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We propose that perturbation theory in a gauge field theory of quarks and gluons can be used to calculate
physical mass-shell processes, provided that both the data and the theory are smeared over a suitable energy
range. This procedure is explored in detail for the process of electron-positron annihilation into hadrons. We
show that a smearing range of 3 GeV' in the squared center-of-mass energy should be adequate to allow the
use of lowest-order perturbation theory. The smeared data are compared with theory for a variety of models.
It appears to be difficult to fit the present data with theory, unless there is a new charged lepton or quark
with mass in the region 2 to 3 GeV.

I. INTRODUCTION

It appears likely that the strong interactions are
governed by an asymptotically free gauge field
theory involving elementary quark and gluon fields.
This field theory can be used to calculate a num-
ber of quantities of physical interest, including
the hadronic contribution to vacuum polarization
for large specelike momenta and the asymptotic
values of the moments of electroproduction struc-
ture functions. ' However, direct application of
quark perturbation theory to calculate quantities
in the physical region is clearly not justifiable,
even at high energy. Specifically, in every order
perturbation theory predicts production of quarks
and gluons, whereas we expect that in fact the
only free particles that can be produced are color
singlet bound states of quarks and gluons —that is,
hadrons.

The problem of demonstrating the phenomenon
of quark trapping in a gauge field theory is as
difficult as it is interesting. This paper proposes
a method by which, even without a thorough under-
standing of quark trapping, it is possible to use
the quark-gluon perturbation theory to obtain de-
tailed information about mass-shell matrix ele-
ments at high energy.

Suppose for example that we wish to calcula, te
the cross section o(s) for the process e'e -had-
rons at a center-of-mass energy v s. We consider
energies high enough so that

n, =-g'(s)/4v « I,
where g'(s) is the gauge coupling constant defined
by renormalizing at a Euclidean point with mo-
mentum scale Ws. As indicated above, even at
such energies it would be vain to hope that the
quark-gluon field theory could be used to calcula. te
o(s) directly; perturbation theory predicts thresh-
olds for quark-antiquark and multigluon production
processes, which are believed to be absent in

nature, while v(s) does exhibit multihadron thresh-
olds, which are certainly not present in perturba-
tion theory.

We suggest instead that perturbation theory
should be used to calculate a certain smeared
cross section. It is convenient to express this in
terms of the familiar ratio

12wso(s)
e4

The smeared ratio is defined as

~( )
d,

" ds'R(s')
v, (s' —s)'+ a' '

The integral averages out both the quark-gluon
thresholds in the theoretical cross section and
the hadronic thresholds and resonances in per-
turbation theory. ' We shall argue that as long as
b, is sufficiently large, we can calculate A(s, h),
using some number Nz, of terms of perturbation
theory, with an error which is smaller than the
Neth term by a factor of order n, . We would, of
course, like to take 6 as small as possible in
order to extract as much information as possible
from the data. However, Nz decreases with de-
creasing 6; if we try to take an average that is
too fine-grained, then N~ may become 1 or 0,
which means that perturbation theory could only
be used in lowest order, or not at all.

We do not have a rigorous justification for this
procedure. However, it is supported by a simple
argument, which seems to us to be quite persua-
sive. The cross-section ratio Jt(s) is related to
a suitably normalized vacuum-polarization am-
plitude II(z) by the familiar dispersion relation

(4)

The smeared ratio may therefore be written as

2iB(s, 6) =II(s+i6) —II(s —ib, ) .
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Now, the reason we expect perturbation theory to
fail for R(s), even at energies sufficiently high so
that e, is small, is that infrared singularities will
produce strong forces among subsets of quarks
and gluons, forces strong enough to bind them into
hadrons in the final state of the e'e annihilation
process. But in calculating II(saic) with L4:0,
the imaginary part of the photon four-momentum
will flow through the internal lines of the diagram, '
preventing the vanishing of any propagator denom-
inators, and thus providing a natural infrared cut-
off. This cutoff may break down in high orders
of perturbation theory, because there are inter-
mediate states with so many quarks and gluons
that each carries only a small share of the com-
plex photon momentum. However, up to this
order, perturbation theory can be used to calcu-
iate II(s+ iA), and hence JI(s, 6).

The essential point for practical applications is
to know how large a value of 6 is needed to permit
the use of a given order of perturbation theory.
Avoiding altogether the problem of the details of
quark trapping, we first analyze this question in
terms of the failures of perturbation theory which
are well understood. ' We argue that it is precisely
these mell-understood features which arise for
the largest values of 6, and that by avoiding these
we are also avoiding the infrared logarithmic
singularities which presumably build up to give
the quark trapping. Because QED (quantum elec-
trodynamics) is a more familiar theory, in which
the problem of bound states already exists, though
in a much less severe form, we will first discuss
the application of our method to QED. We then
move on to color gauge theories, pointing out a
few of the differences. Finally, we use our method
to compare theoretical and experimental results
for electron-positron annihilation.

II. ANALYSIS OF THE BREAKDOWN OF PERTURBATION

THEORYINQED

The breakdown of perturbation theory associated
with the existence of positronium is well under-
stood, ' so we begin by discussing that case. Near
the threshold for the production of an electron-
positron pair, diagrams such as those of Fig. 1
contribute to the perturbation expansion of II(s)
terms of order (n/v)", where

(s
—4m')"*

The quantity v is the fraction of the velocity of
light with which the electron and positron move in
the center-of-mass frame. As s-4m', v becomes
small compared to o. and the (o./v)" terms become
singular, thus causing a breakdown of perturbation

FIG. 1. Diagram contributing (e/v)" singularities in
@ED.

where here n =e'/4m is the electromagnetic fine-
structure constant. Corrections to the positions
of these poles can be calculated by including dia-
grams other than Fig. 1. General diagrams, for
example those of Fig. 2, can produce contributions
of the form (a/v)" (n lnv), which are also singular
as v-0. Rather than attempting to calculate all
such terms, we replace s with z =s+iA, and we
choose 6 large enough to render these terms
harmless. We now turn to an examination of how
this can be assured.

The amplitude II is a function of the variables
e, z, and m2. We know that this function has
branch points in z at the multiparticle thresholds
given by

2

s'(o.) = Q N„'M„(n) (8)

for any set of integers N„' such that the state j
with N'„particles of type n has the quantum num-
bers of a single photon. For any complex z = s+iA
there is some choice of complex n = a~(z) for each
j, which puts the threshold at s:

Z=S Ag 8

The perturbation expansion for II(z) in terms of n
has a singularity at n =o.&(z), and will therefore
break down unlesse

/
o.

f &min] o.,(z)f. (lo)

Thus the requirement that we impose on 6 is that
Eq. (10) be satisfied for z = said„where the min-
imum is taken for all states j which contribute up

—g lnv
V

(—)~(a Inv)

FIG. 2. Diagrams contributing (a/v)" (n 1nv) singu-
larities in @ED.

theory. As is well known, these terms can be
summed, yielding a sequence of poles at the ener-
gies of the positronium bound states

n'm
M„(n) =2m—



E. C. POGGIO, H. R. QUINN, AND S. WEINBERG

to a desired order of perturbation theory.
Consider, for example, the state j consisting of

N positronium atoms in their ground state. Using
Eqs. (7)-(9) we find, to lowest order,

2( )
z-4N

mN

Near this threshold, Eq. (10) is satisfied for the
physical 0 and complex g = s~ Q provided

(12}

The region excluded by this choice is shown in

Fig. 3. Avoiding this region clearly also elimi-
nates any problems from X excited positronium
atoms.

The fact that there are no singularities of II(z)
on the real axis other than these normal thresh-
olds follows from Kinoshita's theorem': Each
Feynman graph for II(z) is free of infrared di-
vergences, despite the infrared divergences for
individual intermediate states. This is not to say
that we believe that the perturbation series actual-
ly converges on the real axis between thresholds,
but only that in this region we can use QED in the
usual way to obtain accurate numerical results.

We also note that production of N electron-
positron pairs requires at least 2(N —1}factors
of o. [beyond the over-all factor that multiplies
II(z)]. Thus N bound-state thresholds affect only
the [2(N- 1)]th order of perturbation theory. If
we wish to calculate only to low order in e, we
can ignore their existence altogether and choose 5
so that we avoid only the first few thresholds in s.
This means that in QED, effectively only the e'e
threshold is relevant for most purposes. The
value of 4 near that threshold can be taken to be
small simply because both e and m are small.

HI. NON-ABELIAN GAUGE THEORIES

The analysis of non-Abelian gauge theories pro-
ceeds for the most part very much like that of
QED. We postulate an effective Lagrangian in
which there are parameters corresponding to
quark masses, as well as a gauge coupling con-

stant g(p, '). These parameters depend logarith-
mically on the choice of renormalization point.
A renormalization-group analysis of 0 for s large
compared to all masses shows that it is, in this
region, only a function of n, =g'(s)/4v. For s in
the region of interest to us it depends also on the
masses, or rather on the dimensionless quantity
s/m'. By choosing to write II in terms of o., we
eliminate the possibility that the perturbation ex-
pansion for II in terms of e breaks down because
of large logarithms of the form Ins/p, '. (Any re-
normalization mass of order s would be satisfacto-
ry for this purpose. ) We renormalize the quark
masses so that to any order in perturbation theory
the quark propagator has its singularity at m, '.
The physical meaning of this parameter will be
discussed briefly in the following section.

Let us consider first a world in which there are
only heavy quarks, of mass m. (By "heavy" we
mean such that o.,„2«1.) The analysis of this
situation is similar to that of QED. Once again II
is a function of two independent variables e, and
s/m'. The perturbation expansion contains terms
of the form (n, /v)" from diagrams of Fig. 1,
which are the most severe singularities in the
neighborhood of any quark-antiquark threshold.
There are once again also contributions of the
form (n Inv)"(n/v)" from diagrams such as those
of Fig. 2 and also from the characteristically
non-Abelian diagrams such as those of Fig. 4.
The effect of these terms on the position of the
bound-state pole and the nature of the effective
binding potential is presumably more dramatic
in this case than in QED, but that does not affect
our analysis. As long as

~
v~ is kept large enough

that both o./v and nine terms are controlled, the
perturbation series may be used to estimate
D(s + is).

The a/v terms can be summed to yield the
leading approximation for the hadron masses in

terms of quark masses, which is just the Coulomb
binding formula of Eq. (7). Because e, is actually
not so small in the region we wish to study (name-
ly, near the new resonances), we allow for the
possibility that e lnv corrections may increase the
binding of these poles by as much as a factor of
2.' Following the arguments of Eqs. (8}-(12)then

Rez= s

-„(eInv)~ —(a Inv) (
—„}z(alnv}z

FIG. 3. The excluded region of the s plane in @ED.
The picture is dramn for o. =O.l because the excluded
areas mith the physical value of o, are too small to dram
reasonably until one reaches very-high-order thresholds.

FIG. 4. Typically non-Ahelian graphs giving
(o./v)" (o. lnv) corrections. Each graph is labeled by the
relevant values of n and m,
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gives

b' ~ 16N m n —(s —4N'm')' (13}

for the region s=4N m', in order to avoid singu-
larities from thresholds for hadron states com-
posed of N quark-antiquark pairs. Once again it
costs 2(N-1) powers of n, to produce such pairs,
so for low-order calculations only 1.ow N thresh-
olds are relevant.

The picture is only slightly more complicated
when there are also light quarks in the theory.
We cannot discuss the region near the few-lightmm

quark thresholds as a, is too large in that region.
However, the region near the heavy-quark-anti-
quark threshold can be treated. Shortly above
that threshold is the threshold for one heavy quark
and its antiquark, plus one light quark and its
antiquark. These may bind in pairs in either of
two ways, but the lowest bound state, and hence
that which causes the smallest a&, is produced
when each quark binds with its own antiparticle.
The Coulomb binding formula then is

s(threshotd) = (hm, e 2m„- n'(s)m „n'(s)m,
4

(14)

We argue that perturbation theory will provide a
good estimate for II near this threshold provided

appears to us to be somewhat suspect. For any
value of s on the real axis we kngw that the per-
turbation theory predicts quark and gluon produc-
tion but physical amplitudes are (by assumption}
due only to hadron production. This is quite dif-
ferent from the QED case, where in the region
away from thresholds the cross section is in fact
dominated by free electron-positron production
and the bound-state contributions are only sig-
nificant near threshold. We assume that, in non-
Abelian theories, a nonzero b, is also required
in the region between thresholds to provide a
cutoff for the singularities rela, ted to quark bind-
ing. The question that remains is: What value
of b, is sufficient for this purposely We cannot
answer this question without some idea of the be-
havior of the singularities. However, we have
argued that the Coulombic threshold singularities
already discussed are the most severe (being a
linear rather than a logarithmic problem). There-
fore we choose to make our comparison of data
and theory using a constant value of 6, large
enough to satisfy Eq. (13) at the N= 1 (one quark,
one antiquark) threshold, and we assume this will
satisfactorily protect us from infrared logarithms,
if any exist in the remaining region. Specifically,
taking n, =0.5 and m=1.73 GeV (values which
appear reasonable in the light of our numerical
analysis) Eq. (13}gives

bP ~ 16(m„+m, }~n —[s —4(m„+m, )']', (15) m'ns'=3 GeV' (16)
again doubling the binding to allow for shifting by
higher-order corrections.

Contributions from higher numbers of quarks
and antiquarks can be treated similarly, giving
the general result

n, ' ~ 16(Nm„+N'm, )'n' —[s —4(Nm „+N'm, )'] '

(16)

near the threshold for hadronic states containing
N heavy- and N' light-quark-antiquark pairs. The
generalization to more than two types of quark is
obvious. Equation (16) yields a quite different
picture to that of Fig. 3. If n is large enough so
that e,'m„'&m, ', the circles for various k values
overlap, producing the excluded region

(17)

if one wishes to calculate to high orders in per-
turbation theory.

However, for practical purposes we are more
interested in the value for b necessary to allow
a calculation, say, through order a, . The thresh-
old singularities to this order are fully accounted
for by choosing 6 to avoid the single-quark-antimm

quark threshold only. However, to assume that
above and below this circle we can take ~-0

We will adopt a value b, =3 GeV' throughout our
numerical analysis, though this 4 may be some-
what too small very close to thresholds.

We are not able to extend our analysis much
below the region of interest aroung the new reso-
nances, because n, quickly becomes too large.
Hence the choice of a constant 6, also provides a
reasonable cutoff for the lowest s values that are
included in our analysis. We find that even this
presumably generous choice of b, allows us to
make a more sensitive comparison of models and
data than has previously been justifiable. Of
course, since the smearing in the threshold region
is wide compared to the structure in this region,
this analysis does not allow us to make any pre-
cise statements about resonance widths or posi-
tions.

IV. NUMERICAL ANALYSIS

The comparison of quark models with data. can
now be made by calculating the quantity R(s, b, )
for a variety of models and parameters and com-
paring with the smeared integral of the data from
SPEAR.' We will choose 6 =3 GeV' throughout.
In order to limit our sensitivity to the unmea-
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sured region s &60 GeV' and to the low-s region
where we cannot reliably calculate, we present
results only for the range 8 &s &37 GeV'.

We have treated data and theory alike in the
low-s region, arbitrarily ignoring any contribu-
tion from s less than 4 GeV'. At the high energy
end the empirical curves displayed are calculated
assuming that the data will continue to be flat at
8= 5.25 from 60 GeV' to infinity. With our choice
of 6, the total contribution from this region is
about 5% at the highest-s points shown, and the
difference between the contribution assuming
R = 5.25 in that region and, for example, assuming
R =3.33 in the same region is about I/z.

Figure 5(a) shows the SPEAR data for R [ex
eluding the J (g} and p' resonances]. The solid
line represents a crude "eyeball" fit to the data
that produce the curve shown in Fig. 5(b) and are
labeled "data" on Figs. 6-18. We have tested the
sensitivity of this curve to changes in the eyeball
approximation. The only feature which changes
significantly is the appearance of the "second

step" in the region 22 & s &28 GeV'. It seems
impossible to eliminate this feature altogether
with a reasonable approximation to the data,
though it can be flattened or shifted somewhat
from the version shown. For example, the dotted
line on Fig. 5(a) produces the smeared curve shown
in Fig. 5(c}. With the published errors on the data
we feel that our crude treatment of it is reason-
able. We cannot definitely state whether the
second-step feature we find in our smeared curves
is real. If it is real, it is very interesting, for
we shall see that it indicates that these must be
some neu threshold in this region, either an ad-
ditional heavy lePton or a further quark. '

Any
improvement of the data in the region W =4.5 to
W=6 GeV would be helpful in testing this conclu-
sion. We have chosen to compare models to the
curve shown in Fig. 5(b). The parameters we
obtain, especially the mass of the heavy quark
or lepton are sensitive to the approximations we
have made, but our general conclusions are not.

The most severe problem in comparing models

(a)
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FIG. 5. (a) SPEAR data for R(s). The solid line represents the eyeball fit used in obtaining the curve R shown as
"data" in Figs. 6-18. The dashed line is an alternate fit included to indicate the possible variations in R due to our
crude fitting procedure. (b) R(s, 6) for 6=3 GeV generated using solid line in Fig. 5(a). (c) R(s, A) for 4=3 GeV
generated using dotted line in Fig. 5(a).
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with this data is that of estimating the possible
error in the experimental R(s, b,). The quoted
uncertainty in the data includes both systematic
and statistical contributions and amounts to about
+10% in R over most of the range of s. The con-
tribution of statistical errors is certainly reduced
by our smearing procedure since with 6 = 3 GeV
we average together many points (though not with
equal weights). If the quoted errors were entirely
statistical, then they would produce an uncertainty
of about +3% in Z. If, on the other hand, the
principal contribution to the error is a systematic
one, representing an over-all normalization error,
then smearing will not reduce this uncertainty.
However, the features that are most nmdel-depen-
dent, such as the shoulder discussed above, are
not affected by such an over-all normalization
change, so that some conclusions can be drawn
which are independent of this uncertainty. Some of
the tentative nature of our conclusions could per-
haps be removed by a calculation of the experi-
mental R(s, 6 =3 GeV') from presently existing
data including full knowledge of the errors and
eliminating our crude eyeball fit —we urge that
this should be done by the experimentalists at
SPEAR themselves.

Our theoretical curves are calculated in an

SU(3) color gauge theory, with va, rious numbers of
quarks q and heavy leptons l. The coupling con-
stant in this theory is given by"

ln
q

R,„... (s) = —,
'
Q v, (3 —v,')q, '[I +,'-o, f(v, )]

+ g + v)(3 —v( )iq (2o)

with A an adjustable parameter. We calculate
R(s) through order n„using the approximate form
given by Schwinger' for positronium, suitably mod-
ified for color gauge theories. 4 This gives

~\I ~'

~ err
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FIG. 6. Comparison of four-quark model with the data.

The theoretical R(s) is smeared with the same
value 6 =3 GeV' as for the empirical curves.

There is some uncertainty in the value of the
strong-interaction parameter A. In particular,
the problem mentioned above of an uncertainty in
the over-all normalization of the data can to some
extent be obviated by allowing a free choice of A.
However, any model which can only be matched
to the data by choosing a large n, in the region
s=9-30 GeV' is to some extent unsatisfactory,
as in such a model the approximate scaling of
deep-inelastic scattering data in the region q'& 1
GeV' is apparently fortuitous. Since the explana-
tion of this scaling is one of the principal virtues
of asymptotically free theories, ' we regard as
suspect any model which requires A'a 0.6 GeV'.

Figures 6 through 17 show the comparison of
various models with the data. The models are
chosen as a representative selection of those
appearing in the literature. " The masses of pos-
sible new heavy quarks and leptons are adjusted
in each model to obtain a reasonable fit to the
data, except that in some models we put a heavy
lepton at 1.7 GeV as suggested by observations of
p, —e production. " We have made no attempt to
do a thorough search for best fit parameters, as
we feel it is not warranted by the present state
of the data.

Figure 6 shows that the naive quark- charge-

where Q, is the charge of quark q, v, and v, a.re
given as before by

5-
R

(21)

and

7T 3+V 7T 3
f(v) =

2v 4 2 4m
(22)

DATA

MODEL

We include in Eq. (20) any leptons heavier than
the muon, because the experimental procedure
used at SPEAR would include production of such
leptons as part of the "hadronic" cross section. "
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FIG. 7. Model with four quark flavors and one heavy
lepton at m& =1.7 GeV.
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FIG. 8. Model with four quark flavors and two heavy
1eptons of masses 1.7 and 2.5 GeV.

counting statement, that color SU(3) models with
four quark flavors cannot fit the high-s data, is
indeed warranted. Even with the unreasonably
large A' = 1.2 GeV' this model falls far short of
matching the data. Adding a single heavy lepton
helps considerably in the region of s below 24
GeV', as is shown in Fig. 7, but the model still
falls significantly below the smeared data curve
in the high-s region. Increasing A' to 1.2 in-
creases the value of R at s =37 GeV' by about
0.1, but it also makes the prediction significantly
too high in the region s& 20 GeV'. Varying the
lepton mass parameter up to values as high as
2.2 GeV does not produce a satisfactory fit.

We therefore conclude that eithe~ these is mo~e
than one heavy lePton" in the region 1.5 &m~ &3

GeV or that these is move than one qua~k threshold
in this region. Figure 8 shows a reasonable fit
to present data obtained assuming four quark
flavors and two heavy leptons with masses 1.7
and 2.5 GeV. Five quark flavors alone, choosing
& for the charge of the additional quark, do not
lead to a satisfactory fit, as is shown in Figs.
9 and 10. Figures 11 and 12 show five quark mod-
els with no additional leptons and a charge of —',

for the fifth quark flavor. If the four% and fifth
quarks are degenerate, this provides a possible

FIG. 10. Model with five quark flavors, charge 3 for
additional quark, and nondegenerate fourth and fifth
flavors.

fit to the data with a very small effective coupling
n(9) = 0.22.

A model with five quark flavors, charge —,
' for

the additional quark, and one heavy lepton gives a
reasonable fit. Figures 13-15 show various pa-
rameter choices in such models. With the present
state of the data we regard all these choices as
equally probable, though the parameters of Fig. 14
give the nicest fit. It will be very interesting to
see if this remains true with improved data. The
parameter choice of Fig. 15 is perhaps unattrac-
tive in the light of other experimental suggestions"
that there is a heavy lepton of mass about 1.7 GeV.

Finally in Figs. 16 and 17 we show the results
for a model with six quarks of mass less than 3
GeV, where both the fifth and sixth quark flavors
carry charge 3. The model including one heavy
lepton (Fig. 16) gives a satisfactory fit with small
effective coupling.

For easy reference we present in Table I the
parameters used for each of the curves presented
in Figs. 6-17. All calculations used charges
3 3 3 3 for the fir st four quark flavors, a mass
of 0.35 GeV for the light quarks, and 1.66 GeV
for the fourth quark mass. The curves are ef-
fectively insensitive to the light-quark mass pa-
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FIG. 9. Model with five quark flavors, charge 3 for
additional quark, and degenerate fourth and fifth flavors.

FIG. 11. Model with five quark flavors, charge 3 for
additional quark, and degenerate fourth and fifth flavors.



SMEARING METHOD IN THE QUARK MODEL 1965

I I I I

MODEL ——. MODEL

I

15
I

20
I

25
I

30
I

40
s (GeV )

10
I

15
I

20
I

25
I

30
I

35
I

40
s (GeV )

FIG. 12. Model with five quark flavors, charge 3 for
additional quark, and nondegenerate fourth and fifth
flavors'

rameter provided it is less than about 0.5 GeV,
so we do not attach any significance to this num-
ber.

Figure 18 shows how our prediction changes as
we change the heavy-quark mass for the model of
Pig. 14. The effect is similar in any model. The
value of 6 used may be a little small in the re-
gion of s values sensitive to m, . With this in
mind, it appears that a mass of 1.66 GeV provides
a good fit to the data, whereas a mass as high as
1.8 GeV does not.

These remarks raise the question of the meaning
of this mass parameter. In our treatment the
mass parameter is most closely identified with
the threshold for production of particles containing
the new quarks. However, the model is smeared
in such a way that the distinction between contri-
butions from quark-antiquark bound states and
actual production of particles carrying new quan-
tum numbers is washed out. Hence we do not
feel that any specific meaning can be attached to
the precise value of the heavy-quark mass param-
eter that we use.

V. SUMMARY AND CONCLUSIONS

We have argued tha. t quark-gluon perturbation
theory can be used to predict suitably defined

FIG. 14. The model of Fig. 10 with an additional
heavy lepton, m& = 1.7 GeV.

averages of physical quantities. These averages
can be calculated without encountering the break-
down of perturbation theory associated with the
binding of quarks and gluons in physical color
singlet particles. In particular, for the process
e'e - hadrons we find that the smeared average
of the data

ds'R(s')
(s —s')'+b' (23)

can be calculated in perturbation theory for mod-
erate values of A.

Comparing with presently available data. we find
that SU(3) color gauge models with only four
flavors of quarks of mass less than 2.7 GeV are
not satisfactory, even when an additional heavy-
lepton contribution is included. Also ruled out
are models with a fifth quark flavor carrying
charge 3, unless that fifth flavor is essentially
degenerate with the fourth and the effective gauge
coupling is very small by s =9 GeV'. Preferred
models are those with four quark flavors and two

heavy leptons in the region 1.5&m~ &2.7 GeV,
and those with five or six flavors of quarks of
mass less than 2.7 GeV, charge —,

' for the addition-
al heavy quarks, and one heavy charged lepton.
The one common feature of the preferred models
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FIG. 13. The model of Fig. 9 with an additional heavy
lepton, m& =1.7 GeV.

FIG. 15. The model of Fig. 9 with an additional heavy
lepton, m, =2.0 GeV.
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FIG. 16. The model of Fig. 9 with an additional non-
degenerate 3-charge quark flavor, m, =2.5 GeV.

FIG. 17. The model of Fig. 16 with an additional heavy
lepton, m, =1.7 GeV.

is that they need a new particle —quark or lepton—
between 2 and 3 GeV to account for the "shoulder"
in the smeared data at s=25 GeV. The value of
the mass for this additional particle is rather
sensitive to our approximation to the data, but the
need for such a second threshold appears to per-
sist. The present state of the data is not such
that we can be sure of this conclusion, but a re-
duction of the experimental errors in this region
could possibly answer this question before long.

It is principally this feature of sensitivity to
thresholds in the data which makes our technique

an improvement over previous dispersion treat-
ments, in which e'e annihilation data were com-
pared with quark perturbation calculations in the
spacelike region. " Such treatments cannot pos-
sibly distinguish between a threshold at s =11
GeV and one at around s = 25 GeV ', whereas
these are quite distinct in our analysis.

Furthermore, our analysis is less sensitive to
the unmeasured region s &60 GeV ' than are these
previous dispersion treatments. Let us assume
for the sake of comparison that 8 is flat at a
value R„ throughout this region. The contribution

TABLE I. Model parameters. Summary of parameter values for Figs. 6 through 17. All these curves were calculated
using charges -3, 3, -3, and 3 and masses 0.35 GeV for the first three quark flavors and 1.66 GeV for the fourth. The
parameters m~ and & shown in the table were chosen to achieve a reasonable fit if possible.

No. of No. of
quark heavy

Fig. No. flavors m~ (GeV) IQ, I leptons M& (GeV) A (GeV2) n (9 GeV~) Comments

10

14

16

1.66

2.5

1.66

1.66

2.5

1.66

1.66, 2.5

1.66, 2.5

1
3

i
3

3

i
3

3 0 3

f t

1.7
1.7, 2.5

1.7
1.7
2.0

1.7

1.2

1.2
0.3

1.2
1.2
0.025

0.5

0.3

0.3

0.6

1.2
0.05

0.65

0.39

0.66

0.66

0.22

0.46

0.39

0.39

0.49

0.67

0.25

o.' too large and B
is still too small
at high s

Same as above

Not bad

As for 6

As for 6

Not bad; rather small G.

Wrong shape

Not bad

Looks best

Not bad

As for 6

Rather like 14; extra
—-charge quark has1
3
little effect except
to decrease required
coupling
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FIG. 18. Sensitivity of R (s, b) to mass of fourth
quark. The curves are calculated for the model of Fig.
14 varying only the quark mass parameter as shown.

of such an R to our R(s, 4) i.s

which gives 0.04A„ for the highest-s value used in
our calculations. Making the same analysis for the
quantity calculated in the Euclidean region at a

value s= -Q' shows that the contribution of a flat
R =R„ from 60 GeV' to ~ is Q'R„/(60+ Q') or
approxinntely 0.15R„at Q' =10 GeV'. This shows
that our treatment is considerably less sensitive
to contributions from that region and therefore to
the assumptions we have made about the behavior
of the data in that region. Also, the contribution
of some new threshold at s=sp&60 GeV' to the
quantities we have calculated is negligible. Such
higher thresholds cannot destroy the validity of
our comparison of models with the present data.

It seems likely that there are other inclusive
quantities that can similarly be predicted by
smeared quark-gluon perturbation calculations
without solving the problem of quark trapping.
However, to calculate quantities relevant to
specific final states requires a further understand-
ing of that problem.

ACKNOW( LEDGMENTS

We acknowledge helpful conversations with our
colleagues at Harvard and also with Tom Appel-
quist, John Polkinghorne, and Victor Weisskopf.
One of us (H. Q. ) would also like to thank the
Aspen Center for Physics for hospitality during
the summer of 1975 while this work was in
progress.

*Work supported in part by the National Science Founda-
tion under Grant No. MPS75-20427.

)Alfred Sloan Foundation Fellow.
~II. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J.

Gross and F. Wilczek, ibid. 30, 1343 (1973); Phys. Rev.
D 8, 3497 (1973);T. A. Appelquist and H. Georgi, ibid.
8, 4000 (1973);A. Zee, ibid. 8, 4038 (1973).

2An analogous procedure was employed for similar
reasons some time ago in the theory of nuclear re-
actions. Neutron cross sections typically exhibit many
close narrow resonances, but the data, suitably
smeared over many resonances, are well represented
by a complex potential model. See F. L. Friedman
and V. F.Weisskopf, in Nzels Bohr and the DeveloP-
ment of Physics, edited by W. Pauli (McGraw-Hill,
New York, 1955), p. 147 ff., and references quoted
therein.

3This statement can be made more precise by writing
the vacuum polarization amplitude II(z) as an integral
over Feynman parameters. The integral can be analy-
tically continued from the negative real axis to any
complex a value without distorting the contours of in-
tegration of the Feynman parameters away from the
real axis, so that the imaginary part of z manifestly
provides an infrared cutoff for the integral. See R. J.
Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, Tke Analytic S-Matrix (Cambridge Univ. Press,
New York, 1966), pp. 84-85; T. T. Wu, Phys. Rev.
123, 678 (1961). Alternatively, it is possible to extend

II(&) to complex z by writing it as an old-fashioned
perturbation series; the imaginary part of & prevents
the vanishing of any energy denominator.

4T. W. Appelquist and H. D. Politzer, Phys. Rev. Lett.
34, 43 (1975); Phys. Rev. D 12, 1404 (1975). Much of
our discussion parallels this work.

5J. Schwinger, Particles, Sources, and Fields, Vol. II
(Addison-Wesley, New York, 1973), Chap. 5-4. See
also G. Kalldn and A. Sabry, K. Dansk. Vidensk. Selsk.
Mat. -Fys. Medd. 29, No. 17 (1955).

6See, e.g. , S. Weinberg, Phys. Rev. 131, 440 (1963);
133, 3232 (1964).

7T. Kinoshita, J.Math. Phys. 3, 650 (1962); see also
T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1544
(1964).

The value of b we choose corresponds to m/v = 1 and
o.' lnv = m in+. For the range of values of u we find in
reasonable models this gives u in@ as large as 0.6.
It is clear that in this approximation the neglected o.' lnv
terms may be almost as important in their contribution
to the binding as the u/v terms which are summed to
give the Coulomb formula. We allow for this by choos-
ing 4 large enough that even if the Coulomb binding is
increased by a factor of 2 by the corrections, our
treatment remains valid. We believe this is a generous
estimate. We remark also that setting u/v less than 1
is sufficient to render higher-order terms (n/v)" negli-
gible, as these terms appear with coefficients which
decrease with increasing n. Specifically the series



j.968 E. C. POGGIO, H. R. QUINN, AND S. WEINBERG 13

begins 1+x/2+ x /12+. where x =4~a/3~ (Ref. 5).
9Talk given by R. Schwitters at the International Sympos-

ium on Photon and Lepton Interactions at High Energies,
Stanford, 1975 (unpublished) .

~OThe introduction of a new quark at m, = 2.5 GeV raises
the problem that no very narrow resonances like the
J (g) have been observed in the neighborhood of 5 GeV.
We believe that a charge 3 quark is compatible with
the data, since the resonance contribution from such a
quark will be decreased by a factor of 4 compared to
the fourth-quark resonances. Furthermore, any mix-
ing of this state with any excited fourth-quark states
with which it is nearly degenerate will presumably
broaden the peak. This is a question which merits
further study, but we nevertheless feel that it is quite
reasonable, at this time, to introduce a quark in this
region.
The term 1nr(5m, + q }/{5m, +A2}] in our equation for
n, is an approximation to the integral

A2x{1-x)+ nz, 2

which is the quark contribution to the renormalization-
group P function. Note that when q»m, , A»m, 2,
one recovers the standard light-quark result for u, .
This result has been independently derived by De Ru-
jula and Georgi (see Ref. 15).
The procedure for identifying "hadronic" events at
SPEAR includes noncolinear p+p, and e+e pairs. Be-
cause of the missing neutrinos the leptonic decays of
a pair of heavy leptons will produce such noncolinear
pairs and therefore will be included in the quantity R
as defined by SPEAR.

~3For a review of models see the invited talk given by
M. Barnett at the Sixth Hawaii Topical Conference on
Particle Physics, Univ. of Hawaii, Honolulu, 1975
(unpublished); Phys. Rev. D 13, 671 (1976).

~4G. Feldman, talk given at the International Symposium
on Photon and Lepton Interactions at High Energies,
Stanford University, 1975 (unpublished); invited talk
at the 1975 Seattle Meeting of Division of Particles and
Fields of the American Physical Society (unpublished).

~58, L. Adler, Phys. Rev. D 10, 3714 {1974);A. De R6jula
and H. Georgi, ibid. 13, 1296 (1976).


