely
to be isoscalar with negative G parity. Then, it
cannot contribute for the decay rate F(g-n) when-
ever the final state n consists of even numbers of
pions with positive G parity. In that case, irre-
spective of the validity of (1.V), we should have

F(g- G = + 1)/ F(g - p, p, )
= a(ee —G = + 1)/o ( ee —p, p. ),

(1.12)
G =+I)/F(4' pp )

= o(ee -G = +1)/o(ee - ling)

F(y- r p+) = F(y--K-K+ *),
F(4-PP ) = F(4- ~'~'),
F(g- r KOK+*) = F(g-K K op+)

(1.13)

(1.14)

(1.15)

as well as triangular inequalities

l(F )"'-2(F )"'I -(3F )"-(F )'/'+2(F )'/'

(1.16)

2(I' )"-(F )1 I ~(3F )1/3(2(F )1/3+ (F )1/3

(1.17)

for any such state n with G = +1 where
o(ee -G = + 1) and g(ee -

p, g ) should be measured
just off the resonance energy at t = M' or t = M". Such
a relation has been experimentally tested by Feld-
man and Perl' for n = 2m+2m and Sn+ Sm states
at t= 9 GeV, and they found tha, t it is well sa,tis-
fied within experimental errors.

Next, suppose that SU(3) is a good symmetry and
that J„(x) is a V-spin scalar Since. the electro-
magnetic current is also a U-spin scalar, we can
immediately derive relations such as

F(g'- all normal hadrons) g'
I"(g- all normal hadrons) g

= 0.38+oo'o", , (1.11)

from which we estimate

F (Q'- all normal hadrons)
(10 15%%u }F(q'- ail)

Here, we have set

F, = F(y- r+ r-r'),

F, =F(|l -K+K ro), -

I'3 = F(g - r+ r q),

F, =F(y -K+K-q),

r, +r, = r, +r„

(1.18)

(1.18')

Together with known decay rates for g'- g +any
and g'-ll, this can account for roughly 70%%uo of the
total decay rate of P'. Presumably, 4 the remain-
ing unaccountable 30% or so is due to new decay
channels such as

g'(3. 7 GeV)- q, (2.8 GeV) +pions or q,

g'(3. 7 GeV)- p, (3.5 GeV) +y,
where q, (2.8 GeV) and g, (3.5 GeV) are newly
discovered charmonium states. '"

and we have neglected all mass differences among
SU(3) multiplets. The same inequalities (1.16) and

(1.17) will hold also if we replace r' and K+ there
by p+ and K++, respectively. We may test (1.13)
against the experimental value of

F(g- r p+) 0.43+ 0.10
F(P K K+*) 0.15+0.03 '

which is far from the exact ratio 1. Even if we
take into account the difference of phase volumes
of two decay modes, it is quite difficult to recon-
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cile this value to (1.13), as we shall see in the
next section. We then must conclude that the new
current Z&(x) cannot be a U-spin scalar. However,
it is wiser to wait for more experimental informa-
tion. Also, we do not know how accurate U-spin
invariance could be in the elctromagnetic inter-
action. We should test its validity for the cor-
responding U-spin relations such as

g(ee - n' p+) = o (ee K K+*),

o(ee -m K'K+*) = o(ee -K K'p')
(1.19)

before we are able to make a final judgment on
this important question. These relations are valid
for any arbitrary incident energy of electron. The
triangular relations (1.16) and (1.17) are also valid
for ee reactions, if we replace the symbols g and
I' there by ee and 0, respectively.

Another application of the U-spin invariance (or
more weakly, the Weyl reflection W» interchang-
ing quarks q, and q3) is for g-PPV decays. As-
suming the usual ideal nonet mixing' between P
and &, we can easily derive the following rela-
tions among matrix elements of various decay
modes:

~2M(q- m n+y) = M'(y KK-+~) M(q-K-K+p'), '

(1.20)

~M(q-K K+y) =M(g-m w'~) -M((-~ ~'p'),

(1.21)

M(g v v+p ) +M(g & & &)

II. DYNAMICAL MODEL

In the preceding section, we derived various kin-
ematical relations. However, it is not possible
to quantitatively compute each decay rate of g,
since explicit form of the new current J„(x)was
not specified there. To guess its precise form is
quite difficult at this time. For example, if the
nonelectromagnetic interaction should result from
exchange of three gluons, ' its form will be very
complicated although it will give a predominantly
SU(3) singlet interaction. Alternatively, if it re-
sults from the mass-mixing problem ~ in diago-
nalizing SU(4) mass matrices, then we may ex-
pect that Z& (x) is dominantly a linear combination
of vector field operators representing &, p„and
p mesons. In this case, J„(x)will be again a mix-
ture of SU(3) singlet and octet. Although the SU(3)
singlet component in J„(x) is expected to be domi-
nant, the precise statement is difficult to make.
Indeed, if we change numerical mass values of p'
meson slightly by a few standard deviations, then
the SU(3) octet component could be"'~ larger than
the singlet one. At any rate, since &, p„and P
mesons are intimately related to hadronic vector
currents by the vector-dominance model, "we
make an Ansatz here that j„(x)has a form

J„(x)= n, j„' (x) + n, j„"(x) (2 1)

in terms of the usual nonet of SU(3) vector cur-
rents j&i"~(x) (n = 0, 1, 2, . . . , 8), where n, and n,
are some constants. If we assume the usual SU(3)
quark model, then j&i" (x) is given by

=M((-K K+p )+M(g-K K++). (1.22) j&"'(x) = V(x)r—&~ V(x), (2 2)

From these, we can obtain corresponding triangu-
lar inequalities. The same relations also hold for
M(ee -PP V) if we replace P by ee.

In ending this section, we briefly comment on a
recent work by Hara, ' who assumes that J&(x) is
a SU(3) scalar and the elctromagnetic interaction
is negligible in comparison to Z&(x). Moreover,
he assumes that the decay g-PPP can be calcula-
ble from a local effective Hamiltonian of a form"

fp(x) = Qep s $p (x) Tr [B„P(x)B„P(x)88P(x)] ~

(1.23)

Then he finds

I, :I,:I,:I,=4:1:0:3 (1.24)

for decay rates of (1.18). This relation is stronger
than the triangular inequalities (1.16) and (1.17).
However, as we shall see in the next section, the
electromagnetic interaction is in general not neg-
ligible so that the result (1.24) is probably a very
rough approximation. '

where X„(n = 0, 1,2, . . . , 8) are the usual 3 x 3
matrices. Also, the electromagnetic current
j&™(x)will be written as

j'„(x)= ji„"(x) + — j~~ (x) + p j~'(x) . (2 3)

So far, the possible existence of an SU(3) singlet
current in the normal hadronic electromagnetic
current is not clear" and we assume P = 0 here-
af ter unless otherwise stated.

Although we do not know whether (2.1) must be
regarded as a mere good approximation or if it
could be exact, we assume hereafter that it is the
exact expression for our problem or at least a
working hypothesis, especially in view of no sim-
ple alternative model. Our Hamiltonian (1.5) will
then be written as

&q (x) = 4.f'p'(x) + g.i 'p'(x) +fj 'p" (x)] 4p (x)
=- j„(x)y„(x), (2.4)

where go and g, are defined by
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Zo=o'og+ ~f ~

1
g's = a o l' +

~3 f ~

(2.5)

The most attractive choice would be to set P = n,
= 0 so that we have

(2.6)

However, we shall often consider the more general
form (2.4) by the reason that the choice n, = 0
leads to the validity of (1.13) which appears to con-
flict with the present experimental data.

Now, let us first compute the inclusive normal
hadronic decay rate of g by means of (2.4), re-
garding it to be exact. Ne need the numerical
value of

a 8(t)

at t = M'. Since the g mass M is fairly large,
we may appeal to the idea of asymytotic nonet
symmetry" or the quark-parton model. " Then
we expect to have

z„,(t)= 5„,~(t), t»1
for all n, P = 0, 1, 2, . . . , 8. Setting

o (ee - all normal hadrons)
&x(ee - p. p)

we find

(2.8)

Assuming the exyerimental value of A = 2.5 around
this energy range' t =M', and using the estimate
(1.3), this leads to

1 [(go)'+ (g, )'] = (2.58 + 0.78) x 10 ', (2.11)

where we assume that all decay rates of g into
channels other than those of the leytonic pair l/

and of normal hadronic ones are negligible. If
we assume (2.6), i.e. , g, = (I/W) f, then (2.11)
gives

1 (go)'= (2.43+ 0.80) x10 ', (2.12)

I g o/f I
= 2.29 ~ O. 52. (2.13)

so that we compute

I'(P - all normal hadrons)

1 [(go)'+ (g, ) +f'] MR. (2.10)

I'(g- odd Pions) o») o(ee - odd pions)
r(y- ail)

(2.15)

for the lsuoti ogn/f o= 2.29 + 0.52, and

I (g- odd pions) +, ») g(ee —odd pions)
I'(g- all)

' '" o(ee - p, p, )

(2.16)

for the negative solutiongo/f = —2.29 + 0.52. Note
that (2.16) is one-half as large as (2.15). Con-
versely, from the known decay rates' of I"(P- mp)

and I'(g- nm&o), we predict

= (2.4+,",) x10 ',o(ee- pp)

o(ee -m p')= —,'o(ee -v+v o )
(2.17)

near the resonance region t = 1VI', where we have
usedgo/f = +2.29 + 0.52. If we had used another
solutiongo/f = —2.29 + 0.52, then the predicted
value in (2.17) would increase by a factor of 2.
The cross section (2.17) is, unfortunately, very
small. More generally, we can compute the ratio

Note that f is by no means small in comparison
togo and any interference betweengo and f terms
affects the decay rates considerably, depending
upon the relative signs of f and go.

Next, let us consider a decay of g into odd numbers
of pions and suppose that the third quark q, does not
yarticiyate at all for this decay mode. Then, we can
replacejP (x) by W j&o&(x) for such a decay mode.
%e remark that this assumytion can be justified
on the basis of either the quark-parton picture"
or the quark-line rule" or the nonet A.nsatz. '
Since the isovector current j%3) (x) does not con-
tribute for decays of P into odd numbers of pions
by 6 parity, we find the following analog of (1.12):

I'(g- odd pions)

1 (~ ), o(ee - odd pions
M (2.14)

4n' ' ' o(ee - pp)

for any final state containing odd numbers of pions.
The cross sections o(ee -odd pions) and o(ee - p, p, )
should be measured just off the resonance energy
t =M'. We also note that (2.14) holds for total as
well as differential decay rates. Hence, we pre-
dict the same energy spectrum for yions in both
I'(P- pions) and g(ee - pions) around t = M'. If
o (ee - odd pions) are experimentally measured,
then we can determineg, andg, separately by
means of (2.11) and (2.14). However, so far any
definite experimental information on o(ee - odd
pions) does not seem to be available. Here, we
assume the estimate (2.12) and (2.13) with

g, = (I/vY )f . Then, (2.14) gives
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of decay rates of g into odd numbers of pions
against even numbers of pions from (1.12) and
(2.14) to be

so that E(0) is calculable from (2.23). In order to
estimate E(M'), we assume the standard vector
dominance form" of

F(g- odd pions)
F(g- even pions)

2

E(~)= E(o) (2.25)

2 go+gs 0 ee odd plons
f o(ee - even pions)

Again using the estimate (2.13), this gives

I"(g- odd pions)
r(g - even pions)

(ee odd ploIls)
o (ee - even pions}

for the solution g, /f = +2.29 ~ 0.52, and

r(III - odd pions)
r(g- even pions)

(21 2+$3 4 )
o (ee - odd pions)

o(ee - even pions)

for g, /f = —2.29 + 0.52. Hence, assuming a rough
guess v(ee - odd pions) = 3 o (ee - even pions), this
implies that r(g- odd pions) will be roughly 10
times larger than r(g- even pions) in agreement
with the experiment. '

Next, we shall show that we can estimate the
absolute decay rate of r((- wp) as follows. As-
suming again that the third quark q, does not con-
tribute at all to the decay, we can replace jtp (x)
by ~2 j&& &(z) so that the decay matrix element
is proportional to

(4kokioV ) l (w-(k )P'(k)g ('„)(0)~0)

=v'3 E(t)e„PI F eP Q)kI, k', , (2.21)

where 4&(k) is the polarization vector of the p
meson and E(t) with t = -(k+k')' is the form fac-
tor of the vertex function. Then, we compute

r(g-w'p ) =F(g-w p")

=F(4- w'p')

1.
=4—(v 2 go+g3)3k3(E(M3)

~

'. (2.22)

where m~ is the mass of the & meson. Moreover,
aga, in assuming g, = (1/v3) f with (2.12) and (2.13),
we can now compute the absolute decay rate with-
out introducing any additional free parameters to
be

Tr (j VP)+ Tr (j PV) (2.27)

because of the charge-conjugation invariance
where j is a spurion matrix representing the nonet
current j(„"&(x)appearing in (2.4). More explicitly,
(2.27) implies that we can set

(4kgklo V')' '(V( )(k)P' (k') ~P'(0)~0)

=3d„w E(g) e F I,e„(k)kI,k,' (2.28)

for all o, P, y =0, 1, 2, . . . , 8 where E(i} is the same
form factor appearing in (2.21). Then, taking into
account the difference of the kinematical factor k'
as in (2.22), we compute

F3-K 3'") 2&Ra, —g, W3f)'
F(I|- w p') 2&2g, +2g,

F(g F7 Z ISW-Sq'. "g, WSf)
'

F(g-w p') gYg, +2g,

(2.29)

'

(0.27+", „') ke V, for g, /f = 2.29 y 0.52
r((-w p')=

~

~

~(0.13",03) keV, for g, /f = —2.29' 0.52,

(2.26)
which should be compared to the experimental
value' of F(f wp-')=0. 43+ 0.10 keV. The agree-
ment is satisfactory in view of the uncertainty of
the form factor E(t).

Next, let us investigate the more general decay
g -VP, where V is a vector nonet and Pis the psuedo-
scalar octet. If we assume the nonet Ansatz' or quark-
line rule, ' then the effective interaction current
responsible for the decay is proportional to

e 2

F(p -w y)= q'iE(0)i' (2.23)

for radiative decay of the p meson, where q is the
photon energy. Experimentally, ' it is known to
be

Here, k is the magnitude of the final pion momen-
tum and E(t) must be measured at t =M'. Also, the
value of E(t) at ( =0 can be calcula. ted from the
formula

F4-n0) 4 g. -~~g. '„07-,
F(g-w p') 3 &2g, +g„

r(~-q ) 1X089 030I (g-w p') 3

r(q-qp') 0.89 rg -w'~)
rg w-p') 3-r(q- w-p')

(2.30)

(2.31)

(2.32)

F(P -w y) =35+ 10 keV (2.24) 2 So+As
(2.33)
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r($- w')I))=0. (2.34)

r(t( -K-K'*)/r(q- w-p') =0.65, (2.35)

which is independent of g,/f and is equal to the
ratio of the kinematical k' factors of two decay
modes. On the other hand, (2.30) gives

r(p- K~*)
r(y- w-p')

0.25~0'08, forggf=2. 29+0.52

~

~

~ ~2.32~,', for g,/f = —2.29~ 0.52. (2.36)

Here, we assumed the ideal mixing' of ~ and qr and
neglected small )&-)&' mixing. Note that (2.32) for
1 ()t) )&&u)/r()t)- w p') is independent of g„g„and
f so tha. t it constitutes an immediate test of our
Ansiitze. If we choose g, =(I/&3)f with (2.13),
then (2.29) leads to

is in good agreement with the experiments. " This
is analogous to the situation in which the calcula-
ted ratio r()1)- w p")/r(g- X'K'*) agrees with the
experiment. Unfortunately, we cannot offer any
good resolution on this puzzling fact. %e should
note that if we had used the experimental value of
r(ar-w'y) rather than r(p -w y) as input, then
our previous estimate (2.26) would increase by a
factor of 3 because of this discrepancy. One way
to dissolve this dilemma is to directly measure
g(ee-&uw'), g(ee-w p'), g(ee-K K'*), and
o (ee K K ) at any energy which is not necessary
at t=M2

We can compute the decay rate r(g-pp) in an
analogous way. On the basis of (2.4), it is
straightforward to find

These values must be compared to experimental
values' of

2rn2()"„)'+,))" )')iM, (2.41)

r(g-w p')/I (g- all)=0. 42~ 0.10,

r($-K K'*)/r((- all)=0. 16+0.03,

r(f- K'K' )/r()I)- all) =0.12' 0.02.

(2.37)

The result (2.35), which is actually the U-spin re-
lation (1.13), is rather badly satisfied as we noted
in the previous section. However, the relation
(2.36) is in good agreement with (2.37), if we
choose graf to be positive. The negative sign for
g,/f appears to give too large a value in (2.36) to
be consistent with the experiment. Note the differ-
ence of nearly a factor of 10 for two cases.

If we take the experimental value for r(f-K K *)
seriously, then we have to give up the simple
A.nsatz g, = (I/v 3 )f. But we can compute g„g„and
f separately from (2.29), (2.30), and (2.37) to be

where m is the proton mass and F„and E~ are mag-
netic and electric form factors of the protons, with
respect to the total g current j„=g,jt„'&+g,jt~@+fj „'~.

If we assume as before that the third quark@, does
not participate in the decay, then we can replace

jt'„& by v 2 jt„'&. In that case, we can compute E„and.
E~ in terms of the conventional electromagnetic
form factors G„and C~ of the nucleon by

(~2g +g )(Gs'+G'u') +—{Gs'-GÃ
J

(2.42)

Fs =
2

(v 2 g, +g,)(Gtg&+ G&J) +—(Gig& —Gis&).
vY

2

These form factors must be evaluated at the time-
like value of t =M'. If we assume the usual dipole
forms

g,/g, =0.47+0.22,

=0.052 + 0.156,
2 0 +8

(2.38)
G"'(t) = G'"(t)/P

G())& (t)/p

=—x 0.94 =0.105,
r(&u —w'y) 9

I'K* K =-x0.53 =0.235,r(~- w'y) 9

(2.39)

both of which are three times larger than the ex-
perimental values. ' " However, the ratio

which requires a rather large SU(3) octet compo-
nent in &„(x).

Another trouble is that the nonet Ansatz (2.28) as
well as the simple quark-model calculation" pre-
dicts'

(2.43)

even at the very timelike region of t=M2, then we
can estimate r(g-PP) again with Ansatz g, = (1/
v 3)f. Choosing g,/f =+2.29 and neglecting all ex-
perimental errors, this gives

r(tI) pp)/r($ all) —0.55x 10- .
This should be compared to the experimental val-
ue' of

r (g -pp)/r(g - all) = (2.1~ 0.4)x 10-'

r(p- - w y)/r(K'*- K-'y) = O.4S (2.40) so that the calculated value is forty times smaller.
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G(„')(4 ')=G(,)(4 '),

G(s) (4%')= G's) (kn') (2.44)

However, it is well known'4'" that the usual scal-
ing-dipole form (2.43) cannot be valid in the time-
like t, because at t=4rn', we must have a kinemat-
ical constraint equation

E~(9)=0.129'

we compute

= (2 85"4» )x 10-4
F(g —all)

III. (f ~Pm'n AND mn'g )

(2.49)

E(~) —— (G(() + G(~))& + G(~) g

i/2
E(~) = (G(P) 4. G(g)g + G(&)g

(2.45)

if we use the SU(3) symmetry as well as (2.42).
Unless precise forms of G(g), Gg), G(„"), and G(z~ are
known at t =M', we cannot compute F((-AA).
Since the electromagnetic current is not negligible
in our model, we cannot resort to a simple SU(3)
result' of F((It-AA) = F((-pPQ.

We note that the isospin invariance demands

2M(q -Z'Z') -M(g -Z 'Z')+M(g -Z Z ) (2.46)

for decay matrix elements of g-ZZ. Moreover, if
we have g, =(I/W3) f, then our Hamiltonian is U-

spin scalar and we have U-spin results such as

M(4-PP)=M(4-Z'Z'),

M($- nn)=lVi(( =0"0),

M((c -Z-Z-)=M(q-=-=-), (2.47)

for both proton and neutron form factors. There
is also some indication"'" that G@z& and G"„'~ are
much larger than the dipole form (2.43) in the
timelike value around t = 4 GeV'. Therefore, we
should not take the discrepancy seriously. Some-
how, the electromagnetic form factors of the bar-
yons appear to behave very differently from those
of bosons. "

Let us comment briefly on F((-AA), whose form
factors are now given by

S, = Tr(j VPP)+ Tr(j VP, P,)+ Tr(j P,P,V)

+ Tr(j P PV)+ Tr(j P VP)+ Tr(j P, VP),

S, = Tr(j VPP)+ Tr(j VP P)+ Tr(j PP V)

(3.1)

+Tr(jPPV) 2Tr(jPVP) -2Tr(jPVP), -(3.2)

Experimentally, we know' F(g- Pw'm )jF(g- &dm'm )=0.2+ 0.10. Since F(g- Qv'w ) is doubly
forbidden by SU(4) (luark-line rule, this is in gen-
eral regarded" as the most conspicuous failure of
the quark-line rule. However, as will become
clear shortly, the weaker nonet Ansatz is capable
of explaining the experimental ratio quantitatively
in good agreement. First of all, we should empha-
size the difference between the nonet Ansatz' and
the quark-line rule" for more than three-body
processes, although they are identical with each
other for the three-body process. This fact will
become clearer when we go into detail. Let V be
a SU(3) vector nonet, and P be either a pseudo-
scalar SU(3) octet or nonet. We shall discuss de-
cay modes

VP,P, ,

where Py and P, des ignate two pseudoscalar octet
or nonets with four momenta k, and k„respective-
ly. Then, our Hamiltonian (2.4) indicates that we
can effectively replace ( in the decay by an SU(3)
nonet of currents j(&)(x). Hence, suppressing all
Lorentz indices, the most general decay matrix
elements consistent with the SU(3) invariance and
with the charge-conjugation invariance are a linear
combination of the following seventeen terms:

M((t-AA) =-', [M (g Z'Z')+2M(g-nn)],

Mg -AZ') =M(q- Z'A)

=~3[M(f-AA) -M(( nn)] .

It is likely that F(g-Z'A)+F(g-AZ') is not negli-
gible in comparison to I"((-AL) in our model.

Finally, we compute

' M 2m- "'~'

(2.48)

where E„(t)with E,(0)= 1 is the electromagnetic
form factor of the pion. Using the experimental
value of Bollini et gL." at t=9 QeV'

S, = Tr(jV)Tr(PP, ),

S, = Tr( jP)Tr(VP)+ Tr(j P) Tr(VP),

A, = Tr(j VPP)+ Tr(j PPV)- Tr(j VP P)
—Tr(j PPV),

A, = Tr(j P)Tr(VP) Tr(j P) Tr(VP), —

S,= (Tr V)[Tr(j PP)+ Tr(j PP)],
S, = (Trj )[Tr(VPP)+ Tr(VP P)],

S, =(TrP)[Tr(j VP)+ Tr(jPV)]

+ (TrP)[Tr(j VP)+ Tr( jP,V)],

A, = (TrP)[Tr(j VP) + Tr(j PV))

—(TrP)[Tr(j VP)+ Tr(j P,V)],

(3 3)

(3 4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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S, = Tr(j V)(TrP)(TrP, ),

S,= (Tr V)[(TrP)Tr(j P)+ (TrP)Tr( jP)],

(3.11)

(3.12)

A, = (TrV)f(TrP) Tr(jP) (T-rP) Tr( jP)], (3.13)

S» = (Trj)[(TrP) Tr(VP)+ (TrP) Tr(VP)], (3.14)

A, =(Trj)[(TrP)Tr(VP)-(TrP) Tr(VP)], (3.15)

S» = (Trj)(Tr V) Tr(PP),

S„= (Trj)(Tr V)(TrP)(TrP).

(3.16)

(3.17)

In the above, j represents a 3~3 spurion matrix
corresponding to a linear combination

j =g j(o) ~g j(8)+f7(~) (3.18)

Also, S& andA; stand for symmetric and antisym-
metric combinations, resyectively, of two mesons
P, and P, . Because of the Bose statistics, all S,.
must be multiplied by symmetric wave functions
of momenta k, and A„of two mesons, while all
A& must be multiylied by antisymmetric wave func-
tions of k, and k, .

The nonet Ansatz demands that all terms involv-
ing TrV or Trj, or TrPj or TrP, should not be
taken into account. Hence, we need not consider any
terms other than S„S„S„S4,A„and A, More-
over, the quark-line rule imylies that we have to
discard all disconnected quark-line diagrams. In
our notation, this is equivalent to stating that only
three terms, S„S„andA„need be considered.
Note that S„S„andA, correspond to quark-line
diagrams which are simply disconnected, while
terms S„S67 877 887 Sg S]0 Sy]7 A37 A4 andA. ,
are highly disconnected.

If we are now only interested in the decay ma-
trix elements of g Qw'w and g- &uw'w, then we

can easily check that terms corresyonding to 8„
A,„S„andA do not contribute at all for these
decays. Therefore, we need consider only two

terms S, and S, for the nonet A.nsatz, while S,
alone is responsible for the decays in the stronger
quark-line rule. The troublesome term is pre-
cisely S„which allows g-&uw'w but forbids g- Qw'w . Thus, this gives difficulty for the quark-
line rule. We argue that the presence of the term
S, is inconsistent with the original spirit of both
the nonet A.nsatz and the quark-line rule. The rea-
son is as follows. Because of an SU(3) identity
relation, '~ we can prove an identity

S,=S,+S, +S,+S, +S, -S, -S,-S„-S„+8„.
(3.19)

Bringing all negative terms S„S„S,O, and 8„
into the left-hand side, (3.19) is restated to imply
that a sum of all possible terms containing an
even number of traces is equal to a sum of those
having an odd number of traces for products in-

I'(g- Pw'w ) g, -v 2 g, '
I'(g &ow+w )

'
)I 2 go+g,

(3.20)

where the extra factor 0.78 in the right-hand side
represents the ratio of available phase volumes
for two decay modes. Assuming g, =(1/vY)f with
(2.13), this gives

~w+w )0.12+ 0-.04 for graf =2.29+ 0.52,

1.06'o '„' for graf= -2.29+0.52.

(3.21)

The experimental value of 0.20+ 0.10 is nicely in
accord with the case graf&0, again. We note that
if our argument is correct, then we should also
find

o(ee- Pw'w )
o(ee-(ow'w )

(3.22)

by exactly the same reasoning. Here K stands for

volving four 3~3 matrices j, V, P„and P,. At any
rate, S, in (3.1) is a sum of terms representing all
connected quark-line diagrams, while all terms in
the right-hand side of (3.19) correspond to discon-
nected quark diagrams. Therefore, (3.19) implies
that a sum of all connected diagrams is equal to a
sum of all disconnected diagrams with apyroyriate
multiplicative signs. This is inconsistent with the
idea of a simple quark-line rule, unless we demand
the special combination S, to give no contribution
at all for the decay mode ())- VPP. Then, we have
to consider the singly disconnected diagram S, to
account for (-(dw'w and)N)- gw'w since other
terms S„A„S„andA, do not give any contribution
at all for these decays, Hence, the discussion will
reduce to that of the nonet Ansatz. The situation
is somewhat reminiscent of the first forbidden
transition in atomic or nuclear physics. However,
the above argument is perhaps a little oversimpli-
fying a more complica. ted situation. In the level of
the nonet Ansate, (3.19) now implies that a special
combination S,-S,-S, which is allowed by the
nonet rule is now equal to a sum of all other terms
which are forbidden by the same rule. Unfortu-
nately, this is a.ll we can say. But taking a guide
from the quark-line rule, we assume that six most
general linearly independent components consis-
tent with the nonet rule are 8, -S, -S4 S2 A y S3
+S„2S3 84 andA. , in order of their importance.
But since the first combination 8, —S, -8, should
not appear by the reason we mentioned, the decay
interaction for g- VPP, must be written as a lin-
ear combination of S„A„S,+84, 2S3 S4 and A

Especially for g-w w'(d and (-w w'Q decays, only

S, alone can give nonzero contributions so that
their decay rates can be uniquely determined by
S,. If we accept this philosophy, then we compute
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a correction factor due to the difference of the
phase volumes for two reactions and is given by

t' nt&~-—2tm& in(t/m+')
f' -m' —2&n' in(t/m') (3.23)

4m e'
a(ee- pp. )=——

3/ 4m

to be
o (ee - ~w'm ) = (2.2 ~~))x 10 ' nb.

(3.24)

(3.25)

This is a bit small but it will not be impossible to
measure experimentally o (ee —w'w &u) and cr (ee- w+w q) at slightly lower energies, say at t = 5
GeV' since the cross sections are expected then to
be much larger than (3.25). Another possible test
of (3.22) would be the Primakoff effect. Then,
analogous to (3.22), we expect to have

if we neglect the small pion mass.
We should emphasize the fact that this relation

should be valid not only near t= N' but also for any
arbitrary values of t which are sufficiently large.
The experimental test of (3.22) is crucial for our
hypothesis. At t = M', we can compute o (ee- ~v's ) from (2.17) and

for any nuclear target N in the forward diffraction
dissociation region where the Coulomb excitation
is, we hope, dominant.

When we combine(3. 20) with the U-spin results
(1.20) and (1.22), then we find

2M(q- K-K'po)-M(y- ~-v'po) 3f
M(g-m'v (g) ~Qg, +f

M(g —u&K'K')=M((- um's ),

M(q - yK'K')=M(q- y~'v-), (3.28)

= 0.45~~„",', (3.27)

which may be experimentally tested when data for
1"(g-K K'p') and F((-m'm p') will become avail-
able. Because of G-parity, M(p-m v p') is of the
order f so that (3.27) forces M(f-K K'p') to be
proportional to f=v 3 g, rather than g, itself.
Therefore, we expect that both I'(p-w w'p') and
F((-K K'p') are of the same order and smaller
by a factor of 10 in comparison to I'(g- v w'&o).

This is in accord with the experiment if we replace
p' and w by w'm and m'm m, respectively. Also,
assuming g, = (1/&3)f, we can show the validity of

o, (~'N- v'yN)
&c(~'N 7r'vN)

(3.26) as well as

M(ee- p'K'K')=3M(ee- ~w's )=3M(ee &uK K-') = — M(ee- $Ko&),

M(ee- pK'K)=- W2M(ee- &uK"K ). (3.29)

These will be additional checks of the validity of
our Ansatz.

We should note that within the framework of the
asymptotically free gluon theory, ( w'm Q will
require" four-gluon exchange in contrast to the
three-gluon-exchange mechanism for g- v'm &u.

However, as has been emphasized by Har ar i,"both
could give a similar rate due to a dynamical con-
sideration. However, we do not expect to have a
relation such as (3.22) for this case, so that the
validity of (3.22) will distinguish our model from
the gluon model.

In ending this section, we briefly comment on
the SU(4) theory. So far we discussed our model
within the framework of SU(3), since g and g' are

effectively replaced in terms of the SU(3) currents
J„(x)and j& (x). Therefore, the validity of SU(4)
symmetry is largely irrelevant for our discussion.
But because of this fact, we cannot perhaps dis-
cuss the radiative decays of g and y' since the
SU(4) charmed component of the electromagnetic
current is expected to be important for such de-
cay modes. Then, we have to consider the full
SU(4) symmetry. Although we could adjust our
method for the case of SU(4), some new compli-
cations may arise. Especially, we have to modify
our criteria of the self-consistency of the quark-
line rule discussed in this section since the iden-
tity (3.19) is correct only for 3x3 matrices. The
details for these points will be treated elsewhere.
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