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Composite structure of hadrons and why data lie near an isospin bounds
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The remarkable fact that nondiffractive scattering data tend to lie dangerously close to an isospin bound is
discussed and it is shown how this phenomenon can be understood in models where the hadrons are composite.
The isospin dependence is argued to be given by the interchange of low-momentum isospin-carrying constituents
("soft" quarks). The remaining constituents interact through strong {I= 0 gluon) forces which do not depend on
isospin. Because of the small momentum carried by the interchanged constituents, the isospin dependence factor-
izes approximately into a real function (or matrix when spin effects are taken into account) which depends on s
and t. This function multiplies the isospin-independent gluon amplitude. There is a similarity between this fac-
torization and the way in which radiative corrections, due to soft photons, factorize. In this framework satura-
tion of an isospin bound can be understood as an approximate regularity of strong interactions.

I. INTRODUCTION

In reactions for which one can measure three or
more charge channels (such as m+p-m+p,
w p-m p, and w p-won) but which, through iso-
spin invariance, are described by only two isospin
channels, there are constraints and, in particular,
inequalities which the data must satisfy. It is an
increasingly puzzling regularity of nondiffractive
scattering data that the data tend to lie dangerously
close to such an isospin bound.

This regularity was pointed out for the first time
in 1967-1968 for a very limited amount of data in'
mN KZ and in gN mN at 180'between 0 and 600
MeV. As more and more data have become avail-
able it has spread to cover a much larger interval
in energy and scattering angle'4 in nN-mN and
wN KZ and is found also in other reactions such
as KN-KN at 180', and possibly KN-zp, where
the data are still incomplete or not sufficiently
accurate to reach any clear conclusions.

There is no simple nonaccidental dynamical
argument which can explain this phenomenon apart
from a few special situations. Therefore, this
regularity might provide an important clue toward
a better understanding of strong interactions. In
this paper we shall discuss one mechanism by
which one can understand the phenomenon in mod-
els involving composite hadrons.

In terms of the amplitudes involved the phenom-
enon can be expressed as a reality condition on a
bilinear form, which is invariant under rotations
of the spin reference frame. For wN-mN this
condition is

fm(fi/2f3/2+8&/2g s/2)

where f and g refer to the spin-nonf lip and the
spin-flip amplitudes, respectively, and the index
refers to isospin. More precisely the smallness

of (1) can be expressed in terms of a parameter B,

2~ ™(fx/2f3/2+gl/2 Zs/2)
da, /, /dQ + 2do, /, /dQ

(2)

which is bounded between -1 and +1. %e refer to
B as the isopolarization because of its algebraic
similarity with the ordinary polarization.

Condition (1) written in terms of directly mea-
surable quantities corresponds to the situation
very near the isospin bound of Doncel, Michel,
and Minneart (DMM), '

dg -, 2 —-'" 4K(s, &)
~ 0,

dQ
'

dA
'

dQ

where X(x, y, z) =(x+y —z)' —4xy and

d0'ex dO'

with the unit vectors &, as the spin rotation vectors
defined from the polarization parameter P and
spin rotation (R and A) parameters

f)=(A), P(,A, ) . (5)

The indices +, —,and ex refer to the elastic m'p,
m p, and charge-exchange processes, respective-
ly.

For 180' (and 0') scattering g vanishes and con-
dition (1) or (2) reduces to a condition of near
phase degeneracy of the spin-nonflip amplitudes,
whenever they are of comparable magnitude. The
inequality (3) reduces [because K(s, t) =0] to the
simple triangle inequality involving only cross
sections
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dg+ dg

desex

0
dQ ' dQ ' dQ

or equivalently

(6)

The degeneracy condition B=0 corresponds at
180' to the situation with the triangle formed by the
square roots of the cross sections (the charge-in-
dependence triangle} collapsing to a line.

At other angles the degeneracy condition B=O
also has an interesting geometrical interpretation. '
The three spin rotation vectors g', g, and g'" de-
fine a tetrahedron. The volume of this tetrahedron
is proportional to the square root of the left-hand
side of Eq. (3). Thus when the inequality is satu-
rated, or equivalently B=0, the tetrahedron col-
lapses to a planar one.

Notice that the conditions above are invariant
under rotations of the spin reference frame. With
this invariance as a requirement, condition (1) is
a unique generalization of the near phase degen-
eracy condition at 180'. This property singles
out the DMM bound (3) from other isospin bounds
studied in the literature. '

In the following we shall first (Sec. 11) discuss
certain special dynamical situations where the
degeneracy condition (1) is satisfied, or equiva-
lently the isospin bound (3) is trivially saturated.
Section DI is the main section of this paper, where
we discuss how the observations can be understood
more generally in models involving composite
hadrons. In Sec. IV we point out a formal similar-
ity between the factorization derived in Sec. III and
the factorization of soft-photon corrections to
scattering amplitudes. In Sec. V we recapitulate
the most important results of the data analysis
from Ref. 4. This section may be read after this
Introduction, especially by those readers who are
not familiar with the experimental evidence for
the phenomenon we discuss. In the conclusions
(Sec. VI) we summarize the most important points
of this paper. In the Appendix we discuss our
arguments of Sec. III in more detail using an in-
finite- momentum frame,

II. SPECIAL CASES WHERE CONDITION (1)FOLLOWS

FROM SIMPLE ARGUMENTS

There are a few situations where the degeneracy
condition (1) or (2) follows from simple dynamical
arguments. These are not sufficient to explain the
effects seen, except in limited kinematic regions,
but they provide a good starting point for the

discussion of our more general arguments in Sec.
III.

(i) One isospin channel dominates. For example,
in wN-wN at T„b=200 MeV the b, (1236) makes

f,~, » f,~, , or in wN- KZ at large s and small t
the I, =-,' amplitude dominates over the exotic
I, =-,' one. Condition (1}follows trivially, and in
addition one has much stronger degeneracy condi-
tions,

da, do,
dg dg dg (7)

(8)

Here n,. are fixed numbers given by Clebsch-
Gordan coefficients.

(ii) No isospin dependence exists. The s-channel
isospin amplitudes are equal, and charge-exchange
cross sections vanish. This can be considered as
a special case of (i) with I, =0 dominance. Pom-
eron exchange is an obvious example.

(iii) Exchange-degenerate Regge trajectories
with equal signature factors (such as p-&u) predict
equal t-channel isospin amplitudes. At large s
and small t condition (1) as well as conditions (7)
and (8) follow.

(iv) Very close to elastic-scattering threshold
when no inelastic channels are open (as in wN-wN
or KN-KN below 50 MeV) all amplitudes are
nearly real. Therefore, the isopolarization (as
well as the ordinary polarization) must be very
small. The stronger degeneracy conditions (7)
and (8) do not follow in this case.

(v) The effective interaction is very weak. Then,
first-order diagrams are a good approximation to
the full amplitudes. Since the first-order diagrams
are real the full amplitudes are approximately
real. As in case (iii) the isopolarization nearly
vanishes [without (7) and (8) being satisfied]. As
an example, we mention the constituent-inter-
change model (CIM) of Gunion, Brodsky, and
Blankenbecler. '

These points suggest an approach toward an
understanding of the phenomenon within a more
general framework. It is natural to assume the
strongest forces to have the largest symmetry
and to be independent of isospin as in (ii) and (iii).
The isospin-dependent interaction should be much
weaker [cf. (v)]. However, this weaker interac-



COMPOSITE STRUCTURE OF HADRONS AND WHY DATA LIE. . . 1949

tion should have large effects on the scattering
amplitudes and not only give rise to small additive
corrections. The effect of the isospin-dependent
interaction should appear in the amplitudes as a
multiplicative factor. A simple way to obtain such
a multiplicative isospin-dependent factor is to at-
tribute the strong isospin-independent interaction
and the weaker isospin-dependent interaction to
different constituents of composite hadrons.

FIG. 1. The hadron bound state of bvo groups of con-
stituents. The group of isospin-carrying soft constituents
(ISC) is described by the dashed line. The remaining
constituents (RC) are described by the curly and the
solid lines.

III. THE ISOSPIN DEPENDENCE IN SCATTERING

OF COMPOSITE HADRONS

A. A two-component picture of the hadron constituents

If one considers the hadrons as composite par-
ticles of confined constituents, it is clear that the
isospin dependence of scattering amplitudes will
be given by the dynamics of those constituents
which carry isospin. In a quark-parton picture,
the isospin-carrying constituents are the (valence)
quarks, while the other constituents, i.e. , the
gluons and the possible sea of qg pairs, are iso-
singlets.

In order to simplify our discussion as well as to
keep our arguments as general as possible, we
divide the constituents into two groups:

(1) the isospin-carrying soft (low- but finite-
momentum) constituents (ISC) (the soft quarks).

(2) the remaining constituents (RC) (the hard or
high-momentum quarks, the gluons, and the qq
pairs).

The dividing line between a soft and a hard con-
stituent should (in order to motivate our approxi-
mations) be chosen such that the total energy and
momentum carried by the first group of constit-
uents is small, less than about 10% of the energy
and momentum carried by the hadron. In the fol-
lowing we consider these two groups as if they
were just two constituents.

In Fig. 1 we visualize the wave function describ-
ing the hadron as a bound state of the two groups
of constituents. It will depend on the momenta,
spins, and isospins involved. Omitting the spin
index we denote it by

V V(p I. k I sc. q, I ) (9)

where p, 0, q denote the momenta and I, I ',I de-
note the isospins involved.

It is important to realize that these wave func-
tions must be real. Ultimately this condition is
due to unitarity and the condition that the constit-
uents are confined. If Eq. (9) had an imaginary
part, the latter would be proportional to the decay
rate of the hadron to its constituents.

C. The factorization of the isospin dependence

Let us now put this intuitive picture in somewhat
more quantitative terms. We neglect initially all
absorptive corrections. These may be large, but
since the Pomeron is (predominantly) I =0 they
cannot significantly change our results since all
charge channels will be almost equally affected.

The hadronic amplitude can be described by the
diagram of Fig. 2. Two interactions take place

A I —C
V vvv v v)L

Pp
B

p4

FIG. 2. A diagram visualizing hadron-hadron scatter-
ing. The curly line is the I&=0 (gluon) interaction be-
tween the B,Q's.

B. Intuitive picture of the nondiffractive collision

Imagine a classical bound system of a massive
object surrounded by a slowly moving light object.
Both objects can carry charge. If one neglects
the small mass of the light objects the center of
mass of the composite system coincides with that
of the massive object. In a collision of the two
systems at nonforward angles almost the entire
momentum transfer must be transferred by the
massive objects. The light objects interact weakly
with each other, but can be rearranged in the col-
lision. We assume that no charge can be exchanged
in the over-all collision between the massive ob-
jects. Then any charge exchanged in the over-all
collision must be exchanged by the light charge-
carrying objects which have rearranged them-
selves. For a fixed scattering angle the probabil-
ity for whether charge is exchanged or not will de-
pend entirely on the rearrangement of the light ob-
jects. The rearrangement collision will, on the
other hand, depend only on the nature of the bound
states of the two constituents. We have here as-
sumed that the time scale of the collision between
the heavy objects is short compared to the other
time scales involved.
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FIG. 3. The interaction between the ISC's as a re-
arrangement collision.

"simultaneously":
(i) a very strong isospin-independent interaction

between the RC's,
(ii) a rearrangement of the ISC's. This means

that we have assumed the interaction between the
ISC's to be negligible compared to the other inter-
actions involved. This second interaction can be
visualized by the diagrams of Fig. 3. The ISC's
behave as if they were free during the time of the
very strong interaction (i). The interaction be-
tween the ISC's and the RC's appears only in de-
termining the form of the bound-state wave-func-
tions (9).

We can write the matrix element corresponding .

to Fig. 2 as

n - 4

M(s, t, isospin) = ',
4 V(P„I, ; k, ,I;;q, , I )(2g J1

x g(k„. . . , k, ; I',s', . . . , I,'")C(q„.. . , q, )t)(k, +k, —k, —k,). (10)

Here we have neglected spin effects; we return to these at the end of this section. The function A stands
for the rearrangement collision and is a sum of products of t) functions (cf. Fig. 3}. The interaction (i) is
described by C, and does not depend on the isospins involved.

Now, the crucial result we shall need is that Eq. (10) should factorize into a product of two factors, one
involving only ft and the wave functions, the otherinvolving only C (with or without the wave functions. The
simplest and most natural way in which this can happen is related to our assumption that the ISC's carry a
negligible momentum k, . With this assumption factorization occurs provided C is smooth enough so we
can replace its arguments q,. =p,. —k, by p, Then (10) factorizes into

M(s, t; isospins) =B(s, t; isospins)C(s, t},

where

' d'k
R(e, t; isosP(ss)=J ' '

(
)'P(P, ,T,. ;kr, I'r;S, , I ) R(k„. . . , k;I,', . . . , I )5(k, +k —k, —k). (12)

In the Appendix we discuss this factorization in
more detail using an infinite-momentum frame.
The function 8 is a real function since it depends
only on the real and nonsingular function V. The
function C, on the other hand, is in general com-
plex. Since C does not depend on isospin, the
phases of all isospin amplitudes will be qiven by
C. Thus within our approximations the phase-
degeneracy condition or

Im[ T(s, t, II)T*(s, t, I, )) =0 (13)

D. Spin complications

Let us now discuss the more general case with
spin included. Obviously the spin dependence can-
not factorize in the same way as the isospin (one
would predict vanishing polarization), nor can (13}
hold separately for every spin amplitude since it
would then follow (if one requires the condition to
be invariant under rotations of the spin reference

follows. This condition is the analog of Eq. (1) for
the spinless case or when only one spin amplitude
is involved.

frame) that all polarization (and spin rotation) data
must be identical for all charge channels (e.g. ,P'=P ) in clear contradiction to experiment. This
means in our picture that both groups of constitu-
ents must carry spin and that both interactions de-
pend on the spins involved. This is of course only
what is to be expected for spin-carrying quarks
and vector gluons.

We give below a simple heuristic derivation of
the generalization (1) of Eq (13) when spin effects
are included Let the spin dependence of the over-
all interaction be described by a matrix T„„with
the index referring to the different spin configura-
tions. For 0 2'-0 &' scattering, T is given by the
f and g amplitudes

(i4)

Condition (1) can be written

Im[Tr(T, T',,)]=0.

Now let us look at the diagram of Fig. 2 as two
successive interactions occur. The first interac-
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tion describes the dissociation of the incoming
hadron and the rearrangement of the ISC's. The
second interaction describes the scattering of the
RC's and the recombination into the outgoing had-
rons. Let the spin dependence of the interactions
be described by matrices B& and C, respectively.
Then the matrix T is the product of these two ma-
trices, 7'=A+. Substituting this into (15) we get

Im[Tr(ft„Cetftt )]= 0. (16)

The matrices Al and &, are real matrices
1 2

since as in the skinless case they depend on the
real wave functions. Since CC is obviously real,
(16) is satisfied.

The generalization of (1) to processes involving
many spin amplitudes is evidently

(17)

where the sum is over all spin amplitudes in-
volved. Here the T»'s stand for any n-particle
amplitude from which diffraction has been re-
moved, e.g. , the three-particle process m'&-mn'&,

KN-KgN, or KN-mmA. To test the relation (17)
directly with experimental data is very difficult
It involves in principle (as in the 0 ~'-0 ~' case)
almost complete measurements of the differential
cross sections and spin rotation data for three
charge channels. With the advent of phase-shift
analysis for meson-production processes tests of
(17) become feasible.

IV. COMPARISON WITH RADIATIVE CORRECTIONS

DUE TO SOFT PHOTONS

The crucial step in the discussion of Sec. III
was the factorization of the isospin dependence.
We find it interesting that this factorization is
similar to the factorization of soft-photon correc-
tions.

The virtual-soft-photon corrections to a had-
ronic amplitude AB- CD is to second order in n
given by diagrams such as Fig. 4. This gives a
correction factor to the original amplitude T of the
form'

+ g ~ ~

FIG. 4. Diagrams contributing to the virtual-soft-
photon corrections to a hadronic amplitude AB —CD to
second order in n.

Here q is the photon momentum, P„ the hadron
momenta, e„ the hadron charges, and g„=+1 or
—1 for an incoming or outgoing line, respectively.
One can take into account the higher-order soft-
photon corrections by exponentiating the second-
order correction

T(s, t) = T,(s, t)e~ (s, t). (21)

The logarithmic divergence for A. -0 in (19) is can-
celed by adding the contributions from real emitted
soft photons. We notice that the soft photon radia-
tive corrections appear as a multiplicative correc-
tion factor for each s and t. The reason for this
factorization is the fact that the soft photons carry
a negligible momentum so that in any diagram in-
volving soft photons, the momenta P, in the purely
hadronic part of the diagram are the same as in the
over- all process.

Although the correction to the original amplitude
as described by E(I. (21) is generally very small
and the dynamics very different, the reason for
the factorization is similar to the factorization
discussed in Sec. IG C. The soft photons corre-
spond in this analogy to the isospin-carrying soft
constituents. The analogy might have a deeper
significance in theories attempting to unify stron"
and electromagnetic interactions.

A. Backward nN~mN and KN~KN and forward

nN ~KZ scattering

V. COMPARISON WITH EXPERIMENTS

We shall here review the most important results
from previous analyses of experimental data. For
a detailed discussion of the method of analysis and
for references to all the experimental papers we
refer our readers to Ref. 4.

T(s, t) = T,(s, t)[1+4(s, t)],

where

A(s, t)= —f dqA(q, s, t)

with X and A as the usual cutoffs and

A(q, s, t) =

e„e„)7„g„(t),P„)~ (P„.q —i7I„e)(-P„~q —iq &)
'

(16)

(19)

(20)

The analysis is simplest for 180 or 0' scattering
[cf. E(I. (6)]. In Figs. 5, 6, and 7 the backward
cross sections for g p- m'n, K'n-K'P and the K-
meson forward cross sections for w P -E'Z are
shown together with the isospin bounds. Figures
6 and 7 illustrate this behavior of the data by show-
ing the fractional cross sections on the triangular
isospin diagram.

As can be seen the data tend to lie close to the
lower bound (or close to the circle in the isospin
diagram). Of the total number of experimental
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FIG. 5. The 7I' p - 7l n backward cross sections vvith the isospin bounds (6'). The crosses are Saclay phase-shift pre-
dictions.

points (which come from numerous different ex-
periments) about half lie, in fact, slightly outside
the bound. This is what should be expected on
statistical grounds, if they really lie at the bound.

In the K'n K'P phase-shift analyses (the curves
C and D) there are difficulties fitting the data be-
cause of their nearness to the bound. In Figs. 5-7
the simple arguments of Sec. II apply only in a few
comparatively narrow energy intervals such as

those
very close to threshold in mN-zN,
near 300 MeV/c and 1400 MeV/c in wN vN,

where the 6(1236) and 4(1950) dominate,
at 740 MeV/c in IIN- vN, where the two bounds

nearly coincide because of I, =
& dominance,

above 3 GeV/c in vN -KZ, where K* exchange
dominates.

Elsewhere the phenomenon is definitely nontriv-
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FIG. 6. The E+n Xp backward cross sections with the isospin bounds. To the right are the same data plotted in an
isospin diagram.
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FIG. 7. The m P X+X data at 8+=0' with the isospin bounds. Inserted is the corresponding isospin diagram:with the
same data.
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ial. In particular notice that there is a zero in the
lower bound of m P —won near 550 MeV/c. Remark-
ably enough a recent experiment (Cheze et al. )'
finds a charge-exchange cross section consistent
with zero, 0.0 + 0.3 mb.

In the region of the strong dip in all three cross
sections of wX- vN near 2 GeV/c and in the energy
region 2.5-6 GeV/c the situation is not clear owing
to conflicting data. The most recent charge-ex-
change data, (De Marzo et al.)" in the latter region
lie quite near the lower bound.

In addition to these three reactions discussed
above, it would be interesting to look at 180'
KN-KN, mN-KZ, and 0'and 180 KN-gZ. Al-
though there are some indications that the same
phenomenon exists also in these reactions, the
data are not yet sufficiently accurate to draw any
clear conclusions.

B. Intermediate angles

2.4-

2.2—

2.0—

Tt N- mN
(SACLAY 73)

—2. 6
—2.4

—2.2

-2.0
— l. 8

I.4 cu

l. 2
CL

— l. o

At intermediate angles the analysis becomes
considerably more complicated. To study the in-
equality (3) directly with data requires in addition
to cross sections polarization and even some spin
rotation data for all three charge channels. [It is
possible to rewrite (3) so that it involves, up to a
sign ambiguity, only cross-section and polarization
data. ']

However, through phase-shift analyses the am-
plitudes are approximately known and we can study
how well (1) is satisfied. Unfortunately, for small
B, data are sensitive to B' [or, better, (1 —B')'~']
rather than B. Therefore, one cannot hope to get
very sensitive tests of (1) with present uncertain-
ties in the original data. In fact because of this
effect values of B as large as 0.5 give as good a fit
as does B =0 to the same data within typical ex-
perimental uncertainties. We hope this effect is
partly compensated by the fact that phase-shift
solutions should be more reliable than the raw
data. In Fig. 8 we show a topographical plot in the
cos8, -p„b plane of a quantity which measures
how near the bound (3) the solution is. This quan-
tity is essentially B' x sign(B). (For an exact def-
inition see Ref. 4.) The thick solid curves corre-
spond to lines where B changes sign, i.e., B =0,
and the bound (3) is exactly saturated. Every
where in the unshaded regions the solution lies
near the bound, within typical experimental errors.
The shaded regions correspond to situations where
the data are one or more typical standard devia-
tions from the bound One sees that apart from a
few very small isolated and hardly significant re-
gions the phenomenon at 180' extends as far out as
to cos0 ~ —0.1 above E, = 1.5 GeV. For more for-
ward angles, where diffraction contributes and our
arguments of Sec. III do not apply, there are three

-0.8

— 0. 4

l.2—

I

0

cos e

— 0. 2

regions where one is definitely not close to the
bound.

In KN-KN the situation is similar. 4 Different
phase-shift solutions give rather different topo-
graphical plots, but they agree in that one is gen-
erally not more than one standard deviation from
the bound for scattering angles in the backward
hemisphere.

C. Statistical tests

The significance of the effects can be studied by
comparing with a statistical model. In such a
model one assumes random phases and random
relative magnitudes of the amplitudes such that
any "direction" in the space spanned by the com-
plex vectors (f,&„f,&,) and (g,&„g»,) is equally

FIG. 8. Topographical map in the coso-I'„b plane of a
quantity which measures the nearness of the data to the
bound (3). The shaded regions correspond to regions
where the data are more than approximately one typical
standard deviation from the bound. The thick solid lines
are zero lines of B or lines along which (3) is satisfied
exactly as an equality. The graph is computed from the
Saclay phase-shift analysis.
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FIG. 9. Distribution of the backward ~N nN data in
the variable E =(1-B )~ (the radial distance in the iso-
spin diagram). The solid curve is the prediction from
the statistical model and the dashed curve is a Gaussian
distribution around E = 1 with variance =0.1.

probable. At 180' such a model predicts that all
values of B should be equally probable; i.e. , the
distribution in the isopolarization B is uniform.

In Fig. 9 we show the distribution of the experi-
mental 180' sN-vN points (same data as in Fig. 6)
plotted versus the variable F = (1 B')'~' -This.
variable has the advantage over B in that it is sim-
ply related to the data and that data violating the
bound (6) have F &1 (F is the radial distance in the
isospin diagram). As can be seen in Fig. 9 the data
are peaked very much like the Gaussian dashed
curve around E = 1 with roughly equal numbers of
points outside the bound F &1 as inside J' &1. The
variance of the peak is what is expected from typi-
cal 10—15 /o uncertainties in the data.

The solid curve in Fig. 9 corresponds to the pre-
diction of the statistical model with a 10 /o experi-
mental resolution folded in. In Ref. 4 other such
comparisons with statistical models are done with
the conclusion that in nondiffractive regions dis-
tributions in B agree better with the hypothesis
B = 0 than with the random amplitudes generated by
the statistical model. However, present experi-
mental data are (owing to the geometrical effect
discussed above) generally not accurate enough to
put stronger limits on B than B&0.5.

VI. CONCLUDING REMARKS

We have argued that one can understand the ap-
proximate relations Eqs. (1)or (17) if the isospin
dependence is given through the rearrangement of
nearly free constituents which carry isospin but
only a small fraction of the momentum. Most of
the momentum transferred in the collision is me-
diated by neutral isosinglet constituents (gluons).

We believe that such a picture is compatible with

most current models of composite hadrons. From
lepton-proton experiments we know that approxi-
mately half of the proton momentum is carried by
the quarks, while the rest is carried by neutral
constituents. Furthermore, from the structure
functions we know that the most probable momen-
tum of a constituent is small. Thus if one assumes
that the fastest quarks fly through, the remaining
quarks must carry a small fraction of the total
hadron momentum. Thus we believe our assump-
tion that the rearranged quarks have smallrnomen-
tum is fairly general.

In order to achieve the factorization of the iso-
spin dependence as discussed in Sec. III and in the
Appendix the rearranged quarks must furthermore
behave as if they were approximately free. This
is in accordance with the usual assumption made
in parton models. " However, according to the
ideas of asymptotic freedom and infrared slavery
the constituents with very small momenta should
interact very strongly. Therefore, what we have
called a soft- or low-momentum quark really
should mean a "low- but not too low-" momentum
quark (i.e., not a "wee" parton). This means that
the rearranged quarks should not belong to the qq
sea but to the valence quarks. While the qq sea is
distributed like 1/x for small x, the valence quark
distributions presumably do not grow so fast for
small x, having additional factors x' with n = 2.
With the usual (1 —x)" falloff for large x, the aver-
age valence quark's x is small but finite. A re-
arrangement of the quarks in the seas leads to only
isospin-zero exchange, and it is usually attributed
to Pomeron exchange, which we have assumed not
to be present in the reactions studied.

As to a comparison with the CIM' a few
comments are in order. If we remove the gluonic
interaction described by C our model reduces
essentially to the CIM for exclusive scatter-
ing. Therefore, the CIM also predicts that
our relations (1) and (17) should be satisfied
in the regions of large s, t, and u where the
model is applicable. In addition it predicts vanish-
ing polarization because all amplitudes are real.
However, there is a great difference in the differ-
ent approximations made in the two models. In
the CIM the rearranged constituents carry a
large fraction of the momenta and the asymp-
totic behavior of the wave functions for large k be-
comes important. In our case no wave function
needs to absorb a large momentum since most of
the momentum transfer is mediated through the
gluonic amplitude C. However, since the ampli-
tudes are very small at large angles it is quite
possible that the two models are compatible with
each other if the function C is chosen appropriate-
ly.
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p —M (A5)

which are to order 1/P equal to P. This frame is
the same as used, e.g. , in Ref. 7 and has the ad-
vantage that the variables f and u (and s) are very
simply related to the p~, and p~,

The energies are fixed by the mass-shell conditions

APPENDIX: THE AMPLITUDE EVALUATED IN
AN INFINITE-MOMENTUM FRAME

&=(PA PC)'-= PC'-,

~ =(PA-&D)'= —PD'.
(A6)

pA (pc).+PD))P)&

pB = (O„P),

Pc (Pc).&P))

PD = (PD»)

k; = (k;i, x;P),

q;=P] —k;,

&*=(«,P~)

(A1)

(A2)

(AS)

(A4)

Just as in the CIM' it is useful to discuss
the amplitude of Fig. 2 or Eg. (10) in an infinite-
momentum frame (IMF)." Thereby one achieves
considerable simplification in the treatment of
bound-state wave functions since graphs with back-
ward moving lines vanish. This is of course only
a technical simplification; it involves in itself no
approximations.

We chose a particular IMP defined by

In the equal-mass case we have furthermore the
or thogonality relation

p cq pg)q —0. (A7)

In this case of equal masses the IMF chosen cor-
responds to a frame obtained when the laboratory
frame is boosted orthogonally to the scattering
plane such that the longitudinal momenta in the
boost direction are I', This I' is allowed to tend to
infinity. The two-momenta p;, still correspond to
the external hadron momenta in the laboratory
frame. These "transverse" momenta should thus
not be confused with internal transverse momenta,
which has a sharp falloff at a fixed small value. On

the other hand, the variables x; refer, of course,
to the longitudinal fraction of the momentum in the
boost direction, and should not be confused with x
defined in, say, the laboratory or the c.m. frame.
Using the rules of field theory in the IMF, we can
write the amplitude as

4 " =~= dx,.d'k, ,
x;(1 —x;)

(A8)

VA VA(PC). +PD)& ) A)& xA

VB = VB(O„P;kB„xBP),
(A9)

VD VD(PD), ) P& kD)& xDP).

Now, from Galilean invariance

[The irrelevant normalizations of V, C, and ft are
not the same here as in Ec(. (10).] We shall main-

ly be interested in the factorization of 8 and C,
and therefore we shall not limit the following dis-
cussion to 8 standing for a rearrangement colli-
sion. Thus C and B are arbitrary functions of q;
and k, , respectively. 'The function R is dependent
on the isospin whereas C is not. In the following
we omit the isospin (as well as spin) indices, since
they are not relevant for the factorization we dis-
cuss. We also omit the q variables from the wave
functions since by S-momentum conservation (AS)
they are fixed by p and R. Thus we have

VA VA( )) Pr A). A(PC).+ PDz)&xAP)&

VB = VB(O„P;kB„xBP),

V, = V,(O„P;k„x,p„,x,P),

VD VD(0) & P) kD)xDPD) ) .xDP).

(A10)

Axpc(+)pD.), 0»= (1 -xA)(pc). +p»)

t.u qp j. j.u (A11)
c). cp c). 9B). ( xc)p c).&

kD =xDpD gD = (1 —xD)PD .

This corresponds simply to the condition that the
constituents carry a 2-momentum proportional to

It is clear that these wave functions must have a
sharp falloff in transverse momenta. Therefore
(if they fall off as 1/k, ' or faster) the main contri-
bution to the integral comes from the regions
where
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their x and the hadron momenta

keg x gpg gy

4).= (1 —x;)p

(A12)

(A13)

= C(1 —x;, (1 —x;)p;,)

=C(1 —x;, (1 —x )' t, (1 —x )'u). (A14)

The last equality comes from using (A6) and (A11)
and Galilean invariance. The entire dependence of

C on the internal variables is through 1-x, Thus

As we discuss in more detail below, it is reason-
able to assume that the wave functions favor small
x, . Therefore, the relation (A13) is in general
more accurate than (A12). Therefore, to a good
approximation we can set

C=C(l-x, , q, ,)

one sees that the reliability of the approximations
made in factorizing C outside the integral depends
on (1) how peaked in x the wave functions are, and
(2) how smooth C is in its dependence on 1 —x, .
The wave functions are related to the fractional
longitudinal momentum distribution functions
through

2

f(x) = 2, Jt 1
' [&(o,&;k, x&)]'. (A15)

From lepton-proton scattering experiments we
know that f(x) falls off as (1 —x)", where n =3 or
4 Near x =0 there is presumably a dip corre-
sponding to a factor x' with &=2. Thus it is
reasonable to assume that the major contribution
to the integral comes from small x values, say,
+= 0.2, which for a reasonably smooth C function
motivates the approximate factor ization.
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