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Hawking has predicted that a black hole will emit particles as if it had a temperature proportional to its

surface gravity. This paper combines Hawking's quantum formalism with the black-hole perturbation methods

of Teukolsky and Press to calculate the emission rate for the known massless particles. Numerical results

indicate that a hole of mass M & 10" g should emit a total power output of 2 X 10 ' 8 c G 'M ', of which

81% is in neutrinos, 17% is in photons, and 2% is in gravitons. These rates plus an estimate for the emission

rates of massive particles from smaller holes allow one to infer that a primordial black hole will have decayed

away within the present age of the universe if and only if its initial mass was M & (5 ~ 1) p 10' g.

I. INTRODUCTION

Hawking has calculated quantum mechanically'
that a black hole will emit particles as if it were
a hot body with a temperature T proportional to
its surface gravity. Since the surface gravity
is inversely proportional to the black-hole mass
M, and the emitting area A is proportional to
M', the luminosity or total power emitted is pro-
portional to AT' or M '. As M decreases at this
rate, the black-hole lifetime will be proportional
to M'. Dimensional arguments indicate that
the lifetime will be less than the age of the uni-
verse only if M~ 10"g. Consequently, the thermal
emission is insignificant for black holes formed
by the stellar collapse (M&MQ, lifetime& 10" yr),
but it is of crucial importance for the small pri-
mordial black holes possibly formed by fluctua-
tions in the early universe. ' '

This paper reports numerical calculations of the
emission rates for massless particles. The spec-
tra from the dominant angular modes are given
for neutrinos, photons, and gravitons. The spec-
tra are integrated to give the total number rate
and power emitted in the various modes. From the
total power emitted in all modes, the lifetime of
a black hole is predicted. Essentially, this paper
gives numerical coefficients for the dimensionally
determined quantities of the preceding paragraph.

To simplify the notation, dimensionless units
will be used such that

S= c= G =0 (Boltzmann' s constant) = 1.

That is, all quantities will be written in terms of
the Planck mass ([Sc/G]' '=2. 16&&10 ' g), length
([SG/c']' '=1.62&10 "cm), time ([AG/c']' '
= 5.39&&10 "sec), temperature ([hc'/G]'~'P = 1.42
x10" K), energy ([Sc'/G]' '=1.96x10" erg
= 1.22&&10" MeV), power (c'/G =3.63x10" erg
sec '), charge ([Sc]'~'=5.62&&10 ' esu =11.7e),

=Mj5.34 x 10'ME (2)

Q„ is the charge parameter (dimensionless with-
out setting S = 1) that must be of order unity to
affect significantly the geometry of a black hole
and hence the emission of uncharged particles.
Therefore, except for black holes above 10' Mo,
which do not radiate at a significant rate anyway,
the charge of the black hole can be ignored when
analyzing the emission of uncharged particles.
For a black hole small enough to be emitting elec-
trons and positrons, the resulting random charge
fluctuations are estimated to be of order unity.
Such fluctuations do not affect the geometry signi-

etc. For example, the electron mass is m, =4.19
x10 ", the muon mass is m& =8.65x10-", the
blackbody background temperature is T& = 1.9 x 10 "
the age of the universe is f, = 10" (= 17 billion
years), and the solar mass and luminosity are
Mo = 9.14 x 10" and Lo= 1.05 x 10 ", respectively. '

The present paper will limit itself to the known
massless particles (v, , P, , v„, v„, y, and gravi-
ton) being emitted from an uncharged, nonrotating
hole. Future papers in this series are being
planned to consider rotating holes and the emission
of massive particles. Massless particles will
dominate the emission when T am, (the smallest
nonzero rest mass known). The approximation of
zero rest mass should also be valid for m, «T«m„,
in which case electrons and positrons will be
emitted ultrarelativistically so that their rest
mass can be ignored, whereas heavier particles
will hardly be emitted at all. The approximation
breaks down for the case T &rn„or M &5x10"
= 1 x 10"g, which will not be considered.

Zaumen' and Gibbons' have shown that a black
hole will discharge rapidly by a Schwinger-type
pair-production process if

Q = Q/M&Mm, '/e=2. 05x10 "M
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ficantly since only M»1= 2~10 '
g is being con-

sidered, but they do affect the coupling of the hole
to electrons and positrons so that their average
emission rates may be changed by a fraction of
the order of the fine-structure constant. This
effect will be ignored until a future paper.

The idealization of no rotation for the black hole
is much less justified than the idealization of no

charge, but there are two effects that may tend to
make the rotation small. First there is the ten-
dency of a rotating hole to emit more particles
with angular momentum in the same direction as
the hole than in the opposite direction. Indeed,
for a hole rotating as fast as possible for a given
mass, each particle emitted must decrease the
angular momentum of the hole, and it appears that
this decrease is characteristic of the total emission
at any finite rotation. However, the classically
dimensionless (no h 's needed to make it dimen-
sionless) rotation parameter that determines the
shape of a black hole is

which would not be much, if any, faster than the
direct emission mechanisms. )

In summary, this paper will consider the emis-
sion rates from an uncharged, nonrotating hole
for massless particles of spin ~, 1, and 2. This
is meant to apply to neutrinos, photons, and grav-
itons (and possibly ultrarelativistic electrons and
positrons from a hole small enough) being emitted
from a primordial black hole that has been neutra-
lized, if necessary, by e emission and that sorne-
how has little angular momentum.

II. THEORETICAL FORMALISM

According to Hawking's calculation, the expected
number of particles of the jth species with charge
e emitted in a wave mode labeled by frequency or
energy &, spheroidal harmonic l, axial quantum
number or angular momentum m, and polarization
or helicity P is

(1V,. . ., ~) = F&,, ~[exp[2vtc '(ru —mQ —eC)] + 1) '.
a„= J/M', (3) (4)

where J is the magnitude of the angular momentum.
For a =1 (maximum rotation), it is easy to show

that the emission leads to a decrease in a, , but

for a~ near zero, it is not yet known whether the
angular momentum decreases fast enough com-
pared with the mass to keep a decreasing, or
whether din J/dlnM= 2 at some finite a„causing
a, to approach that value asymptotically rather
than continuing to decrease toward zero.

The second effect which may tend to reduce the
rotation is an instability to the exponential growth
of massive scalar fields in a quasibound state
around a rotating hole. Eardley has suggested
this effect' as an analog of the "black-hole bomb, "'
in which the rest mass of the field replaces the
mirror to confine the field. This instability should

rapidly drain angular momentum from the hole
into orbiting particles, which then decay or radiate
away their energy and angular momentum by grav-
itational radiation, '0 if (1) the size of the hole is
roughly the Compton wavelength of one of these
scalar particles (a pion, say), (2) the size of the
particle itself is not too large compared with the
size of the hole, and (3) it is possible to create
many particles in the same mode so that the field
can grow exponentially. (One might suppose that
if a scalar particle were made of Fermi constit-
uents, the exclusion principle for the constituents
would prevent the scalar particles from piling up
in the same mode by coherent amplification, so
the drain of angular momentum would not occur
at any exponentially large rate limited by the grav-
itation radiation from the mode but rather at a
rate limited by the decay or interaction time,

K
dM= —dA+ Odd+ 4dQ.

8m
(5)

The expected number emitted in each mode re-
markably is the same as that of a thermal body
whose absorptivity matches that of the hole and
whose temperature is

so 4A can be identified as the entropy of the black
hole. ' For a Kerr-Newman black hole with the
horizon at radius

the specific expressions for K, 0, and 4 are"

4v(r, -M)
A

= ~&M '[1+ (1 —2 Q ')(1 —Q
' —a„') ' '] ', (8)

Here the minus sign is for bosons and the plus
sign is for fermions; I;, ~ is the absorption
probability for an incoming wave of that mode (i.e. ,

minus the fractional energy gain in a scattered
classical wave, -Z in the calculations of Teukol-
sky and Press" ); K, 0, and 4 are the surface
gravity, surface angular frequency, and surface
electrostatic potential, respectively, of the black
hole. The values of K, ~, and 4 are linked to the
hole's mass M, area A, angular momentum J, and
charge Q by the first law of black-hole mechan-
ics"
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hole decrease at the rates given by the total power
and torque emitted:

= ~ [2 —Q„'+ 2(1 —!I),
' —a, '}'~'] F, , ~fLexp[2vv '(ru-mQ —ec)]

g &l fftP

a
4M

(9) ')) 'm)& ))2)

1+(1—Q*' —a ')' '
q 2 /2(1 q 2 u 2)&)'2

(10)

Here the quantities after the arrows are the lead-
ing terms for a -=a/M -=J/M' «1 and tL), —= !I)/M«1.

To convert from the expected number emitted
per mode to the average emission rate per fre-
quency interval, one counts the number of modes
per frequency interval with periodic boundary
conditions in a large container around the black
hole and divides by the time it takes a particle to
cross the container, finding

= (~)—dÃ vdk d~
dt 2m 2m

for eachj, l, m, p, and frequency interval
((u, a)+d(u). Since each particle carries off ener-
gy and angular momentum m about the axis of
the hole, the mass and angular momentum of the

The nontrivial part of the calculation of the
power and torque is the determination of the ab-
sorption probabilities ~. Fortunately, Teukolsky
has shown" that the fundamental equations for
gravitational, electromagnetic, and neutrino-
field perturbations of an uncharged rotating black
hole decouple into a single equation for each field,
and furthermore that each of these equations is
completely separable into ordinary differential
equations. Teukolsky and P ress" have developed
analytic and numerical techniques for interpreting
and solving these equations for gravitational and

electromagnetic perturbations. Their techniques
can be extended easily to the neutrino field, and

I have simply modified their computer programs
to cover neutrinos as well as gravitons and photons.

A check on the numerical computation can be
given by the analytic form of F for small M~, which
has been derived by Starobinsky and Churilov"
for boson fields and which is extended in the Ap-
pendix to fermion fields obeying the Teukolsky
equation. For a massless field with spin-s
scattering off an uncharged hole, the formulas are

(l —s)!($+s)! '~ ) a&-mQ '
&o —mQ Aa

) (l —s)!(f+s)! ' ~' (o-mQ ' A~

with fractional errors of order (At(&o)" '. Since l ~ s, the dominant contribution is from the l = s modes,
which give

F,~~ = —m' = 8M [M+(M' —a')'~'] aP for s = 0,
1r

(16)

—[M'+!fn' —1)a'] (&u-mQ)~' for &=1,4 A
(17)

I'
2 ~

= —[M'+(m' —l)a'][M'+(&m' —l)a'](~ —mQ)&u' for s=2. (18)

Here only the lowest-order term in has been kept, except for the -mO factor for bosons which guar-
antees that in the superradiant regime ~&mQ, the absorption probability for bosons in negative. [I.e. ,
waves are amplified rather than absorbed. The thermal factor of Eq. (12) is also negative in this regime,
so the quantum emission rate remains positive. ]
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From the behavior of these analytic absorption probabilities at low frequencies for the various angular
modes, one can get the low-frequency (M&«1) absorption cross section for a massless particle of spin
s averaged over all orientations of the black hole:"

s=0

2',
o, (&u}=war ' I; &X(3M'-u'} '

1s 2

s=1
(19}

A(5M'+ &M'g'+ g )&u', s =2.

At high frequencies (M&@» 1}the angle-averaged
cross section for each kind of particle must ap-
proach the geometrical-optics limit of 27mM' for
a nonrotating hole and roughly the same value for
a rotating hole. " Thus the cross sections are
smaller at low frequencies. As the frequency is
reduced to zero, the cross sections retain finite
values for neutrinos and hypothetical spin-0 mass-
less particles and go to zero as the frequency
squared for photons and as the frequency to the
fourth power for gravitons.

Combining the low-frequency absorption prob-
abilities (13) and (14) with the thermal factor (4)
for a black hole with negligible rotation, one gets
the emission rate in a given angular and polari-
zation eigenstate for low frequencies,

d & P (l- s)!(I+s)! ' „+,
dfd+ ~ 4v (2 f )!(2l + 1) !!

(20)

where P=2 for bosons and P=7t' for fermions. The
fractional errors are of order M(~-mQ). Thus in
each case the emission rate at low frequencies
goes as td, and the power goes as + . This
qualitative behavior causes the particles with low-
er spine (and thus lower l allowed, since l ~ s) to
be emitted faster from a nonrotating hole, there-
by dominating the low-frequency power drain from
such a hole. However, the analytic expressions
for low frequency break down long before the
actual spectra peak, so numerical calculations
are needed to determine whether and to what ex-
tent this effect holds also for the total power drain.

III. NUMERICAL CALCULATIONS

The particle emission rates were calculated by
using Hawking's formula (4) and Eq. (11) with the
absorption probabilities ~ computed by the method
of Ref. 9, Sec. VII, using Bardeen's transforma-
tion discussed therein to allow stable integration
of the Teukolsky equation from the horizon to in-
finity. A purely ingoing solution was chosen on
the horizon, and after this solution was numeri-

cally integrated out to a sufficiently large radius,
it was resolved into ingoing and outgoing waves at
infinity. Then I' was calculated as the ratio of the
energy going down the hole to the energy of the
ingoing wave at infinity, and the thermal factors
were multiplied in to give the quantum emission
rates. These rates were multiplied by the energy
or angular momentum of each particle, integrated
over frequency, and summed over all angular
modes, polarizations, and species of particles to
give the total power and torque emitted [cf. Eq.
(12)] .

The accuracy of the numerical result was limited
by the step size in integrating the Teukolsky
equation, the radius where the resolution into in-
going and outgoing waves is made, and the step
size in integrating the spectra. To keep these
three sources of error under control, variable
step sizes were used with an error criterion for
each step, and the resolution into ingoing and out-
going waves was required to be the same within
a certain accuracy at two different radii. Thus the
total error was governed by three accuracy criter-
ia, and these were chosen for each mode to give
roughly the same effect on the final result so that
the result might have nearly the greatest accuracy
possible for a given computer machine time.

The numerical calculations of the emission rates
compared favorably with Eq. (20} at low frequen-
cies, although departures from the extended
Starobinsky- Churilov expression become signifi-
cant at fairly small values of M&. For example,
the actual value of 1 for neutrinos with l = ~

becomes 50% larger than that given by Eq. (14}
when Mt'd =0.05. This effect prevents one from
getting an accurate estimate of the total power
and torque emitted by inserting (13) and (14) into
(12). [One might have expected such an estimate
to be fairly accurate on grounds that the exponen-
tial of 8'~ (for a nonrotating hole) in the denom-
inator of (12) might become large and make the
integrand small before the expression for I' de-
velops serious errors. ] In fact, such an estimate
gave only 35% of the actual total power in neu-
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trinos, 13% of the actual power in photons, and
5% of the actual power in gravitons, or 30% of the
total in all massless particles.

( „„,)w,
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IV. RESULTS

The power spectra for neutrinos, photons, and
gravitons are given in Fig. 1. The integrated
emission rates and power for the dominant angular
modes are listed in Table I. The total in all of the
known massless fields (four kinds of neutrinos
with one helicity each and photons and gravitons
with two helicities each) is 1.130x10 ' c'G 'M '
for the emission number rate and 2.011x10
xhc'G 'M ' for the power. One may compare these
numerical results with the naive estimates of
thermal emission from cross sections & that are
assumed to be independent of frequency. Then the
power would be

IO-'—

IO-' t-

I

lop g

8+
a'00
gD

lo)

I/5

P= acT' P„-o(v, ) + —'„a(p, ) + —'„a(v„) + —'„a(v„)

+ o(y) + o(g)] (21)
0 0. 1 0.2 03 0.4 0.5 0.6

2y4

15k'c' (22)

is the radiation density constant, ' and T is the
temperature of the black hole, given by Eq. (6).
If we take the high-frequency limit, all the cross
sections go to 27wG'M'/c', and the power estimate
becomes 5.246x10 '5c'G 'M ', which is a factor
of 2.6 too large. If we take the low-frequency
limit, Eq. (19) shows that the photon and graviton
cross sections go to zero, whereas the neutrino
cross sections go to 2vG'M'(c', so the power
estimate becomes 0.181x10 'hc'G 'M ', which is
a factor of 11 too small. (The thermally averaged
cross sections turn out to be 18,05rM' for photons,
6.492@M' for photons and 0.742@M' for gravitons. )

If the black hole is small enough that electrons
and positrons are emitted ultrarelativistically
(and thus at the same rate for each helicity as
neutrinos) but not small enough for heavier par-
ticles to be emitted at a significant rate, the
power is 3.65x10 'Sc'G 'M '. The peak in the
neutrino power spectrum (which should be the
same as that for ultrarelativistic electrons) is
at =0. 18M ', therefore, the assumption of only
ultrarelativistic e applies for

m, =4.19x10-"«0.18M '«m„=8.65x10-"
(23)

which is true for the mass range

for emission of v, , v, , v„, v„, y, andg(gravitons).
Here FIG. 1. Power spectra from a black hole, obtained by

adding all angular modes for four kinds of neutrinos and
for two polarization states (helicities) each of photons
and gravitons. The lowest angular modes, l =s, domin-
ate, but the L =s+ 1 modes can be seen coming in with a
small "bump" in the neutrino spectrum at Mco = 0.4 and
in the photon spectrum at Mcu = 0.5. The total power
spectrum can be seen at high frequencies to approach
that of a thermal body with a cross section of 277IM~,
but at low frequencies the spectrum drops below the
Planck form as the cross section of the black hole is re-

ducedd.

A black hole with M»10" g would emit virtually
no known massive particles, and a hole with
M 65x10" g would emit muons and heavier part-
icles at a significant rate.

Knowing the expression for the total power
emitted from a nonrotating black hole, one can
calculate the lifetime of such a hole. The power
emitted causes the mass to decrease at the rate

Ac' e
(25)

where o is a numerical coefficient (see above)
that depends on which particle species can be
emitted at a significant rate. Since most of the
decay time of the hole is spent near the original
mass Mp, & can be taken to be its value &p at

2.1 x 10'9 = 4.5 x 10' g « M« 4.3 x 10"= 9.4 x 10"g.

(24)



PARTICLE EMISSION RATES FROM A BLACK HOLE:. . . 203

TABLE I. Emission rates and powers for the dominant angular modes.

2s'
For each mode

rate power ~ h
For each (s,l )

rate power g

8 1.191 x10 1.969 x10
1 12 x10 3.75 xl0

9 9 5 x10 4.9 x10

6 3 8 2 44 x10 5.49 10 6

2.4 8 1.63 xl0 7 6 67 x10 8

4 2 94 11 x10 65 x10

8 9.531 x10
16 0 180 x10 4

24 0.002 x10

6 1 463 x10
10 0.016 x10 4

14 0.0001 x 10 4

1.575 x10 4

0.060 x10 4

0.001 x10 4

0.330 x10~
0 007 x10
0.0001 x10 4

4 4 5 2, 4 8 1.10 x10 6 3.81 x10 7

4 6 4 2 9.4 4.7 x10 2.6 x10

Total rate and power for all modes

10 0 110 x10 0 038 x10
14 0 ~ 0007 x 10 0.0004 x10 4

1.130 x10 2.011 x10~

s is the spin of the field, here doubled to give an integer; i.e. , 2s=l for neutrinos,
2s = 2 for photons, and 2s = 4 for gravitons.

l is the total angular momentum of the mode.
'10 is the fractional error criterion for each step in the radial integration of the

Teukolsky equation.
10 ' is the fractional error criterion for the resolution of a numerical solution of the

Teukolsky equation into ingoing and outgoing waves.
10 ~ is the absolute error criterion for the integration over frequencies.
Rate in units of c g ~ = 4 038 x10 (M/g) ' sec

~ Power in units of Sc Q M =1.719 x10~ (M/g) 2 ergsec '.
h

g is the number of modes for a given L and s, (2L +1) x(number of particle species with
the given s) x(number of polarizations or helicities for each species).

that mass, if &(M) does not change rapidly with
mass near Mo (as it might for Mo s 5 x 10" g).
Then the lifetime of the hole is

G' M0
~

Ac 3&p
(26)

For M&+ 10" g, e = 2.011x 10 ', so

7. =8.66&&10 "(M,/g)' sec

= 2.16 && 10"(Mo/Mo)' yr.

For 5x10" g«M«10'" g, &=3.6x lp ', so

(27)

v=4. 8&10 "
(M,/g)' sec=1.5x10 " (M,/g)' yr.

(28)

Since the lifetime of a black hole of stellar mass
is so enormous, the decay is important only for
black holes of much smaller mass, which cannot
be formed by any processes (except for extremely
rare quantum tunneling) that we know of in the
present universe but which might have formed in
the early universe. ' ' It is of interest to deter-
mine what initial masses should have decayed
away and what masses should still be around.
Taking the lifetime of the black hole as the pre-
sent age of the universe, say 16 billion years, "
one finds that if only the known massless particles
are emitted, Mp=3 9x10 g. This is inconsistent
with negligible emission of massive particles, so

=3.458&10"(M/g) ' erg sec '

=2.28x10 ' Lz(M/Mo) ', (29)

of which 81.4/o is in the four kinds of neutrinos,
16.7% is in photons, and 1.9% is in gravitons,
assuming these are the only massless particles.
For 5x10" g«M«10" g,

P= 3.6x10 '5& G 'M '

=6.3&10"(M/10" g) 'erg sec ' (30)

of which 45% is in electrons and positrons, 45%

one must add ultrarelativistic e emission, getting
Mp=4. 7x10" g. This is at the mass where muon
and pion emission are beginning to become im-
portant, so a somewhat larger mass should have
decayed by now. However, unless the power is
increased more than a factor of 2 due to the
emission of muons and heavier particles (unlikely)
and unless the universe age is outside 8-18
billion years" (also unlikely), probably Mo= (5 + 1)
x10" g is the initial mass of a primordial non-
rotating, uncharged black hole that just decays
away at the present age of the universe by the
emission of the known elementary particles.

In conclusion, the power emitted from an un-
charged, nonrotating black hole of mass M»10"
g is

P = 2.0]1x1p.-' g~'G-'~'
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is in neutrinos, 9% is in photons, and 1% is in
gravitons. This assumes electrons and muons
are the lightest particles with rest mass. The
emission of particles is unimportant for stellar-
mass black holes but should have caused any pri-
mordial black hole with an initial mass less than
4 X 10" g (and perhaps somewhat greater values)
to decay away by now.
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APPENDIX

The absorption probability I' at low frequencies can be calculated by analytically solving the Teukolsky
equation with the approximation M+ «1 and finding what fraction of any ingoing wave from infinity gets
reflected back out. In Boyer-Lindquist coordinates for an uncharged hole, a massless field of spin-
weight +, frequency , and axial quantum number m obeys the radial geukolsky equation"

+ [(r'+ a')'~' —4aMr&um+ a'm'+2ia(r -M)ms —2iM(r' —a')res+(2ir&us —1)g]R = 0. (Al)

Here

n, =r' —2Mr-+a'=-(r-r, )(r-r ),

and X is an eigenvalue of the angular equation

d . ds m+scose '
sine —+ (s —a~ cos8)'— —s (s —1) + X —a '(o' S = 0.sine de de sine

(A2)

(A3)

(X is the same as in Ref. 15 and is the same as ~+2anzw in Ref. 11.)
Following Starobinsky and Churilov" generally, define

r —r r-M-(M -a)
2(r, -M) 2(M —a')'~' (A4)

(A5)

k
—= 2&v(r, —M) = 2M&v(1 —a, ')'i'.

Then small M& implies that the radial equation can be approximated as

x'(x+1)' +(s+1)x(x+1)(2x+1)—+[k'x +2iskx —Ax(x+1)+is@(2x+I)+Q']R=0,2
d'R dR
dx dx

with k«1. Small M& also implies a'~'«1, in which case the angular eigenvalue becomes very nearly

X= (I s)(f+s+1),

(A6)

(A7)

(A6)

where I —s is a non-negative integer. (In the limit of a -0, L is the total angular momentum of the mode. )

For kx«l+I, the first two terms inside the square brackets of Eq. (A7) can be dropped, leading to an
equation with three regular singular points. A solution obeying the ingoing boundary conditions at the
horizon" is"

R =x "'o(x+I) ' 'o
zF, (-l —s, I —s+1; 1 —s+2iQ; —x). (A9)

Here, F, (a, b; c;z) is the hypergeometric function. For x» jQ~ +1, the last two terms inside the square
brackets can be dropped, and @+1 can be replaced by x, leading to an equation with one regular and one
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irregular singular point. The solution is, if 2I, is not an integer, "
R = C, e ""x' ',F(l —s+1; 21+2; 2ikx I+'C, e ' *x ' ' ',F(-l —s; -2l; 2ikx) (A10)

Here, F,(a; c;x) is the confluent hypergeometric function. [To avoid solutions with logarithmic terms,
and to simpl. ify the matching procedure, we will henceforth assume 2I, is nearly, but not exactly, integral.
This is actually the case when a'&rF w0 if we use Eq. (A8) as the definition of I when X is given from Eq.
(A3) rather than as an approximate formula for A when l —s is given as a non-negative integer. ]

By matching the two solutions in the overlap region [Q~ +1«x«(l+1)/k, one can get

I'(2l+1) I'(1 —s+2i Q) I'(-2l —1)I"(1—s+2iQ)
I'(l —s+1)I'(l+1+2iQ) ' I'(-l —s)I'(-l+2iQ) (A11)

Then the asymptotic form of the confluent hypergeometric functions can be used to get the solution in the
form

y -iAx+-I y ~kx+-2s-I
in' out

for kx»1, where

(A1 2)

I'(2l+1)I'(2l+2)I (1 —s+2i+ k .
) „, , I'(-2l)I'(-2l —1)F(1 —s+2iQ) k . ), ,

I'(I —s+I) F(l+ &+I)I (i+ I +2iQ) (o I'(-I —s) F(-1+s)F(-1+2iQ)

I'(2l+1)I'(2l+2)I'(1 —&+2iQ) k ""2.„),, I(-2l) (-2l —l)I'(1 —s+2iQ) k '"'
[I'(l —s + 1)]' F(l + I 2i+g) co [F(-l—s)] ' F(-1+ 2ig)

(A13)

To obtain the ratio of outgoing to ingoing fluxes, one can either calculate the normalization factors of
Ref. 11 to apply to

~
Y,„,/Y~ ~', or one can use the following trick: Solve the radial equation with s re-

placed by —s to get the asymptotic form

g -flax+-I g ((!kx +2s-l-s —
in e + ouse

[i.e. , Z~ and Z,„, are the same as Y~ and Y „respectively, in Eq. (A13) above with s replaced by -s].
Then the reflection coefficient is (cf. Ref. 11)

Ouf +Out

dE;„Fin Zin
(A15)

After some algebra, one finds that with a fractional error of order k"",
;,(, ,g, ) I'(-2l)F(-2l -1) I'(l —s+1) ' F(i+ I 2i+g)

I'(2l + 1)F(2l + 2) I'(- l —s) I'(- l + 2iQ)
(A16)

Now one can keep 2s exactly integral and take the limit as l —+ approaches a non-negative integer. Then

(l —s)!(1+s)! ' F(l+1+2iQ)
(

. )»+,
(2l)!(2l+1)! I'(-l+2iQ) (Al 'I)

Taking the cases of integral or ha, if-integral spina separately (corresponding to 2l even or odd, respec-
tively) to express the quotient of the two I functions as a finite product, and rewriting Q and k in terms
of ~, m, &, &, and A, one obtains Eqs. (13) and (14). The result for integral spina was given by Star-
obinsky and Churilov, though not the result for half-integral spins.
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