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Asymptotic crossing relations for the Regge amplitudes are proposed as a model-independent expression of
local duality. They allow local duality to be formulated solely in terms of Regge trajectories without any
violation of unitarity or neglect of resonance widths. The crossing relations connect the direct- and crossed-
channel Regge-pole amplitudes for the elastic scattering of two equal-mass particles as s i 00 in a given
domain of the real st plane. The main purpose of this paper is to determine the type of domain in which such
crossing relations will possess nontrivial solutions that are both self-consistent and in keeping with the known
properties of the Regge trajectories and residues. An extensive and systematic study of all domains involving
large, positive s and values of t in some interval [t„t,] along the positive t axis is presented. We consider both
intervals of fixed length and intervals whose length is increasing with s. Only one type of interval is found
that is satisfactory, namely, intervals consisting of values of t that are increasing in proportion to s, i.e., for
any given s, t ~ [s/r„s] for some r» 1, The reasons are the following. It is the only type of interval (1) in
which we can provide an existence proof for the solutions to the crossing relations, the proof being valid for
asymptotically parallel trajectories; (2) for which the generalization to unequal-mass scattering encounters no
obvious inconsistencies; and (3) for which the residues calculated from the crossing relations have an
asymptotic form of the type found in the Veneziano model. Furthermore, we can prove the validity of the
proposed crossing relations over this type of interval if the modified s-channel background integral 8,
satisties the bound In~8,

~
& +2as"/p, where Rea(s) ~ as" as s~ oo for p ) 0 802. The analogous proof for

any of the other types of domains considered requires the bound 1n~ 8,
~

& Kins for some N, which is a
much stronger bound. The proof to which we refer assumes only that the contributions of Regge branch cuts
to the scattering amplitude are negligible compared to the contributions of Regge poles, a„(s), for s positive
and sufficiently large. In the indicated domain, the crossing relations imply certain homogeneous integral
equations that the residues must satisfy. Although a complete solution is not given, we show that as s i 00 the
residues behave as exp( —yas"), where y is a logarithmic function of r, and p. From the expression for y we
obtain the upper bound y & ln(3+ 2+2)—Q2/p (for p = 1, y & 0.348). The constant analogous to y in the
Veneziano model is 0.38. We add that if the crossing relations proposed here are not valid, then either the
background integrals must generate the crossed-channel Regge terms or the background integrals in concert
with the direct-channel Regge terms must do so.

I. INTRODUCTION

The particles and resonances of strong-inter-
action physics are known to lie anong the rising
portions of Regge trajectories. If the trajectories
continue their upward cl.imb indefinitely, the in-
finity of resonances generated in their wake should
be related by duality to the crossed-channel tra-
jectories which control the asymptotic growth
of the scattering amplitude. In brief, we would
say that crossed-channel trajectories are built
out of direct-channel resonances. However, the
exact meaning of such a statement and hence of
local dual, ity is not clear. At present these ideas
are well defined primarily in the context of the
narrow-width approximation in which case they
find expression in the well-known Veneziano and
re lated models. 3

In this paper we investigate the possibility of
formulating a model-independent definition of
local duality for the elastic scattering of two
equal-mass particles as suggested in an earlier
paper. 4 By local duality we refer to the idea that

a sum of s-channel. resonances should be Regge-
behaved for large s at each value of t in some,
as yet, unspecified domain of the t plane. One
approach to this problem is to attempt to unitarize
the Veneziano model directly and in this way move
away from the narrow-width restriction. Here
we assume that something of this kind is possible,
that a sum over the s-channel resonances, i.e.,

does indeed behave as s ', or at least as a sum
of t-channel. Regge-pole terms as s-. In Eq.
(1.1), r, „(s) is a resonance amplitude for a reso-
nance of mass M„-2il"„and spin /. Also ~,
=cos8, =1+2t/(s-4p, '), where 8, is the s-chan-
nel scattering angle and g is the mass of the ex-
ternal particle. Primarily we are concerned with
what types of trajectories, residues, and reso-
nances are capable of satisfying such a condition
once it has been unambiguously specified.

The ambiguity which we have in mind resides
in the specification of the domain in the st plane
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in which asymptotic dual. ity should be exhibited
and also in the resonance amplitudes themselves,
theproblem in the latter being that there is no
universally acknowledged way to define a reso-
nance amplitude away from the resonance position.
We postpone consideration of the appropriate do-
main and consider the second ambiguity. To re-
solve it we simply choose a specific, yet not
overly restrictive, form for the resonance ampli-
tudes, namely

2n„+1 't ' P„(s)r,„(s)=2 [1+(—1)'o„)
i

—"
( ),

(1.2)

(1.3)

The choice of (1.2) as the appropriate resonance
amplitudes leads to a mathematical statement
of local duality of the form

g( ) /(L) or~/( ) (1.4)

where 0„ is the signature of the nth trajectory.
This form is suggested by the fact that resonances
lie along Regge trajectories, and, in fact, Eq.
(1.2) is simply the Lth partial-wave projection of
the nth Regge term. This is the basic assumption
of the paper. It is to be compared with the more
common tendency to express the resonance ampli-
tude in terms of the poles and residues in the
complex s plane, r, „(s)=g„(l, )s[s - M„'+ fMr„] ',
where g„(/, M„' —iM„I'„) is the residue of the pole.

It is more convenient to parameterize the reso-
nance amplitudes by the Regge trajectories and
residues than by the unfamil. iar functions g„(l, s).
The explicit l dependence of (1.2) allows (1.1)
to be analytically continued to arbitrarily large
values of t in a particularly simple manner. Re-
call that the sum over l in (1.1) only converges
for t inside the Lehman ellipse. However, it can
be explicitly summed for t & 0 using (1.2) and
Dougal, l's formula. ' The result, of course, is
a sum of the usual s-channel Regge ampl. itudes
gA&" ~, where

P„„(-z, '} + v„P~ (&, )

the s-channel trajectories and residues must
produce trajectories and residues in the crossed
channel that are functionally identical to them-
sel.ves in the case of elastic scattering. This
suggests that Eq. (1.4) be regarded as providing
an asymptotic bootstrap mechanism for the Regge
parameters. However, there is the difficulty that
the s- and t- chan nel trajectories in Eq. (1.4) may
enter at different values of their arguments.
Whether or not this proves to be a problem de-
pends on the particular domain of validity chosen
for Eq. (1.4).

Another important question in this approach
regards the number of s-channel trajectories in

Eq. (1.4) needed to generate crossed-channel
Regge terms. In general we will assume that a
finite but increasing (with s) number of s-chan-
nel trajectories is sufficient.

A complicating factor in these considerations
is the presence of Regge cuts which we have ig-
nored in the previous statements. Our attitude
is that Regge pol.es plus unitarity probably neces-
sitate Regge cuts and any attempt to unitarize
the Veneziano model or otherwise give meaning
to local duality outside the narrow-width approxi-
mation must take Regge cuts into account. This
is a serious problem for duality, particularly if
Regge cuts lie above their respective Regge poles.
In that case, the Regge-cut amplitudes will dom-
inate the Regge-pole amplitudes at sufficiently
high energies, and there is evidence that Regge
cuts are important even at low energies. If this
is the case, Eq. (1.4) should presumably contain
contributions from Regge cuts as well as Regge
poles. Our statement of local duality would then
have the form

(1.5)

as s-~, where C, (C, ) are the s- (t-) channel
Begge-cut amplitudes. Although our motivation
for suggesting Eq. (1.5) has been the desire to
define local duality, we should notice that (1.5)
fol. l.ows immediately from the assumption that the
Regge background integrals, as defined by (1.7),
are negligible at large s since crossing requires
that for all s and t

for large s, where A,"' is the nth t-channel Regge
amplitude defined by (1.3) with s f and BI~~

is the amplitude for the leading trajectory in the
t channel. The appropriate choice in (1.4) will
depend on the particular domain in which an
asymptotic expression of dual. ity can occur. If
the domain is such that (t /s) 0 as s ~, A,
will suffice; otherwise the sum over the lower-
lying trajectories will be needed. At any rate,

C, +pa&"'+a, =c, +QADI"&+a„

where

dl (2l + 1)a, (s)

P, (-z, )+gP, (z, )
2 sinful

(1.7)
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and similarly for B, .
Admittedly Eq. (1.5) is not as appealing as (1.4)

but experimental evidence makes it difficult to
justify the omission of C, for very large energies,
especially for t away from the forward direction.
However, this conclusion applies only to negative
values of t, i.e., the physical region of the s
channel. Perhaps there are other domains in the
t plane in which C, and C, are not as large as
the Regge pole terms as s-. That this is indeed
the case is suggested by the familiar formula
for the position of the branch point for negative
t generated by the exchange of N~ Regge trajec-
tories,

o.3 (t ) = N~ n (t /NB') —Ns + 1. (1.8)

If this is valid for large, positive values of t,
it implies that any trajectory increasing as fast
or faster than v t(lnt)" for R& 0 will eventually
lie above the leading Regge branch point as t -.
The leading term in the asymptotic expansion of
the leading Regge trajectory, Reo.~(t), can be
written as

Re ~o(t)=at~ (lnt)" +

for large t. Then by Eq. (1.8)

(1.9)

Reo. (t) =
( ~, t~(lnt)" —, ,~, t~(lnN~')"

B ~&ai

+ ~ ~ ~ (1.10)

E s) tc t)
g(n) g(n)

S t
n- n-

(1.12)

as s-~ for f & To, where K(s) is the number of
trajectories lying above the leading Regge branch
point at a given s; K(t) of course is similarly
defined. We assume that K(s) -~ as s -~. In
general, we expect To to be at least less than
threshold (4p, 2) and possibly negative or zero since
Eq. (1.8) implies that both o. (t ) and its derivative
are greater than or equal to u (t) and its deriva-

If P& ~, the first term in (1.10) will be smaller
than (1.9) as t -~; if P = 2, then Eq. (1.10) is of
the form Rens -an't(lnt )s -aV t(lnN~2)", which
is smaller than (1.9) for P = ~ as long as 8& 0.
In this paper we will assume that for some e& 0

v t(lnt)'
Ren„(t)

and similarly for the s-channel trajectories. This
argument makes it plausible that there is some
positive number To such that as s ~ for t & To
the contributions from the Regge cuts are negli-
gible compared to those from the higher-lying
Regge trajectories. In such a case Eq. (1.5) re-
duces to

tive, respectively, at t =0, i.e. , o.(0) & n (0) and

N ] o dt ] o

Therefore, it is quite likely that for large s and
positive t the background integrals will be larger
than the Regge-cut amplitudes. We wil. l assume
that this is the case.

Let us pause to compare this with the situation
for intermediate to large values of s with t ~0.
Here duality is most naturally expressed in the
context of finite energy sum rules (FESR).' From
a calculational point of view it is necessary to
assume that the integrals in the FESR are saturat-
ed by a finite number of resonances, a procedure
which is useful although necessarily approximate
in nature. In this case there is no limiting point
which allows the approximations involved to be
made arbitrarily accurate by approaching suf-
ficiently closely to the limit point; in particular,
if s is too large, Regge cuts will become im-
portant and eventually dominate the trajectories.
On the other hand, comparison with experimental
data is possible since we are in the physical region
of the s channel; this allows the observation oi
the unexpected correlation between the crossed-
channel Regge terms and the semilocal average
of the direct-channel resonances. ' A very ob-
vious distinction between the two expressions of
duality is that FESR give averaged relationships
whereas for t & T, the relationship postulated here
is local, i.e., pointwise.

Equation (1.12) is the basic equation which we
propose to study in this paper. In Sec. II we trace
briefly the development of the study of the con-
sistency of crossing with infinitely rising tra-
jectories. We define the modified background
integral J3,' and indicate the type of behavior the
partial waves would have to exhibit in order that
B,' is bounded either by a power of s or by an
increasing exponential. as s- ~. In Sec. III the
kinematical domain in which Eq. (1.12) is expected
to hold is discusse0. Three different types of
intervais [t„f, ] are defined. Existence proofs
are constructed for the crossing relations for
certain particular cases. Bounds for the ratio
of the expansion coefficients, i.e., residues, and
for the spacing of the trajectories are obtained.
In Sec. IV the asymptotic behavior of the residue
functions is derived from the crossing relations
for the three different intervals introduced in Sec.
III. In Sec.Vwe consider briefly the generalization
of the crossing relations to the case of external par-
ticles of unequal mass. In Sec. VI a brief sum-
mary of the results and assumptions is given. In
Appendix A we derive some useful mathematical
relations, including an asymptotic expansion in
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v for Legendre function, P, (z), valid for a large
range of s, including z arbitrarily near z = +1.
In Appendix B we obtain an estimate for the as-
ymptotic behavior or the modified background
integral in terms of the large s and large Im/
behavior of the partial-wave amplitude.

Ren„(s)- av s In(s). (2.1)

This behavior is consistent with Khuri's assump-
tions and causes 8," to be bounded by a polynomial
in s even if P(s) does not have an essential singu-
larity at infinity.

Actually there is a basic inconsistency present
in Refs. 9, 10, and 11. According to Eq. (3) of
Ref. 9

Bslim N =0
s 0

(2.2)

for fixed t, where B, is the s-channel background
integral. The constant No in Eq. (2.2) is the same

II. CONSISTENCY OF CROSSING WITH INFINITELY

RISING TRAJECTORIES

The study of this subject was initiated by Khuri, '
who pointed out that if Ren(s)-~ as s-~, the
s-channel Regge term A," might become em-
barrass ing ly large as s - , i.e., it might increase
exponentially with s. The reason for this is that
as s-~ for fixed t & 0, P~(z, ) increases as
exp[2n(s)v t iWs], as can be seen from Eq. (A15).
This raises the possibility of a conf l.ict with cross-
ing since it is the t-channel Regge terms A~~")

that control, via crossing, the asymptotic be-
havior of the scattering amplitude and give the
well-known behavior s" 'I (for fixed t). Khuri's
approach was to determine under what conditions
one could prevent R," from increasing exponen-
tially as s- . He concluded that this could not
be done without sacrificing some of the commonly
accepted properties of n(s), P(s), or a, (s), the
latter being the partial-wave amplitude. In other
words, the consistency of infinitely rising tra-
jectories and crossing had been brought into ques-
tion, and the outl. ook did not look promising.

In a subsequent paper, Jones and Teplitz' sug-
gested that the least objectionable property to
relinquish was the assumption that the residue
P(s) was bounded by a power of s for large

~ s~ .
If, instead, P had an essential singularity at in-
finity, it could decrease sufficiently rapidly to
offset the growth of P ~, ~

as s- ~ for all fixed
positive values of t. In that case A," would not
increase exponentially —rather, it would vanish
for large s and fixed t.

The author of this paper later pointed out" that
Khuri had overlooked one possibility, namely
that as s-

constant that appears in both Eq. (2) and assump-
tion (iii) of Ref. 9 and is clearly independent of
t. Now the inconsistency arises in trying to re-
quire that A,"' al.so be bounded by s". The fact
is that if Eq. (2.2) is correct as the authors of
Refs. 9, 10, and 11 clearly assumed, crossing
requires in the case of infinitely rising trajecto-
ries that+BI"I increase faster than s for any

The same can be said for 8,"' unless it in-
creases exponentially with increasing n. We
prove this by assuming the contrary, i.e., that

~

Ai")~(n"s"~. Ignoring Regge cuts, we have

H s)
T=B,+

n= ].
(2 3)

where T is the scattering amplitude and H(s) is
the number of trajectories having Ren(s)& ——,'.
Thus

n=J

(2.4)

assuming that H(s) increases no factor than a
power of s. But we know from crossing that as
S»

T st(t) (2.5)

n=|
Xn g 1 Xn (2 6)

where ~, =is —2 and ~, = —is ——,'. For z,(1 and
real this can be written as
2(1 —z, ) ~~mcos[s ln(1 —z, )], which is clearly
bounded as s- . However, its discontinuity
across the cut in as from 1 to ~ is

discB, = —2i s, —1 n sin rA.„
n=l

(2.7)

and that for f sufficiently large Ren~(t)& N for
any N. Hence we have established a contradiction,
and the statement is proven. Although we have
assumed that H(s) ( s" to make this particular
point, it is not assumed anywhere else in this
paper. Also the point in question is not critical
to any subsequent conclusions.

This brings us to the question of the validity
of Eq. (2.2). Unfortunately, the proof given by
Khuri' is not sufficient to establish Eq. (2.2). The
problem with his proof is that the background
integral, B, , can be bounded by s 0 as s- for
cos8, fixed between 0 and 1—see Eq. (2) of Ref.
(9)—without implying either that its discontinuit-
ies across its cuts in cos8, are bounded or that
it is bounded for cos8) 1. A simple example of
such a case would be-
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and this increases exponentially as s- .
At this point we express the background integral

in a manner more suitable for our purposes. In
particular we let B,' be the part of the background
integral that does not give rise to any Regge poles
and we let R,' be the part that does. The back-
ground integral will be a sum of these two terms,
I3, =B,' +R,'. Naturally such a decomposition is
not unique. However, it can be accomplished by
writing the partial-wave amplitude a, (s) in B, as

u„(s) p„(s)
+I, l l —u„(s)

behavior. First we define a function c, (s) by the
equation

A, (s) -=c, (s)l, '~' (2.11)

for some &&0 where l, =Iml. We assume that
the behavior of A, (s) is essentially the same as
that of a, (s) as l, -a~, that is, we assume that
c, (s) vanishes at l, =0 but is bounded and non-
vanishing as l, -a ~. We know that a, (s) must
decrease at least as rapidly as indicated by these
statements and (2.11) since otherwise the back-
ground integral would not exist. Also we let c(s)
be the least upper bound of c, (s), i.e.,

x«exp(&. [u. (s)+ 2 —(I + 2)]) I c, (s)l &c(s) (2.12)

+A. , (s), (2.8)

x exp()„[u„+2 (I +g)]). (2 9)

The factor [u„/l ] in (2.9) may not be necessary
but is included to assure the convergence of the
integration over Iml. For any s the scattering
amplitude may be written as

H

r=a, + R, +
5= ].

(2.10)

It can be shown that if
~ P„(s)u„(s)[&M„g(s) for

large s, then
~ R,'~&g(&) as s-~. As s increases,

successive Regge terms emerge from R,' and
enter the sum over n in (2.10). The advantage
of this decomposition is that both B,' and the sum
(B,' ++A~"~) are analytic functions of s since the
boundary of integration in B,' is not crossed by
any Regge poles as s is increased.

Since we cannot justify the use of the bound,
(2.2), obtained in Ref. 9, it is necessary to either
derive a valid bound for the modified background
integral or to make some assumption regarding
its asymptotic behavior. Our procedure will be
to link the asymptotic behavior of J3,' to that of
A, (s) and consider various possibilities for their

where P„(s) is the residue of a, (s) at l =u„(s)
and $„ is the smallest positive function of n which
increases sufficiently rapidly as n- that the
infinite series in (2.8) converges. Note that the
real part of the argument of the above exponential
is always negative since l + & is imaginary in B,
and Reu„(s)& —2 by the definition of the back-
ground integral. Equation (2.8) serves as the
definition of A, (s) which clearly has no poles at
l =u„(s) for n ~H(s)+1. Thus B,' will be given
by Eq. (1.7) with a, (s) replaced by A, (s), and

B,' will be given Eq. (1.7) with a, (s) replaced by

u„(s) p„(s)
I l -u„(s)

for l on the verticle line, l = —2+ii, .
In Appendix B we show that the modified back-

ground integral obeys the asymptotic bound

i B,' i
& Msc(s)/t. (2.13)

Assume that Reu„(s) is asymptotically linear for
simplicity. Then it will be shown later that if
Mo& 1, Eq. (1.12) is invalid; if M, =1, Eq. (1.12)
can be satisfied only if b, &&2a; if 0&M, &1, Eq.
(1.12) is again invalid.

It is probably clear by now that there are es-
sentially three solutions to the problem of com-
bining crossing with infinitely rising trajectories.
Let D;, for i = 1, 2, 3, represent three, as yet
unspecified, domains in the first quadrant of the
real st plane, and let &B be the difference be-
tween the modified t -channel. and s-channel back-
ground integrals, i.e.,

DB=(B', —Bs). (2.14)

If 4B is increasing less rapidly than+A~"', we
obtain the asymptotic crossing relations for the
Regge amplitude proposed in this paper, i.e.,

The derivation makes no assumption regarding
the value of t except that t be positive. This is
particularly interesting since it implies that if
A, (s) satisfies the bound (2.11), then

~
B', [ is

bounded by (2.13) not only for large s and fixed
t but al.so for the case when both s and t are
large. If the least upper bound of A, (s) is a power
of s, say s"o ', then

~ B,'~ will be bounded by s o,
and Eq. (1.12) will apply for all t greater than
t„where Reu~(t, ) =No. However, if A, (s) in-
creases exponentially, B,' will almost surely do
the same. Then Eq. (1.12) can not be valid for
any fixed value of t, and we must restrict our
attention to values of t that are increasing with
s. Suppose, for example, that as both s and t
increase

SB-s"o exp[ b,s"o(lns)"o].
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Q B(n) Q B(n) (2.15)

as s-~ for tED, . If, on the other hand, QA(")
is increasing less rapidly than QR(~") for t~D„
then the modified background integrals must gen-
erate the crossed-channel Regge terms, i.e.,

(- b B) Q 8(,") (2.16)

as s- for tED, . The third possibility is that
both Q JI,") and 6B are increasing at essentially
the same rate as gA(, ") for t~D„ in which case

g 8," fg 8," and (- b B) (1 f )A(,")—,

(2.18)

since x," -8," for n&H as s-~. In Ref. 13 Man-
delstam pointed out that if the limit of L- exists,

cannot vanish. Khuri demonstrates that resi-
dues and trajectories may be chosen such that

yt s"
n=l

(2.19)

for large s and fixed negative t. His choice in-
volves trajectories whose imaginary parts,
Imn„(s), are independent of n and whose real
parts are equally spaced, i.e. , Ren„(s) =n(s) —n.
The residue function corresponding to the leading
trajectory was found to increase exponentially
as s-. We regard this behavior as undesirable
since it would be preferable to maintain some
semblance of the connection between the partial
widths of the hadronic resonances and the Regge
residues as s-~. Khuri assumed that as s in-
creased, the resonances would eventually become
too broad to be observable, i.e., that Imn(s)-~
as s-. Thus, in his approach the exponential

(2.17)

where neither f nor (1 f) vani—sh as s- ~ for
t~DS. For those domains D, in which t is not
increasing &B may be replaced by (—B,') since
in that case

~
B',

~

& s 't2 as s -~.
A fourth possibility arises in the case that an

infinite number of Regge terms can be extracted
from B, for finite values of s. Khuri' has in-
vestigated this case using Mandelstam's' modi-
fied expressions for the Regge terms and for the
background integral, which we will designate as

and b, , respectively. The superscript L
on b, refers to the verticle line, l = —L+iIml,
—~& Iml& ~, in the complex l plane over which
the integration in b( ' is done. Khuri assumes
that the limit of L-~ exists in which case

increase of the residues was not regarded as par-
ticularly objectionable. Also a greater similarity
to the form obtained in the Veneziano model would
be preferred. Nevertheless, Khuri has demon-
strated that an infinite series of s-channel Regge
terms can be summed for fixed t to a function
that behaves as a t-channel Regge term for large
s and fixed t. The infinite sum must be evaluated
for t & 0 and s& 4 and then analytically continued
to larger values of s and t. The residue functions
obtained are not asymptotically self-consistent,
but can be made approximately self-consistent
over a certain bounded range of s values.

In this paper we restrict our attention to the
first of the four possibilities, namely, Eq. (2.15).
Accordingly we wish to determine for what values
of t

and

g(n)
&& n=g

(2.20)

(2.21)

as s-~. Of course, we know from Eq. (1.6) that
whenever one of the above equations is valid, the
other must be valid as well. However, in practice
Eqs. (2.20) and (2.21) will result in a comparison
of ~B with A," or R," since we can not evaluate
the above sums over n.

III. DOMAIN OF VALIDITY AND EXISTENCE PROOFS

The consideration of the previous sections lead
us to suggest that crossing applies directly to
the sum of the Regge-pole amplitudes whenever
one of the Mandelstam variables (s, t) is large
and the other is restricted to a certain interval
along the real, positive axis to be discussed be-
low. We include B', with QJI(,") so that our def-
inition wil. l not contain discontinuous functions
of t, i.e. , g~"(') B~(") is a discontinuous function
of t whereas (A', +P,"("8,(")) is not. More pre-
cisely, we postulate that for any && 0 there exists
an S such that

for all s ~S and for t in the closed interval [t„t, ],
where &(s, t) is an upper bound of

~
r B~ on the

interval [ t„ t, ] and B," is the sum of 8', and the
contributions from those trajectories with
K(s)&n&H(s). The latter are the trajectories lying
above the line Rel = —

& but below the leading
Regge branch point Ren (t). Equation (1.12)
should be regarded as a simplified expression
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of Eq. (3.1). In other words, the exact meaning
of (1.12) must follow from Eq. (3.1). From a
practical. standpoint the inclusion of B", is not
important since it is negligible in comparison
to QAI") as s-~. Its inclusion is mathematically
convenient since one of the existence proofs to
be given later is valid only if the functions in (3.1)
are continuous.

One of the most difficult and also most important
questions in this formulation of duality is what
constitutes the correct interval. in t over which
(3.1) should hold. In our discussion of the con-
sistency of crossing with infinitely rising tra-
jectories we assumed that we could choose t to
be as large as we wished by making s sufficiently
large, i.e. , with s»t. In that case P„l,&

(z, )
=A(t)s "l') for large s, and the customary Regge
behavior was obtained. This suggests that the
interval should begin at some fixed point t, with
an end point t, which increases with s but does
so sufficiently slowly that (f,/s)-0 or s-~. We
will refer to this choice for the t interval as case
(A). Although we do not regard it as very likely,
we also consider for completeness, the possibility
that t2 is independent of s. We will. refer to this
possibility as case (A) as well.

On the other hand, the proof given for the bound
on

~ B,' ~
suggests that the validity of (1.12) for

large s is independent of t, i.e., t may be as
large or even larger than s. The implication
here is that the appropriate choice for t, is
t, = s. This is actually the largest possible value
of f, applicable to Eq. (3.1) because those situa-
tions in which t is greater than s are covered
by Eq. (3.17) below. Note also that f = s is an
"identity line" in the st plane in the sense that
Eqs. (3.1) and (3.17) are trivially satisfied there.
As we move away from this line, we expect it
to become increasingly more difficult to satisfy
Eqs. (3.1) and (3.17). From this viewpoint the
length of the interval is actually determined by
our choice of t, . The largest interval is obtained
by choosing t, to be independent of s, the smallest
by choosing t, to be proportional to s. These are
the other two cases to which we give primary
consideration. The choice t, =s applies to both
of them, and we refer to them as case (B) and
case (C), respectively.

In cases (A) and (B) it must be assumed that
~

b.B~ is bounded by s"0 for some N, . Then t, will
be a fixed number. A reasonable value for t, in
these two cases would be the larger of the num-
bers 4)().

' and to, where Reo.I, (to) =Ão We assume.
for simplicity that t, 4 4p. ' and instead that
Ren~(t) =X, for both cases (A) and (B).

In the case (C) f, is proportional to s, and we
set f, = s/r, where r, is some positive number

greater than unity. If
~ B,' [ is bounded by a fixed

power of s, then Eq. (3.1) must be satisfied for
values of t less than s/r, H. ence, we expect
[s/r„s] to be the correct interval only if the
least upper bound for c, (s) is an exponential of

Note that the ratio (t/s} never approaches
zero as s ~. In fact case (C) corresponds to the
limit in which s-~ for z, fixed and greater than
unity. (z, is also fixed in this case. ) There are
cases intermediate to cases (B) and (C) which
we mention briefly in Sec. IV along with the pos-
sibility that the interval extends from fixed t,
to t, = s/r, In .other words, we consider every
possible type of interval along the positive, real
t axis.

To summarize, there are three different in-
tervals [f„t, ] along the positive t axis to which
we give our primary consideration, namely the
following ones.

(1) Case (A): f, fixed with (f,/s) -0 as s -~
(f, may or may not depend on s),

(2) Case (B): t, fixed and t, =s,
(3) Case (C): f, = s/r, and f, = s with r, fixed.

Later we will divide case (A) into two categories,
depending on whether the trajectories satisfy
Eqs. (2.1) and (3.13).

We now present formulas for the Regge terms
that wil. l be needed in the remainder of the paper.
First we consider the case in which (t/s)-0 as
s-. Then for both fixed and increasing values
of t, 8, is given by the usual expression which
we put into a form more suitable for later use,
namely

(3.2)

where

Note that as t-~

I'(o.„+—,') e "~+ v„
I'(o. + 1) —2i sin~o. '

(3.3)

q„(t)-P„(t)Vo.„ —2i sinÃQ„
(3 4)

We will refer to q„(t) as the nth -ihcannleex-
pansion coefficient. For 8," we need expansions
of the Legendre functions for large n and z ap-
proaching +1. From Eq. (A15) of the Appendix
we find that as s -~ with (f /s) -0

j./4

A,'"'-i/e
(

— e„(e)exp 2 "
Wl . (8.5)

S

Now we consider cases for which the ratio
(f/s) does not vanish as s-~. It never vanishes
in case (C) and need not in case (B). From Eq.
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(A14) we see that as s-~
B(")-t (2~)'/2(z 2 —1) x/~q„(s)

x exp[[u„(s)+-,']x, f

&I"'-t(»)'"[(z '-I)] "n (t)
x exp([ u„(t) +—,')]x, j,

(3.6)

(3.7)

(s, t)=—(lns) [s(z, ' —l)j ' 's"'"& '& .
(3.12)

We take notice of the special case in which the
real. parts of the trajectories have the behavior
indicated earlier in Sec. II, see Eq. (2.1), i.e.,
ReuL, (s)-a&s Ln(s) as s ~, and in addition satisfy
inequality

where Reu~(t) ~ [Reu~(t, ) + 2a(&t —v t, )] (3.13)

x, -=ln[z, + (z, ' —1)'/'] (3.8)

and x, is defined by Eq. (3.8) with s and t inter-
changed. Eqs. (3.6) and (3.7) are valid for large,
positive s, large u(s), and any real, positive
value of I;, subject to the condition that

~ u(s)v t/Ws~ -~ as s increases.
We now discuss the function &(s, t). As men-

tioned previously, we neglect Regge-cut ampli-
tudes in the above domains. Thus Eq. (1..6) ean
be written as

g~"~ -za. (3.9)

1
t)(s, t) (3.10)

This suggests that we choose &(s, t) such that it
is increasing slightly more rapidly than ( &B~
for tE[t„t,]. Then, if we divide both sides of
(3.9) by t) (s, t) we can make the right-hand side
as smal1. as we wish by choosing s sufficiently
large. However, we do not want to choose &(s, t)
so large that it is a1so increasing more rapidly
than QB(") and +BI"), i.e. , there should exist
some Msueh that as s-~ for tE[t„ t, j,

for tE[t„ t,]. Then Reui, (t, ) in Eq. (3.12) may
be replaced by [Reu~(t, )+2a[v t —et, )] with the
knowledge that Eq. (3.11)will still be satisfied.
Thus we define

~'(s t) =(Lns)~t ' '(s)"'m(~i) "~~

x exp[x, Reuse (s)]. (3.14)

For future reference we wil. l designate this special.
case in which the trajectories satisfy Eqs. (2.1)
and (3.13) and t is in the domain of case (A) as
case (A'). We may also wish to consider the do-
main of case (A) and explicitly exclude trajectories
satisfying Eqs. (2.1) and (3.13). We will refer
to this situation as case (A,).

If the crossing relations are to be valid only in
the domain of case (C), &B must be increasing
faster than any power of s. Hence t), (s, t) must
be increasing exponentially with s. We choose
the exponential in 4(s, t ) such that 4(s, t ) is in-
creasing no more rapidly than each A,"' and A, "
as s-~ for tM[ t„ t, ] in accordance with Eqs.
(3.10) and (3.11). The asymptotic dependence of
both the s- and t-channel residue functions is
important in such a choice. Referring to Eq.
(3.6) we define for case (C)

he(s, t) -=s~ exp[x, Reu~(s) —8(s)], (3.15)

tL, (s, t) (3.11)

We will implement Eqs. (3.10) and (3.11) by
choosing t), (s, t) such that it is increasing no more
rapidly than each A~~"~. Such a choice should be
possible if Eqs. (2.20) and (2.21) are satisfied.

In cases (A) and (B) it is necessary that
~

&B~

be bounded as a power of s, say s"0, for t in the
vicinity of t, where K, =Reu~(t, ) Otherwise, .
&B (actually B,') would be increasing more rapidly
than A(, (s, t, ). Thus the dominant s dependence
of t), (s, t) should be s 0(lns), where 5 is suffi-
ciently large that h(s, t) is increasing more rap-
idly than &B. Such a choice will. obviously satisfy
Eq. (3.11) for t & t, . For later purposes it is con-
venient, although not necessary, to include the
factor [s(z, ' —1)] ' ' in the definition of A(s, t).
Our final choice for cases (A) and (B) is

K s)
B(n) ft(I, ) + 0(suo)

n-

or, in terms of the expansion coefficients,

(3.16)

where B(s) is connected with the exponential de-
crease of the residues and is defined by Eqs. (4.6),
and (3.4). In conclusion &(s, t) should be chosen
to be &„'(s, t ), &»(s, t), or &c(s, t) according
to the case being considered.

It is only in cases (A) and (B) that fixed values
of t are encountered and the sum over the t-chan-
ne1. trajectories can be replaced by the contribu-
tion of the leading trajectory as s-. We may
also neglect 8," and 4", in this limit. Then the sum
over the s-channel Regge terms must exhibit
crossed-channel Regge behavior, i.e., Eq. (3.9)
simplifies to
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1 Es)
s'~'q„(s}exp

fl- 1,

2n„(s))t t
)ts

This is essentially Eq. (11) of Ref. 4. We also
expect this equation to be valid for increasing
values of t as long as (t/s)-0 or s-~; however,
it is not valid in ease (C).

Ne mention in passing that crossing symmetry
and Eq. (3.1) also require that for any e& 0 there
exists a T such that

for all t )T and for s in the closed interval
[s„s,] where s, = t, and s, = t~; &(t, s) is equal
to &(s, t) with s—t.

At this point we give several existence proofs
for Eq. (3.1). It is convenient to regard the tra-
jectories of both channels and the t-channel ex-
pansion coefficients as given. Then Eq. (3.1) can
be viewed as an equation from which the s-chan-
nel expansion coefficients q„(s) are to be deter-
mined. The question before us is this: Can we
prove the existence of a set of coefficients
{q„(s)}satisfying Eq. (3.1) without having to make
any assumptions regarding the specific form of
R", +QRI")? The answer is that we can for certain
types of trajectories specified below.

Our first proof applies only to case (C) and is
for trajectories that are asymptotically parallel,
i.e., those for which

Ren„(s) -Benz (s) nb+ ~-

We emphasize that (3.19) is not a power-series
expansion of T, (y) about the point y =0 (which
corresponds to t =~) since we do not expect T, (y)
to be analytic in a neighborhood of this point.
However, we can be certain that there exists a
set of s-channel expansion coefficients which
satisfy Eq. (3.19) for any given s. This conclusion
follows from the Neierstrass approximation theo-
rem which reads as follows: Let the function
f (y) be continuous on the finite closed interval
[y„y,]. For any &&0 there exists a positive in-
teger f(t and a corresponding polynomiaL P„(y)
of the j)tth degree such that

~ P&(y) —f(y)(«. This
theorem may be applied to (3.19) since T, (y) is
a continuous function of y; it was for this reason
that R't' was included in (3.1).

This proves that for asymptotically parallel
trajectories a set of s-channel. expansion coef-
ficients, {q„(s}},satisfying (3.19}can be de-
termined (at least in principle) independently of
the choice made for the t-channel expansion co-
efficients —other than that they be continuous func-
tions of t. Naturally the set of coefficients
{q„(s)}obtained will depend on the choice made
for the set of t-channel coefficients {q„(t)},and
a Priori the two sets need not be the same. In
Sec. IV we consider the question of self-consist-
ency, i.e. , whether Eq. (3.1) admits of solutions
q„(s) which are functionally identical to the cor-
responding t-channel coefficients q„(t), for large
values of their arguments.

Our second proof also applies only to ease (C)
and is for trajectories whose real parts are as-
ymptotically degenerate and whose imaginary
parts are asymptotically parallel, i.e., as s-~

for + = 1y 2y Sy. . . y and

Imn„(s)- c,(s)+ ~ ~

(3.18) Ren „(s)-Ren~(s) —n'b'(s) + ~ ~ ~ (3.21)

as s- ~ where 5 is independent of n and s. In
this case we multiply both sides of Eq. (3.1) by
[[i( 2)'v'] 'exp(- ~ x, -ic,x, )[ and absorb these
factors into the & on the right-hand side of the
equation. Then Eq. (3.1) can be replaced by the
equation

K s)
c.(s)y" —T. (y) (& (3.19)

x g'+ (3.20)

for y~ fy„y, ], where y„y, are finite, nonvanish-
ing numbers, c„=g„e y—=e '"& and

(-i) 1T (y) (2 })12 ( )
exp( gx icox )

27r
Imn„(s) - —[n+ C(s)] + co+ (3.22)

for n=o, +1,+2, . . . , +E, where L is the length
of the interval in the x, variable, i.e, L —=x, —x„
with

x2—= x, (s, ta), x, =x, (s, t, ) (3.23)

In all. the cases which we consider, I (1.V63.
Aiso b'(s) is some function which vanishes rapidly
as s-~, co is a constant, and C(s) is some func-
tion such that C(s) &K(s).

Notice that we have changed our labeling system
to allow & to be negative and chosen the real part
of the trajectories to be asymptotically independent
of the sign of n If Ren„, (s.)& Ren (s) for some
positive I„ then Ren „,(&)&Rens(s) as well; thus
the sum over n must extend from n = -K to n =K.
For trajectories such as these Eq. (3.1) can be
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rewritten as

c„(s)exp ' -E, (x, ) &e
2minx

n=- (~)
(3.24)

given by Eq. (3.14), and it is necessary to multi-
ply both sides of Eq. (3.1) by only (I/i Wir ) to put
it into the form

for x, E[x2, x2] where c„=q„e and E, (x, ) is
similar in form to T, (y).

As before, certain factors of order unity have
been absorbed into the & on the right-hand side
of Eq. (3.24). It is obvious that the above series
is a Fourier series of period L and that (3.24)
is the statement that F, (x, ) can be approximated
to an aribitary degree of accuracy by such a
Fourier series. Since F, (x, ) is not expected to
be periodic in x, , it is critical that the J in Eq.
(3.22} be the exact length of the interval over
which Eq. (3.1) is assumed to be valid (in terms
of the variable x, ). The presence of 8", is not
important in this ease. As is well known, a func-
tion need not be continuous to have a Fourier
series; the Fourier series of any function of
bounded variation will converge to that function
except at the points where the function is dis-
continuous. If A", is omitted from (3.1), E, (x, )
will still be of bounded variation for any finite s.
This proves the existence of a set of s-channel.
coefficients satisfying (3.24). They will naturally
be given by the usual formula

2
rl„(s) =

i E, (x, ) exp — ' dx, .
Xg

(3.25)

In attempting to extend our proof to cases
(A) and (B) two problems are encountered. The
first is that the length of the intervals, y, -y,
and x, —x„vanish as s -. This can be circum-
vented by choosing slightly different forms for
the trajectories. The second is that in converting
Eq. (3.1) into a form analogous to Eq. (3.19) or
(3.24) it is necessary to multiply both sides of
(3.1) by exp[ —2Ren~(s)v t/vts]. This causes no
problem in case (C) because &c ' also contains
this exponential. However, &&~ ' does not. Thus
e in Eqs. (3.19) and (3.24) is replaced by
e' = &exp[ —2Ren~(s)v t/v s] for cases (A) and
(B). Application of Weierstrass's theorem to the
resulting expression does not prove the existence
of solutions to Eq. (3.1) because a small value
for E does not imply a small value for c. The
same problem is present in the application of the
Fourier theorems. Therefore, we are not able
to provide an existence proof for Eq. (3.1) in
cases (A) and (B) by the use of the Weierstrass
or Fourier theorems with the exception of the
special case discussed below.

We now consider case (A'), i.e., trajectories
satisfying Eqs. (2.1) and (3.13). Then t2(s, t) is

c„(s)—=q„(s)s "o " '2 (Ins) (3.27)

It is easy to see that if the real parts of the tra-
jectories are given by Eq. (3.21}and the imagin-
ary parts by Eq. (3.22) but with L replaced by
2(2(t, —Wt, )/v s, then Eq. (3.26) ean be written
as a Fourier series in the variable (t/t, )' '.
Therefore, we can prove the existence of s-chan-
nel coefficients satisfying Eq. (3.26}, and hence
(3.1}, for case (A) when the trajectories are of
the indicated form.

The first proof, using Weierstrass's theorem,
cannot be extended to case (A'). The real parts
of the trajectories needed for such a proof would
behave as

Ren„(s) -ass lns —nA. (s/t, )'t'+ ~ ~ . (3.28)

The only trajectories that can participate in the
sum are those lying above the leading Hegge
branch point which behaves according to Eq. (1.10)
as

A.Rens(s)-a3(s lns-a3(s lnN' — vs +
t2

(3.29)

for trajectories like those in (3.28). Comparing
(3.28) and (3.29) we see that Ren„(s)& Ren (s)
onl.y for

n& 1+ —vt, lnNs.
2Q

(3.30)

Therefore only a finite number of trajectories
will lie above the leading Hegge branch point for
large s, and it would be impossible to satisfy Eq.
(3.1) for arbitrarily smali &. This argument does
not apply to the previous proof using the Fourier
theorem [assuming that t)'(s)-0 faster than s ' '. ]

On the basis of the existence proofs provided
in this section we expect that the number of terms
contributing to Eq. (3.1) must increase without
bound as s - if the equation is to be satisfied to
an arbitrary degree of accuracy. Even in eases
(Ao) and (B), for which existence proofs were
not suppl. ied, it can be shown that no single term
can dominate the left-hand side of Eq. (3.16). It
is obvious that the leading trajectory n~(s) can-
not bootstrap itself, i.e., the equation

2
e„(s)exp ~—(e„(s)—)(esse(s))3 s

I

()(', sQ)(,") se; (3.23)

where
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2(xi (s Wtas'—~4'~(s) exp ' - f' 'ri~(t)
be bounded for large s, i.e.,

rl» (s) ~

(3.36)

(3.31)

for large s and large t, with s»t, has no solution.
Also, several authors" have found that a single
trajectory cannot bootstrap itself in the context
of finite energy sum rules. Furthermore, no

reciprocal bootstrap is possible in which the left-
hand side is dominated asymptotically by a single
term corresponding to a trajectory o.'~ (t) (o'.„oo.~),
which then generates the leading trajectory aL, (t).
This can be proven as follows. Assume the con-
trary. Then

—,'s' 'q„(s) exp ' -t' 'q (f)
2n, (s) f

(3.32)

The most general form for o'. ~ (s) consistent with
this equation is n„(s) =(b, lns+b, )v s . When this
is substituted into Eq. (3.32), all the remaining
functions are determined to within four arbitrary
constants, bo, b„c, and v to be n~(t) =2b, Wt+ v,
q„(s)-cs", and

riz(f) = e px[-,
'

bV f +(v+2b, v t) ln[ ,'(t —4g')]}.—

(3.33)

By crossing symmetry rl~(s) is given by Eq. (3.33)
with s—t, which shows that the left-hand side
of Eq. (3.16) cannot be dominated by the term
q~ (s) exp[ 2n~ (s) t /Ws] because q~(s)»ri„(s). We
conclude that many terms must be present on the
left-hand side of Eq. (3.1) for any given s and that
their contributions must be of comparable im-
portance; since K(s) is the number of terms,
K(s)-~ as s-~. In order that the terms be of
comparable asymptotic importance it is necessary
that

For cases (B) and (C) the maximum value of t
is s, which implies from Eq. (3.35) that the as-
ymptotic spacing of the real parts of the trajec-
tories is bounded, i.e.,

Re[ n„(s) —ot» (s)]&M„, . (3.37)

Re[ o.„(s)—n» (s)]&M„»/Wt„
1

(3.38)

where the right-hand side of (3.38) vanishes as
s-~ when t, is increasing with s.

In conclusion, we do not claim that Eq. (3.1)
requires trajectories which behave asymptotically
as one of the three types for which existence
proofs have been given. Other types of trajec-
tories may be capabl. e of generating, through Eq.
(3.1), quite general classes of functions. Rather
we have established that the set of solutions to
Eq. (3.1) is definitely not the null set. The sum
of the s-channel Regge amplitudes is indeed ca-
pable of reproducing, to any desired degree of
accuracy, the behavior exhibited by the sum of
the t-channel Regge amplitudes in the domain
of case (C) for either asymptotically parallel or
asymptotical. ly degenerate trajectories. This is
also true in case (A') for asymptotically degen-
erate trajectories. At this point it does not appear
very likely that the crossing relations can be sat-
isfied for cases (A,) and (B). Furthermore, we
will show later that neither case (A,), (A'), nor
(B) can be generalized to the scattering of unequal
mass particles. Thus we will give primary con-
sideration in the remainder of the paper to case
(C).

Notice that this is consistent with the forms as-
sumed in both of the existence proofs given earlier.
For case (A), the maximum value of t is not s,
and in fact t/s-0 as s-~. Thus Eq. (3.35) im-
plies only that

q„(s) exp[ a„(s)x,]
r)»(s) ex p[n»(s)x, ]™ (3.34)

IV. SELF-CONSISTENT DETERMINATION OF
THE ASYMPTOTIC RESIDUE FUNCTION

or

7i„(s) expfx, Re[a„(s)—a» (s)]}& M„».
q» (s

(3.35)

Since the inequality must be satisfied for a range
of t values, it must hold separately for the ex-
ponential and the ration of the q's. It follows that
the ratio of any two expansion coefficients must o.(s) —= Rem~(s) (4.1)

The main purpose of this section is to examine
to what extent Eq. (3.1) is an asymptotic boot-
strap equation for the expansion coefficients and,
if so, whether self-consistent solutions can be
obtained. In so doing, we will obtain the asymp-
totic form of the expansion coefficients and hence
of the residue functions.

We begin with some convenient definitions. If
we let
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and

b„(s) =- Re[ nz(s) —n„(s)], (4.2)

then the real part of each trajectory may be
written as

Ren„(s) =n(s) —b„(s), (4.3)

where b„(s) is positive by definition and is bounded
for large s and fixed n by virtue of Eq. (3.37).
We define s-channel basis functions as fol.lows:

g„(s, x, ) =—exp([n„(s) —nz(s)]x, j
= exp([ —b„(s)+iImn„(s)]x, I, (4.4)

where x, is defined by Eq. (3.8) and restricted
to an interval of length L= (x, —x, ), see Eq. (3.23).
'Vfe make no particular assumption about the form
of the trajectories as we did for the existence
proofs but we do assume that the basis functions
are linearly independent. Without this assump-
tion, the postulate that the direct-channel. Begge
terms can be expanded in terms of the crossed-
channel. Regge terms wouM be empty. However,
we do not assume that the basis functions form
a complete set.

For case (C) Eq. (3.1) can be written in terms
of the basis functions as fol.lows:

E s)
fi„(s)p„(s,x, ) f, (x, ) (-e

tt- ].
(4.5)

E ~)

f, (x, }-=Ae ' "'
q (t)g (t x ) (4 't)

for s sufficiently large and tC[t„ t, ], where
rt„(s) is the reduced expansion coefficient defined
to be a function increasing no faster than a power
of s and satisfying the rel.ation

(4.6)

Note that 8(s) must be independent of u owing to
Eq. (3.36). The factor of (s) is not present be-
cause we have set & =0 for simplicity. The func-
tion f, (x, } is defined as follows:

where f, (x,) is defined by Eq. (4.7) but with 8
replaced by —n(t, ) lns. The same replacement
applies to Eq. (4.6). These replacements ap-
propriate for cases (A) and (B) apply throughout
the remainder of this section but will not be men-
tioned again. The most important difference be-
tween Eqs. (4.5) and (4.10) is that i Q„i is bounded
as s-~ whereas ie""("~i is not.

It will be instructive to determine for which of
the various domains we can rephrase the problem
as one in a linear vector space or function space.
For this purpose we define f and Q„ to be vectors
represented for a fixed value of s by the functions
f, (x, ) and Q„(s, x, ), respectively. I et the scalar
product of any two vectors f and g be

(f, g) = —
J f *(x,)g(x, )dx, ,
X]

where x„x, are defined by Eq. (3.23). The square
root of the scalar product of a vector with itself
is called the norm of f and is denoted by ii f ii. We
make the space a metric space by defining the
distance p(f, g) between two vectors, f and g, to
be the norm of the difference vector f -g, i.e. ,

«X

p'(f, g) =-llf -gll'= ~ „ If(x, ) -g(x. )l'dx. .
X]

(4.12)

These are the standard definitions. The function
g(x, ) representing a given vector g must be
square-integrable but not continuous. In this space
Eq. (4.5) is replaced by

(4.13)

We wish to choose the set of numbers (fi„] (for
a given s) such that the distance between the vec-
tors, f and Qq„Q„, is minimized. It is simpler
to minimize the square of the distance which we
expand as fol. lows:

2 i 1/4

A( t) 8 e(xg-xg)/2
2 (4 6)

1n & n + ~n'0
~

(4.14)
and

@(s, t) =—n(s)x, —n(t)x, . (4 9)
Written in this way p' is eas ily differentiated, and
setting the derivative equal to zero, we have

(4.10)

Also, the t-channel basis function Q„(t, x, ) is
defined by Eq. (4.4) with s —t. Equations (4.5)
and (4.6) also apply to case (A') but 8 should be
replaced by [2av"t„—n(t, )] lns. For case (Ao) and
(B) the expression analogous to (4.5) is

K(s)
7J (s)e "~ l ~ —8 ~ ~f~(x~) (f,

=0

(4.15)
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where g„and g*„are considered as independent
variables. In (4.15) we have a set of K algebraic
equations for the reduced expansion coefficients
g„, and their solutions give the optimal choice
for the coefficients.

Let 4 be the E&&E matrix having matrix ele-
ments 4 „—= (Q, Q„). Solutions to (4.15) will
exist since the Q„(s, x, ) are assumed linearly
independent. Letting 4 ' be the inverse of 4, we
see that the solutions to Eq. (4.15) are given by

m= ].
(4.16)

where 4„' are the matrix elements of the matrix
The remainder of this section will be de-

voted primarily to the extraction of the asymp-
totic behavior of q„(s) from this equation.

For a given s the matrix elements of 4 can be
explicitly evaluated in terms of the trajectories,
l.e.~

""2
(4 „,4 „)= — ' P*(,x, )P„(s,x, )dx,

.Cy

vector in this vector space, i.e., it does not ex-
ist. Therefore, we cannot take the limit of the
sequence of distances (p, j in Eq. (4.19), and Eq.
(4.10) cannot be viewed as defining a relationship
in this vector space in the limit of infinite s.
Naturally this failure is connected with our in-
ability in Sec. III to provide an existence proof
for those cases to which Eq. (4.10) applies. Since
we cannot recast Eq. (4.10) into an equation in
the metric space which we have defined, it is
convenient to write Eq. (4.10) in the form

E s)
q„(s)p„(s,x, ) —f, (x, )(e exp[ —x, n(s) + iQ, ],

(4.20)

where $0 is the phase of the expression on the
left-hand side of the above inequality. If we multi-
ply both sides of this inequality by L 'g*d ,xand
integrate from x, to x, and then invert the re-
sulting expression in order to solve for 17„(s),
we obtain an inequality analogous to Eq. (4.16),
namely

1
(e 2 nm —e "1 nm)

Lx„

where

X„„(s)= n„(s) + n „*(s)—2n (s)

(4.17)
where

z 1
&n=—& @'nm m S~ ~sL

(4.21)

linen g' (&. (4.19)

= —[b„(s)+5 (s)]+iIm[n„(s)-n„(s)J. (4.18)

Since (Q, Q„)= (Q„, Q„)*, it is seen that 4 is a
Hermitianmatrix. For cases (B) and (C),
ReA„(s) is bounded for large s and fixed n, m by
virtue of Eq. (3.37). Also, the definition of n(s)
insures that Rek„ is negative. Hence l(P, f, )l
is bounded for large s and fixed n, m for all three
cases. As either n or m increases for a given
s we expect Reh.„-—~; thus, (Q, Q„) probably
vanishes as n or m-~. Since the matrix elements
of 4 are bounded, those of 4 ' must also be
bounded.

Referring back to cases (A. ,) and (B), we at-
tempt to express Eq. (4.10) as a relationship in
this vector space. For this purpose we define
e„and g to be vectors represented for any given
s by the functions e "&"& and e"8"1' f, (x, ), respec-
tively. Then for any finite value of s Eq. (4.10)
is replaced by

x exp[ —x, n(s)+i/, ] dx,

and &„can clearly be made as small as is de-
sired. Recall that the difficulty in these cases
is not an inability to satisfy Eq. (4.21) with a
small value of 6 but to do so for small e so that
the solution to (4.21) will also be a solution to
Eq. (3.1).

We now turn our attention to the matrix elements
of f, , i.e. , (P,f) First we i.nvestigate the
asymptotic behavior of e ~, where 4 is defined
by Eq. (4.9). It is convenient to express the as-
ymptotic behavior of n(s) in the form shown in
Eq. (1.9), i.e. , n(s)-as~(lns)" as s-~, where
P and R are two as yet unspecified positive num-
bers. We expect P to either exceed 2 or if P = &,
for A)0 on the basis of the discussion of Sec. I.
Consider first those values of t which are as
large or almost as large as s. This wil. l. occur
for cases (B) and (C). Accordingly we set t =s/r
where 1 (r(~. It follows that &, -I+2lr and
z, -l+2ras s-~. Therefore(4. 9) has the asymp-
totic form

Although the vectors e„are well defined for any
finite value of s, we are considering an infinite
sequence of distances, p, (Qfl„e„,g), and vectors,
&„', each member of the sequence corresponding
to a given value of s. For any given n the limit
as s-~ of the sequence of vectors e„' is not a

4(s, t) ag(r, p)s~(-lns)" + ~ ~,
where

2 2
g(r, p) = ln 1+ —+ —(1+r)' '

r r
—r ~ ln[ 1 + 2r + 2(r+ r')'i']

(4.22)

(4.23)
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and Eq. (1.9} has been used; g(r, P} will not neces-
sarily be positive for arbitrary P and for all val-
ues of r in the interval 1 r&~. For instance as
r-~ (which can occur when s-~}

P =-,' and A&0, 4'(s, t) is negative, i.e.,
s&"(I —~) ~/2(i z+g (4.29)

g(r, P) - —r ln(4r) + ~ ~ ~
2 ~p (4.24)

and this will be positive only if P&&. However,
a more restrictive condition pertains if we con-
sider the behavior of g(r, p) near r =1. It is ob-
vious that g(1, P) = 0, and it is a simple mattei
to show that its derivative at r =1 is given by

This is relevant to case (A'). In this case e
is an increasing exponential when evaluated at
t =s /r. This will lead to an exponentially in-
creasing q„(s) which we regard as undesirable.
This implies that in case (A') t, should be in-
dependent of s.

Finally, we consider the behavior of e ~ for
large s and fixed t. Then

dg(r, p)—
dr

=P ln(3+2&2 ) —v 2. (4.25)
l/2 4s

q(s, t)-2 — as~ (lns)" —a(t) ln
S t —4p, '

To insure that g(r, p) is positive for r slightly
greater than 1, we must require that

W2

ln(3 + 2v 2 )
(4.26}

A more detailed consideration of the function
g(r, p) reveals that the above condition on p, i.e. ,
(4.26), is the least restrictive condition on P suf-
ficient to make g(r, p) positive for all values of
r in the range 1 r&~. When P satisfies (4.26),
g(r, P) has a single maximum in the interval
1 +r& and, as indicated earlier, vanishes at
both end points of the interval. We will assume
in the remainder of the paper that P satisfies
(4.26)—except in case (A'). For p= 1 the max-
imum occurs at r, = 6.68 at which point the func-
tion has the value g, =g(r, 1)=0.253. For p&1
the maximum occurs below r„and for 0.802&P&1

the maximum occurs beyond ro.
Consider now those values of t in the integrand

which are increasing with s but for which t /s-0
as s-~, i.e. , we let t = s"/r with 0&A &1 and

r «1. Then we have

q, ( t ) y+ x/2-z/22
Wr

Xp

ln(4rs' } (lns)".

—2g~gs~ ~ (lns) (4.30)

and e is again decreasing exponentially as
s for P&&.

In summary, we have found that for P&0.802
e ~ vanishes exponentially as some power of s
for all. values of t in the interval 4p. ' &t &s, except
at t =s where 0 =0. Further, the smaller the
value of t, the larger the value of e for t in the
interval [ t„t ], where

S
r (p)

(4.31)

and

q(s) =alii(s) (4.32)

and r (p) is the value of r at which g(r, p) has
its maximum. However, for t&t„[or r&r (p)],
g(r, p) begins to decrease and consequently larger
values of e accrue for larger values of t until
e =1 is reached at t =s. For P=2 and A &0,
e ~ increases more rapidly than a power of s as
s-~ when t = s /r. This concludes our discussion
of the asymptotic behavior of C.

It is convenient to define rt(s) as the expansion
coefficient corresponding to the leading trajectory
and to let B„(s)be the ratio of the nth expansion
coefficient to the leading one, i.e.,

(4.27} B (,)
rt. (s)
rt (s)

(4.33)

In the above expression both terms are increasing
as a power of s. To compare them we note that
for p& —,

'
(and recalling that 0&A.&1)

Then each expansion coefficient can be written
as

(4.34)

or

Ap&p+ 2A, —g,

(4.28)

which shows that the first term in (4.27) is in-
creasing more rapidly than the second, in which
case 4 is asymptotically positive and & ~ is de-
creasing exponential. ly for P&&. However, if

where for large s
~ B„(s)~ is both bounded and

nonvanishing by virtue of Eq. (3.36). In other
words, we expect ~ B„(s)( to either approach a
nonzero constant as s- or to oscillate indef-
initely between two positive constants. Using
Eqs. (4.7), (4.11), and (4.33), we can express
the matrix elements (Q, f) as
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1 ""2
(y„,f) = —ee ' e ~"'rl(t)A(s, t)y*(s, x, )

t2
q(s) = H(s, t)e ~l"'ri(t)dt, (4.36)

where

As t
L(st + t')" 'H(s, t) = ' B„(t)y„(t,x, )

K s)
x 4, ' (s)@+(s,x,)

(4.37)

We have written the kernel of the integral equa-
tion as IIe because & is an exponentially vary-
ing function —except for trajectories with
Heo. „(s)&Ws Ins —whereas H(s, t) does not vary
that rapidly.

We now prove that L(st +t')' 'H(s, t) is both

bounded and nonvanishing as s and/or t increase.
Let G(t, x, ) be the first sum in (4.3'f), i.e.,

z' ~)

G(t, x, ) =- B„(t)g„(t,x, ). (4.38)
tl= g

Multiply both sides by Q*, (t, x, )dx, /I, and integrate
from x, =—x, (t, s,) to x~=—x, (t, s,), where s, =s~/r, .
Then

(4.39)

where we define for any two functions of t and

+t
1

(F, G), = — F*(t,x, )G(t, x, )dx, .
Xg

(4.40)

The above integral would be merely the t-channel
analog of the s-channel scalar product, as de-
fined by Eq. (4.11), if the upper limit s, were
set equal. to t. However, we allow t to be any
fixed value between s, and s, . Let 4 be the matrix
with matrix elements 4„=(@, , Q ), and G, the
matrix with matrix elements G, . Then

Q =CB. (4.41)

Crossing symmetry implies that the Q„(t, x, ) be
linearly independent functions of x, since we have
assumed that the Q„(s, x, ) are linearly independent
functions of x, . Thus the inverse of 4 exists,
and Eq. (4.41) can be inverted to yield

B=4 'G. (4.42}

sc ~)
x B„(t)g„(t,x,)dx, .

n-

(4.35)

We can now rewrite Eq. (4.16) as an asymptotic
integral equation for q(s). Substituting (4.35)
into (4.16), we have

Note that if G(t, x, ) either vanishes or increases
without bound as t -~, then so must each G, (t),
the elements of the matrix G. But if G-O or
6- as t -~, so will the matrix B. This, how-
ever, is not allowed since by Eq. (3.36) each
B„(t) is both bounded and nonvanishing as t -~.
We conclude that G(t, x, ) is also bounded and non-
vanishing for large t. Similarly we can show that
the second sum (over m) in Eq. (4.3'1) is bounded
and nonvanishing as s-. Therefore, there must
exist two positive numbers m, and m2 such that

m~&~ L(st +t ) H(s, t)~&m2 (4.43)

for large s and large t.
This establishes that the asymptotic behavior

of the integrand in Eq. (4.36} is controlled by the

product q(t)e ~, or, more accurately, by the

function

exp(- [6(t)+4'(s, t)]) (4.44}

since q(t) =ri„(t)e ' /B„(t) and neither fl„nor
B„vary exponentially as t -. I et us restrict
our attention to case (C), the case of primary
interest. It is easy to see that the expansion co-
efficients must display an exponential behavior
as t ~, in particular, that

~ 6(t)~ /4'(s, t) as for
some e&0 as s-~ for tE[t„ t,]. We prove this
by assuming the contrary in which case

~ 6(t)~ /
4(s, t)-0, i.e. , 6(t) is negligible compared to
4(&, t). Since 4'(s, t) is positive and increasing
(P&0.805) for all t except t =s where 4'=0, (4.44)
assumes its maximum value at t = s, and thus
the integral in Eq. (4.36) will be dominated by its
contribution at t = s. This is unacceptable be-
cause Eq. (3.1), or equivalently (4.5), is simply
an identity at t = s. No information is contained
in any of these equations at the point t =s. Thus
it is inconceivable that 7)(s) could be determined
solely from the contribution of the integral for
t = s. Thus, our assumption must be incorrect
and our original statement val. id. Next we prove
that 8 is positive. Again we assume the opposite,
6&0. Then (4.4) becomes exp[ —4'(s, t)+[6(t)~ J,
where ( 6(t)~ is an increasing function of t as was
shown above. Since 4' assumes its smallest value
at t = s and 6(t), its largest value, the dominant
contribution will again occur at t =s which of
course is unacceptable. We conclude that 8&0.

We can avoid the unreasonable conclusion that
the point t =s provides the only relevant contri-
bution to the integral as s-~ when 8&0. We do
this by showing that there is exactly one other
point, call it t', whose contribution to the inte-
grand can be made comparable in importance to
that of the upper limit (t, = s) by an appropriate
choice of the function 6(t) For this purpo. se we
will assume the fol.lowing asymptotic form for



8(t')+e(s, t') =8(s)

as s- for some t', where

[8(t')+4'(s, t')] ~[8(t)+4'(s, t)]

(4.46)

(4.47)

for all tH[t„ t,]. Equation (4.46) is a bootstrap
requirement only in case (C) since only then will
t' be increasing with s, i.e., t' = t'(s).

It is instructive to consider case (B) briefly.
The above remarks are applicable to case (B)
but we will see that no bootstrap mechanism is
operative. The reason is that t„being indepen-
dent of s, is the necessary choice for t' in Eq.
(4.46). Note that 8(t,) is a fixed number and

4(s, t,)-—2a&t, (lns)"s~ ' ', i.e., they both as-
sume their minimum values at t, for tH[ t„t, ].
Thus

8(s)- —2av t, (lns)" s (4.48)

and the expansion coefficients and the residue
functions decrease exponentially with the energy
(v s) for asymptotically linear trajectories (p =1).
Contrary to our expectations in Ref. 4, Eq. (3.1)
does not function as a bootstrap equation over
the domain of case (B). We mention that Eq.
(4.36) must be obtained from (4.10) rather than
(4.5) for case (B}.

We return to case (C). Here it is not obvious
that t' should equal t, ; all that ca,n be said a
P~so~& is that t' must be determined from Eqs.
(4.46) and (4.47}. Recall that for p&0.802 there
are points in the interval (t, s) for which

g(r, p)&g(r„p). At these points e ~ exceeds its
asymptotic value at t, and if e ~ were the only
factor to consider, we would conclude that
t H[ t s]. Howevel' 1't ls the func'tloll (4.44)
that determines the magnitude of the integral as
s , and the largest value of 8 ' will naturally
occur at the smallest value of t, i.e., t, . Without
knowing the asymptotic form of 11(t), it is im-
possible to know which of the bvo competing func-
tions, & or e, is exerting the controlling in-
fluence. To determine this and hence the value
of t', we must solve Eq. (4.46). Thus we set
t' =-s/r' and substitute into (4.46). Using (4.22)
and (4.45}, we obtain the equation

s "&s
c(lns}"s' c ln —,

I
—, +ag(r', P)(lns)ss'.

(4.45)

as t - where c, h, q are undetermined constants.
These constants wil. l be determined by the as-
ymptotic self -consistency condition

The only self-consistent solution to (4.49} requires
that &=8=0, q=p, and c =c~(r'), where

a(r ) g(r p) (4.50)

and r' is to be determined from Eq. (4.47). Act-
ually solutions for which h =840 could be ob-
tained by inclusion of additional, lower-order
terms in the asymptotic expansion of 8(s). If we
define the function

(4.51)

then r' must be chosen such that y(r', p)~y(r, p)
for 1&r r, . For this reason it is important to
determine the properties of the function y(r, p}.
It is easily shown that

y(1, p) = ln(3+2&2) ——, (4.52)

which is a positive number by virtue of Eq. (4.26).
The first derivative of y(r, p) with respect to r is
zero at r = 1, and the second derivative at r = 1

is found to be

(4.53)

where

pl -=8 (3 —~17)= 0.14

and

p, =——', (3 + v 17)= 0.89. (4.54)

Thus y(r, p) has a relative minima at r = 1 if
p~&p&p, and a relative maxima at & = 1 if p&p, .
In the former case y(r, p) must increase as r is
increased beyond the point & =1. Since we are
only interested in those cases for which p&0.802,
y(r, p)-0 (from above) as r-~. Thus, y(r, p)
must attain some maximum value and then begin
to decrease as r continues to increase. We have
found that it has only one maxima for 1 ~~&~
when 0.802 &P&P,. In the other case (with P &P,),
y(r, p} is a monotonically decreasing function of
r for 1 ~r&~. We conclude that if 0.802&p&p„
r' must be some point on the far side of the max-
ima of y(r, P). For example, if P =0.85, the max-
ima of y(r, P) is near r =10, and it does not de-
crease to its value at r =1 until approximately
r =38; thus r, must exceed 38 or else r' =1, which
is unacceptable. On the other hand, if p&p, the
appropriate choice for r' is clearly r, (the largest
possible value), in which case

cp = cp (rl)

(4.49)
ar g'(rl p)

1
(4.55)
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This implies that for asymptotically linear tra-
jectories the expansion coefficients and the resi-
due functions wil. l decrease exponentially as
e ' ', where c, is given by (4.55) with P= 1. Since
the maximum value of y(r, 1) for 1 &r&~ occurs
at r = 1 and y(1, 1)= 0.349 by Eq. (4.52), we have
the inequality

S {s)-sxp(- s'"'"' s," s"
)

2Q

sP-(& "&&/22a

(4.59)

(4.60)

(4.61)

0& —' &0.349. (4.56)
and

1-x 2. (4.62)
This is the type of behavior displayed by the res-
idues in the Veneziano model, although the con-
stant in that model corresponding to (c,/a) is
0.38 and, therefore, exceeds any of the values
possible in the above case. At this point it is
evident that in case (C) a newpossibility is emerg-
ing, namely, that the asymptotic expansion co-
efficient q(s) —and hence the asymptotic Regge
residue function as well —bootstraps itself at
infinity, unencumbered by background integrals,
Regge cuts, fixed poles, or the like. It does this
through the integral equation (4.36) and the boot-
strap conditions (4.46}and (4.47). The solution,
to first order, is given by (4.56) above.

A few remarks will be made regarding case
(A. ). The integral in Eq. (4.36) is clearly domin-
ated by its contribution at the lower limit in case
(Ao). Using Eq. (4.30), we see that as s-~

F„(s, tj) „(, )nn( )=&i(tl) (t /t )ii2

x exp[ —2a&t, (lns) s~ ' ']+, (4.57)

In obtaining (4.59) we found it useful to replace
(4.45) by the more general form

S{s)- exp (- g s„s' ),
nM

(4.63)

but the final result is the same as would have
been obtained by using (4.45) and considering
only the two leading terms. Notice that for t
near t, with t =s"/r, r ~ r„

(R'"'(s, t) (
= s '~')fl(s)

sP (lw)/2
1 (4.64)

so that R,'"' is not increasing exponentially at
Possible logarithmic factors were omitted

for simplicity in obtaining Eq. (4.59)-(4.62). Also
as s -~ for t = s"/r

~R',"'(s, t)
~

=s" "' Fi(s"/r;)

where IE„(s,t, ) ~
is bounded above and below by

virtue of Eq. (4.43). Then in case (A,) the residues
have essentially the same behavior as in ease (B).
In passing we mention that if the interval in case
(A,} is extended to the point t, = s/r, for some
r, &1, the resulting asymptotic behavior is obvi-
ously unchanged. In case (A'), p=~, R=1 so

(4.58)

where t~ is the value of t at which the function
n(t) —2av t has a maximum over the interval
[t„t,]. We expect t„ to be t, ; E„'(s,t„) is bounded
above and below as s -~ —see Eq. (4.43).

For the sake of completeness, we comment
briefly on those cases intermediate to cases (B)
and (C). These are the cases in which t, =s and

t, increases with s, but does so sufficently slowly
that (t,/s)-0 as s-~. For these eases we let
t, =s~/r, for some X between zero and 1 and for
1 &r, &~. Equations (4.46) and (4.47) are valid
in these cases. Then for a given X, Eq. (4.46}
has the solution x,(s, s/r) &y(r, p). (4.67)

(4.65}
which is increasing exponentially even at
Since this is not compatible with the behavior of
B at Is ty we do not regard this as a viable
alternative.

Vfe conclude this section with a few remarks
about the behavior of the Regge terms and hence
of the modified background integral for case (C}.
In Sec. II we indicated that the modified background
integral must increase exponentially if the correct
domain for the crossing relations is that of case
(C). This is necessary because, contrary to
cases (A) and (B), R{"'increases exponentially
as s-~ for t =t, . From Eqs. (3.6), (4.45), (4.50),
and (4.51)

~R',"'(s, t}(= (q„(s) (exp[x,Ree{„(s)]
= ~fl(s)B„(s)~exp[a[x, -y(r„p)]s~j.

(4.66)

We now show that for all r &1
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Proof:
gP

(x —y) =x —
~ Zs s +p

=x —
~ x —ex,y

r -1

x,+ ~ x,

p xt

&p, (4.68)

V. GENERALIZATION TO UNEQUAL MASSES

It is not the purpose of this paper to consider
in detail the application of the proposed crossing
relations to the scattering of particles of unequal
masses. However, we outline the form such a
generalization should take in order to show that
the generalized crossing relations do not possess
nontrivial solutions in all the domains which we
have considered.

Since the t and u channels are not identical, Eq.
(1.2) is replaced by the following pair of equations:

K(s ) K(t)

P R&n) g R&n) (5-1)
tg-1 n=1

as s-~ for tc [t„t,], and
E(s) K(Q)

~(n) ~(n) (5.2)

as s- ~ for u &= [u„u,], where the more precise
statements of these two relationships would be
similar to Eq. (3.1). In addition there are two
similar equations involving the limit as t- ~ and
two involving the limit of infinite u. The require-
ment that the trajectories and residues satisfy(5. 1)

Q.E3). In the above we have used the fact that
x, &x, for all r &1. It follows that R,'"'(s, t, ) is an
exponentially increasing function of s, indepen-
dently of the value chosen for r. We might add
that R',"'(s, t, ) also increases exponentially as
s-~. For cases (A) and (B), R,'")(s, t) increased
exponentially as s -~ for t &t, but not for t =t, ;
an exception to this occurs for trajectories of
the type satisfying Eq. (2.1) in which event R,'"'
never increases faster than a power of s. Re-
turning to case (C) we mention that for
p&p, (p, =0.89), y(r, p) is a monotonically de-
creasing function of x as is x,. The maximum value
of x, -y(r, p) occurs at r = 1 and equals W2/p [see
Eq. (4.52)]. Therefore, R,'"' cannot possibly in-
crease faster than 8 '" ~ as s-~. It follows
that if the proposed crossing relations are to be
valid, the modified background integrals, in par-
ticular &B, must not be increasing as rapidly as
~&~as &/&

K4( g)
o„)i„(s)- ox~ jr'(u, )K K 1

xexp -2 )&u, E„(s,u, ),
n(s)

(5 4)

where the u-channel c.m. momentum q„ is to be
evaluated at u = u, and

nrem

is the K*(892 MeV)
trajectory. These two equations can easily be
shown to be inconsistent. The most important
observation in this regard is that the function
E„(s,x) appearing in (5.3) is essentially the same
function appearing in (5.4), except in the former
case x= t, and in the latter x=u, . In other words,
this function is completely independent of the
crossed channel except for the value assumed by
its second argument. Furthermore, we have shown
that E„(s,x) is bounded and can vanish no faster
than s ' ' [see Eq. (4.43)]. It follows that the two
exponentials exp[-2n(s)v t, /)r s ] and
exp[-2n(s)vu, /Ws] will be the same (as they must
be) only if u, = t, . Thus E„(s,t, ) =E„(s,u, ), and the
u dependence of the right-hand sides of (5.3) and
(5.4) is identical, but the n dependence of the left-
hand sides of (5.3) and (5.4) differ by the signature
factor cr„. Therefore, the two equations are incon-
sistent. We also note the inconsistency arising
from u, =t, and the fact that the p and K* trajec-
tories are not expected to intersect, in which case
the s dependence predicted by Eq. (5.3) is not the
same as that predicted by Eq. (5.4).

If we attempt to duplicate the above arguments

and (5.2) simultaneously clearly places a stringent
restriction on their possible forms.

The analysis presented in the previous sections
is applicable to Eq. (5.1) with a, few obvious modi-
fications to take into account the lack of crossing
symmetry. The equations relating the s- and u-
channel parameters [resulting from Eq. (5.2)] will
be identical in form to those relating the s- and
t-channel parameters except )I„(s) will be replaced
by o„)I„(s), and )I„(t) will be replaced by o„)I„(u);
also, any kinematical factors present must be ap-
propriate for the corresponding channel.

As an example consider the reaction g +K
-«'+K and assume case (Ao) or (B). Then the
asymptotic behavior of the expansion coefficients
resulting from Eq. (5.1) will be similar to Eq.
(4.57), i.e.,

p&tg) —

( ))I„(s)-)I,(t,) 2 exp -2 Mt, E„(s,t,),S
(5.3)

where the subscript t, indicates that the c.m. mo-
menta qt of the zz system and pt of the KK system
are to be evaluated at t = t„n, is the p trajectory.
The analogous expression resulting from Eq. (5.2)
1s
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for case (A') we find again two expressions for
q„(s) which differ by the signature factor o„re-
sulting in an inconsistency.

In the above proofs presented for cases (A) and

(B) the assumption 'was made that the function
E„(s,x) appearing in the expression for q„(s) was
identical to the one in the expression for o„q„(s).
This can be proven rigorously for case (A,) if we
assume a Lipshitz condition on n(t) in the variable
Wt for v t near v t, or near v t„ in case (A'). How-
ever, in case (B) additional, though not overly re-
strictive, assumptions are needed to ensure the
equality of the two functions.

For case (C) no inconsistencies have been de-
tected in Eqs. (5.1) and (5.2). Of course the proven
consistency of the crossing relations in the domain
of case (C) and generalized for external particles
of unequal m.ass must await an existence proof or
further developments indicative of their consis-
tency. All that can be said at this point is that
the approach which we have considered cannot be
used to arrive at an obvious inconsistency in case
(C). It fails because the expressions for q„(s)were
not sufficiently simple to allow the necessary con-
clusions to be made. All that we have been able to
obtain in this paper is an expression for e(s). Fur-
thermore, we can be certain that no kinematical
inconsistencies reflecting a mass difference will
be encountered in case (C). When s is large and
t is not, t-channel mass differences mill be im-
portant. However, when both s and t are large,
as is always true in case (C), the kinematics of
all channels are identical and mass differences
are of no importance.

VI. SUMMARY OF RESULTS, CONCLUSIONS,
AND ASSUMPTIONS

In this paper we have presented a general inves-
tigation of the postulate that infinitely rising tra-
jectories combine with the crossing principle to
provide a new type of relationship between the
Regge parameters of the direct and crossed chan-
nels. Our main concern has been the determina-
tion of the type of domain in the real st plane in
which such crossing relations might exist as s - .
We have assumed that Regge poles rise above the
leading Regge branch point at sufficiently large
and positive values of their arguments and that
the background integrals are increasing more
rapidly than the Regge-cut amplitudes. Since the
crossing relations involve trajectories of both the
s and t channels, we have restricted our attention
to the first quadrant of the real st plane. The re-
sult is an expansion problem: an expansion of the di-
rect-channel Regge amplitudes in terms of the
crossed-channel amplitudes, and vice versa. The
basis functions entering the expansions are natu-
rally assumed to be linearly independent. The only

imc.„(s)-
t~—

[n+ C(s)], (6.1)

where C(s) is a function of the order of magnitude
of K(s).

(2) The problem can be phrased as a relationship
in a linear vector space.

(3) The residues behave as a power of s for large
S.

(4) ~B,'~ &s~ for some fixed N, where B', is the
modified background integral.

(5) The generalization to unequal-mass scatter-
ing is inconsistent for all two-body reactions if
e(f) satisfies a Lipshitz condition in the variable
Wt for Wt near v t„.

Case (AD): f c [t„f, ] with t, fixed and (f,/s) -0
as s - ~, where t, may or may not depend on s and
trajectories do not satisfy Eq. (2.1).

Results:
(1) An existence proof could not be supplied.
(2) The problem could not be stated as a rela-

tionship in a linear vector space.
(3) The residues decrease as exp[-2mlt, P (Ins)s].
(4) ~BJ&s" for some N.
(5) Essentially the same as for case (A').
Case (B): f c [t„s]with f, fixed
Results:
(1)-(4) Same as for case (A,).
(5) The generalization to unequal-mass scatter-

ing fails only if more restrictive assumptions are
used.

(6) The real parts of the trajectories must be
either asymptoticaQy parallel or asymptotically
degenerate.

other assumption used is that the residue functions
not increase exponentially. In cases (A,), (B), and
(C) this was found to be equivalent to requiring that
the real parts of the trajectories increase faster
than s~ where p =0.602. In case (A') the question
of the exponential increase of the residue functions
did not occur since the rise of the trajectories was
only sufficient to induce a power behavior for the
residues. Also the assumption of the Lipshitz con-
dition mentioned in case (A) below can certainly
be relinquished without changing our conclusion
about its extension to unequal-mass scattering. A
comparison of the results obtained for the four
cases of primary interest is given in outline form
below. In each case it is understood that s is in-
creasing without bound and t is confined to a given
interval along the positive, real axis.

Case (A'): t c [t„f, ] with t, and t2 fixed and the
real parts of trajectories must satisfy Eqs. (2.1)
and(3. 13).

Results:
(1) An existence proof can be given but only if

the trajectories obey the additional condition



1988 R. W. CHILDERS 13

Case (C): t(= [s/2„s] with 2, fixed and 2, &1..
Results:

(1) An existence proof was provided for two
types of trajectories, namely, (a) asymptotically
parallel trajectories, i.e. , those for which

Re()(„(s)-Reo(~(s) —nb

and
Imo. „(s)- c,(s),

(6.2)

(6.3)

and (b) trajectories with asymptotically degenerate
real parts and asymptotically equal spacing for
their imaginary parts, i.e.,

Reo(„(s)-Rec(~(s) (6.4)

Imc(„(s) -f(s)+ 27m
(6.5)

where n=0, al, +2, . . . and f(s) is of the order of
magnitude of K(s).

(2) The problem can be formulated in a linear
vector space.

(3) If we assume that p ~0.602, the residues de-
crease as exp[—ay(2„p)s2], where

2(n„p) = (I n;n)' (In I+—+ —(I+ n, )' I
1 1

—nnln[1+2, n, +2(n +n ')'&'])

(6.6)

the maximum value of y(r„p) for p =2; = 1 being
0.348.

(4) ~B,'j e", where c&2/2a/p.
(5) No obvious inconsistencies are found in the

generalization to unequal-mass scattering.
(6) The real parts of the trajectories must be

either asymptotically parallel or asymptotically
degenerate.

Also in all four cases the expansion coefficients
must be of comparable magnitude as s ~, and
it is only in case (C) that the crossing relations
actually provide a bootstrap mechanism for the
Regge parameters.

On the basis of the above results, we have come
to the following conclusions:

1. Nontrivial solutions do not exist even in
equal-mass scattering for cases (A,) and (B).

2. Nontrivial solutions for case ((4') exist in
equal-mass scattering but not in unequal-mass
scattering. In the former, the solutions are not
required to be selfconsistent because the cross-
ing relations relate the s- and t-channel Regge
parameters at completely different values of
their arguments.

3. Nontrivial solutions exist for case (C) in

where

F( ) g [(l).l'a"
n!(-,' —o.)„'

(Al)

and
-z + (z2 —1)'/' -1

2(z' —1)'" [z+ (z' —1)"']'' (A2)

both equal-mass and unequal-mass scattering,
although in the latter our conclusion is specula-
tive in the sense that a plausibility argument, and
not an existence proof, has been given. In the
equal-mass case self-consistent values for the
leading terms in the asymptotic expansion of
Reo,L(s) and qz(s) have been obtained. We suggest
that the asymptotic solutions are self-consistent
in general for equal-mass cases. Their self-con-
sistency for unequal masses is yet to be investi-
gated.

It is clear that the appropriate domain for the
crossing relations for the Regge amplitudes is
the domain of case (C). This is not the conclusion
we expected. It involves the limit as s-~ for
fixed z„' we expected the limit as s ~ for either
fixed t or such that the ratio (t/s) 0. In the lat-
ter case, the resulting crossing relations are
reminiscent of the FESR in that an analytically
continued sum of resonance amplitudes, as de-
fined by Eq. (1.2), must behave as s (') for large
s, i.e., ZB,")= s"&('). This cannot occur in case
(C). The sum over the resonance amplitudes,
hidden in the series ZB, , is Regge-behaved
only in that ZB,") -2 B2", and in case (C)B,"
does not reduce to24„(t)s &('). Instead we find that
asymptotic local duality as defined in this paper
bears a closer resemblence to the zero-width
duality of the Veneziano model.
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APPENDIX A

In this appendix we derive some useful expres-
sion for P„(z) and P„( z) as n- 1 both-for fixed
z and as z- 1. From Eq. 3.2(26) of Bateman' we
have

1 F( + 2) G/ ) -((2+2/2)2
(2 )2&2(g2 1)2/4 I'( )

F((2+ 2/F( )e(n+1/2)2
I"(()(+ 1)



13 CROSSING RELATIONS FOR INFINITELY RISING. . . 1989

Also x is defined by Eq. (2.20) with z —z„x—x,.
Both series, E and G, converge only for ~u ~

& 1,
i.e. , for ~z~&3/2v 2. However, they canbe ana-
lytically continued to smaller values of z as we
will now show. First, we consider E(u) and write
it as a contour integral in the complex v plane:

)
I'(-,' —n) I"'(v+ —,') (-u)" dv2m, I'(v+ 1) I'(-', —n + v) sinn v

x/2( &
~ -«zz ~a/«~

z (A6)

where z, —= Rez, and for Re(z+a)&0, Re(z+b)&0

Binet's first expression for lnI'(z)' one can show
that for Rez &0

(A3)
1(z+b) I z, +a z, +b (A7)

(A4)

and at this point ~u~ & 1 and arg(-u)& s. In this
way we obtain the expression

where the contour c encloses the real v axis be-
ginning at Rev = n+ c and going out to infinity. We
can open up the contour and discard the contribu-
tion along the infinite semicircle since the inte-
grand behaves for large ~v~ as

V-1/2+01 el/In(-u) —m'
I ImvI

where 0, M are constants. If we denote the in-
tegral in (A5) by f, we have

r(-,' —n) I'+'"r2(v+-,') ( u)" dv

2si J,. I'(v+1) sinmv I'(—,
' —n+ v)

(A8)

or, using certain properties of the y functions,

F(u) =- r(-,' —n) /'"'" r'(v+ —,') (-u)' dv2m;„ I" v+ 1 I" —,
' —n+ v sinnv

—1 "L+
f=

2S "L-
6v

cos[s(v —n)] I'(v+ 2)
cosign sinzv I'(v+ 1)

(-,')„'u"
(A5)~ n!(-,'- n)„'

where L=N+ e. The integral in (A5) clearly exists
for ~u~ &1 which corresponds to z&3/2v 2. Thus
(A5) is the desired analytic continuation. From

We can use Eqs. (A6) and (A7) to obtain an upper
bound for ) f~ as follows. Let v, =lmv. Then

[f[ -M ( u)~
dv ( cossv+tanwn~ 8 & I 2(v+ ~ )v+1 2 n -v eK(I +1/2)

2 (v 2 + L2)1/2 v+ ~

exp(- v, [arg(v+ —,') —g(s)])

', exp[ v, g —v, arg(v+-,') + (L+-,') ln( v+-,'(]
v,'+ I.'

[ v 2 + (L+L)2] j+L/2
2 [v 2+L2]

(A10)

where g(s) is the argument of n(s) and we have
assumed that g(™)is less than —,'m. This is neces-
sary for the integral to converge since
arg(v+z)-+2m as v, +~. The proof can be
modified to include the case arg(n)&zw but it is
cumbersome and will not be done here. From Eq.
(A10) we see that

~ f ~
can be made arbitrarily

small by choosing I sufficiently large as long as

(A11)

In particular
~ f [ can be made smaller than the

first few terms of the finite series in (A5) when-
ever (A11) is satisfied. Equation (A11) is clearly
satisfied for fixed z, z 41, i.e., for fixed, finite

values of u. Now consider the case of infinite u.
Suppose that (s/f) -~, in which case z -1. Then
one can easily show that

s «2
g 1 —2 + ~ ~ ~

4 t s (A12)

and Eq. (All) becomes

(A13)

In the formulas in this paper (A13) is always sat-
isfied since we consider only those trajectories
which increase faster than vs.

G(u) can likewise be analytically continued to
z&3/2W2 and bounded in the limit of infinite s
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P„(-z) =e '""P„(z)——sin(ll/2) (() „(z) (A16)

and (2(s). We conclude that as s-™and Ren(s)-~
1r(& + 2) (~+,/2). ~ ..

(2)/)'"(z' —1)'" r((2+1)
(A14)

whenever Eq. (All) or (A13) is satisfied. It is
understood in the above that s, t, and z are real
and that t, s, and Rem(s) are positive.

Notice that if (t/s)-0 as s-~, Eq. (A14) can
be written as follows:

1 vtsP (,)(z)- —
( )~ exp 2[c((s)+-2'j ~

(A15)
assuming of course that Re(2(s)-~ as s-~.

Next we consider P (-z) and use Eq. 3.3.1(10)
of Ref. 5 to obtain

Suppose we replace the index & with l and con-
sider the limit in which l2- + ~ with l, = —&,

where l =l, +il2. Then the second term in (A16)
is not necessarily negligible. Substituting Eq.
(A17) into Eq. (A16), we obtain after some sim-plificationn

1
i (- ) (2,)1/2(z2 1)l/4

1%
elxl G( )

-(l+1/2)x
I"(- l)

1—;.l r(l+ 2) F( )
(„,/, )„

r(l+ 1)

(A20)

(A19)
Then as l, -+ the second term in (A19) is dom-
inant and we obtain

( z) ( 21)/2-ix/4eil2x

sin)Tl (2)ll, )' '(z' —1)"

for Imz&0. From Eq. 3.2(44) of Ref. 5

2 . 2 ' ' sin(1/(2) r(ol+ I)8 in 7//2 (3) (z )
(

2 1)1/4 r( 3)

)( G(u) S ( (2+1/2)x

+ ~ ~ ~

2 cos(zu) r(- n ——,')
(21/)'"(z' —1)'" I'(- a)
X Q(u) e ( 4(+1/2)x

+ ~ ~ ~ (A17)

As l, - —0 the first term in (A19) is dominant
and gives

( Z) ( 21)S -ill/4e -il2x

sin/ll [21/(- l, )j'/'(z' —1)'/' (A21)

The validity of the above formulas for ~ near 1
depends on the analytic continuation of F(u) and
G(u) and is therefore subject to the conditions
indicated in Eqs. (All) and (A13).

Next we consider the case in which ~ is ap-
proaching unity as [t2~ -~ but much more slowly
than before, i.e., weassume that

(A18)

where some properties of the y functions have
been used. It is clear from Eqs. (A16) and (A17)
that if Reu -~, the second term in Eq. (A16) is
negligible and

P (-z)-e ""P (z).

2 p (A22)

For this case we use Eq. (A16) and an equation
just below Eq. 3.6.1(11) of Ref. 5. Combining
them we have

P (-n) ) n —11 n+I 2
( +3(1+I)] P( )

I I" I'(n '—1)P(n+I+I)
( )

I —n)", (1423)

where cr(n) =@+it(n+1). One can show that

nlnnl I'(n —l)I'(n+l+I) ( )
=(-I)" —

( ) -(—I)" I,' ( ) =( '
) -(' ) . (424)

lim P, (z) = 1.

Thus as il2i-
P, (—z) 1 2- —in(z —1) + —in(l + 1) +sinn'l m' jr

1 2tl2
ln +

(A25)

(A26)

when Eq. (A22) is satisfied.

Thus each term in the infinite series in (A23)
vanishes as l2-™when (A22) is satisfied. From
Eq. 3.2(3) of Ref. 5 one can show that in this case

APPENDIX B

In this appendix we obtain an estimate for the
modified background integral B,' using the bound
for A, (s), Eq. (2.11), and also Eq. (2.12). For
this we must consider the behavior of the Leg-
endre functions as l, - + . We need consider
only P, (-z) since P, (z)/sinn'l -0 in this limit.
We find that the behavior of P, (- z) for large l,
depends on the magnitude of the quantity le/Ws.
If tv t /Ws-0 we see from Eq. (A26) of the pre-
ceding Appendix that as l,- +
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P, (-z, ) 1 2tl"
sinful n s (81)

where I M, (s)I is bounded. Robin" has considered
the case in which I I v f/vs I =constant as I, and
s increase. Using his results, we find that as
l -~

2

P~(-&. ) (-2&),
I I,O(f/, ))sinwl (2wvr)'/'

where

~ -=(2 l + 1) ( *) - 2 t (
—
)

(82)

P, (-z, ) (-2i) exp(i I I, I x, )
sinrf (27r)' 'I l2I (8 ' —1)' ~ (84)

Notice that (84) reduces to (82) when l, -+~
and t/s-0.

In estimating the behavior of B,' as s-, we
ignore that portion of the integral involving neg-
ative l,, for simplicity. We write B,' as the sum
of three integrals: the first from zero to l„ the
second from I o to (s/f )' 2, and the third from
(s/t)'™to ~, where l, is an arbitrarily large but
fixed number. Let the first integral be B„ the
second be B„and the third be B,. Thus B,' =B,
+B2+B„where I B,I is bounded by c(s) by virtue
of (2.11) and (2.12),

~sit 2tB —— c (s)ln —l 2 I '' 'dl + ~ ''
7r S 2 2 2

So

(85)

A similar expression can be obtained when

I,- —~. It is clear that (82) is not useful when
(f/s)-~. Then we must use Eqs. (A20) and (A21),
which indicate that

+ ~ ~ ~ (86)

l ln ' dl &M —c(s).2tl, ' s

(87)

It is not convenient to obtain an upper bound for
I B,I . Instead we obtain an estimate of its be-
havior for large s by replacing c, (s) with c(s).
If the lower limit is replaced by zero, the in-
tegral can be evaluated to yield the result

2c(s)
IB3I (2„)~/2(~ 2 I)1r4 J I, 8 "2* dl,

2I'(1 —e)
(2~)1/2(~ 2 I)1/4 ( ) s

8ased on Eqs. (2.11) and (2.12) we conclude that
a good estimate for a bound on I B,' I is provided
by ihe fol.lowing:

IB I M —c(s) (86)

for large s and some I This is the bound we
wished to obtain for B,'. It's magnitude is es-
sentially the same as the least upper bound for
A, (s), that is, c(s).

Notice that we have used (81) for all values of
I, in Eg. (85) although (82) is the more appropri-
ate expression for I, near the upper limit,
(s/f)' ' It s. hould be apparent that this error
cannot alter our conclusions regarding the bound
on I B,' I by more than some power of s. Using
(2.12) and (85), we have

(s/g)l/2

I B,I &c(s) )lo
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