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The extrapolation method of Cutkosky and Deo is generalized by the use of biorthogonal polynomial
expansions of “amplitudes” which are the sum of functions having different but known analytic structures.
The method is used to determine the pion form factor from electroproduction without using dispersion
relations. An analysis of the data of the Cambridge Electron Accelerator group at K2 = 0.354, 0.426, 0.451,
and 0.396 GeV? is carried out as an illustration, and we get fairly unique extrapolated values for F, at the first

three values of K2

I. INTRODUCTION

It has been pointed out by Kellett and Verzegnas-
si' and Dombey and Read? that there is inherent
ambiguity in the determination of the pion form
factor from model-dependent analyses of electro-
production data. The earlier authors! claim that
the subtraction constant required in one of the
dispersion relations involves an unknown function
of ¢t and K? which introduces an ambiguity in the
determination of the pion form factor. Dombey
and Read approach the problem from the stand-
point of PCAC (partially conserved axial-vector
current) and the current-algebra treatment of
pion photoproduction and electroproduction. They
point out that the theory, in general, involves
terms depending on the axial-vector form factor
and these should be accounted for by the theoreti-
cal models. This axial-vector form factor has
been identified® with the coupling of the seagull
term coming from the pseudovector interaction®
scheme between pions and nucleons.

These difficulties do not arise if one takes re-
course to a model-independent extrapolation pro-
cedure. Attempts in this direction have not yet
been successful. Frazer? initiated the idea of
extrapolation in 1959. The experimental data were
scanty and he concluded that though in principle
the Chew-Low extrapolation could determine the
pion form factor from electroproduction, the data
available were not accurate enough. Devenish and
Lyth® performing the Chew-Low extrapolation
on electroproduction data find that different poly-
nomial fits, which are equally likely in the physi-
cal region, differ considerably when continued to
the pion pole. They conclude that this method
cannot by itself give a determination of F, but if
F, is constrained to have the form F,=1/(1+K?/m?)
then m? is found to lie in the range 0.3<m2<0.55
GeV 2, However, the Chew-Low method does not
exploit analyticity to the fullest extent. The opti-
mal extrapolation technique devised by Cutkosky
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and Deo®'” and Ciulli® exploits analyticity maxi-
mally as a result of which the predicted value of an
analytic function at some point has the maximum
stability with respect to the errors in the input
information. This technique has successfully been
applied to the determination of ApK (see Refs. 6
and 9) and 7NN (see Refs. 6 and 10) coupling con-
stants. Recently, Nerciu ef al., Raszillier et al.,
and also Kellett and Verzegnassi'! have made an
attempt to apply the optimal extrapolation tech-
nique to the determination of the pion form factor
from charged pion electroproduction. They find
little indication of a preferred value for F, within
the range of 0 <F, <2 and suggest that the knowl-
edge of some additional constraint or information
in the unphysical region will be necessary.

In general the virtual photoproduction cross sec-
tion can be written as [see Eq. (A5) of the Appen-
dix]

do doy, do
49 _a9r 49 26 sin26
+ +co0s2¢sin?f T

+[2e(e +1)]*2cos¢sind S, (1)

where do,/dQ, do,/dQ, T, and S are functions of
s, t, and u containing the poles and cuts. do/dQ

is an example of an analytic function which is a
sum of analytic functions having different cut struc-
tures. In any analytic extrapolation procedure,

the presence of the terms cos¢ siné and cos2¢ sin?6
has to be taken seriously. Kellett and Verzegnas-
si, in their analysis, have not accounted for these
terms. Since a fixed sind term gives a branch

cut in the cos6 plane, any polynomial fit will not
converge. Frazer? and Devenish and Lyth® have
emphasized that this additional singularity must

be removed in some way before an extrapolation

is attempted. This provided us with the motiva-
tion for reexamining the possibility of applying
optimal polynomial extrapolation techniques to the
electroproduction data with proper accounting of
the terms proportional to siné in the cross section.
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In Sec. II we give the kinematics and the essen-
tials of the method, followed in Sec. III by a dis-
cussion of the results. An appendix at the end
gives the formulas used for calculating the virtual
photoproduction cross section.

II. KINEMATICS AND THE METHOD OF EXTRAPOLATION

We are considering the virtual photoproduction
reaction

 virtual (K).).p(Pl)- 1T+(Q)+n(132). )

The four-momentum of each particle is indicated
in parentheses, and P2=P2=-M?%, Q*=-m,% The
Mandelstam variables are defined as

s==-K+PP=-Q +R),
t=-(K-QP=-(F,-P), ®3)
u=-K-PFyF=-@Q-PR).

In the center-of-mass system, define
K=&, ko),
P =(-k, E,),
Q=,9),
P,=(-4, E,).

@

6, the c.m. angle between the pion and the virtual
photon, is given by

t—-m,®+K%+2k,q,
2|kl |4l
_ —(@~-M2+K*+2k,E,)
2[k||4]

In the complex cos6 plane there are the 7* ex-
change pole in the { channel and the neutron ex-
change pole in the # channel. The left- and right-
hand cuts start from the values of cos6 obtained
by putting « = (M +m 2P and ¢ = (2m,)?, respective-
ly, in Eq. (5). The expression for the differential
cross section [Eq. (A5) of the appendix] reveals an
additional singularity. There is a term propor-
tional to sin6 which introduces branch points at
cosf=+1., Frazer eliminated this undesirable
sinf by defining a “symmetrized” cross section

cosf=

®)
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do do do
<7§>sym—-g§(9)+ 20 0. 6)
An equivalent definition is
do do do
()= a0 +m. @

One may also choose® data at ¢ =7/2 so that
terms proportional to sinf are absent. We pro-
pose a different approach, that of calculating the
polynomials multiplying the sin6 terms explicitly,
rather than eliminating them by another extrapola-
tion to ¢ + 7 or by the use of the Berends'? disper-
sion relation.

For a successful extrapolation, the present
method requires cross-section data at a large
number of angles for fixed values of —K%, W, and
€. Therefore, from among all the data available,
we have chosen those of the Cambridge Electron
Accelerator (CEA) group'® with an intention of
establishing a model-independent method of ex-
trapolation.

Since these data are given for a small range of
0 in the forward direction (1.8°<9<21.0°), we
make the mapping to spread them over the entire
physical region (-1sx<1)

_2cosf-cosf, —cosb,
cosf, ~cosfy ’

8)

where the subscripts 1 and N refer to the first and
the last data points, respectively, Table I gives
the positions of the singularities in the cos6 and
x planes. Evidently, one of the effects of this
mapping is to increase the separation between the
positions of the pion pole and the 27 cut thereby
making the pole more “visible” to the extrapola-
tion procedure.

Consider a quantity

do
ae

do

f(x’F'/r):(x"xﬂ)( p_ )

Born > ’ (9)

where x, is the position of the pion pole in the x
plane. If F, is chosen incorrectly in the Born
cross section, f(x,F,) has a first-order pole at
x =x, which, since it is the singularity nearest to
the physical region, defines the figurve of conver-

TABLE 1. Position of the singularities in the cosf and x planes.

K? 0y Oy cosé plane % plane
(GeV?) (deg) (deg) tpole L cut Upole Ucut tpole teut Upole Ucut
0.354 1.8 16.2 1.012 1.040 -1,334 -1.472 1.649 3.104 -118,0 -125.0
0.396 1.8 15.0 1.016 1.050 -1.377 -1.539 2.026 4.040 -140.5 -=150.2
0.426 1.8 19.8 1.022 1.062 -1.416 -1.605 1.792 3.133 -81.41 —87.86
0.451 1.8 21.0 1.030 1.075 -1.452 -1.669 1.948 3.316 —~173.38 -79.96
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gence'® of the polynomial sequence that is made
to approximate f(x,F,). However, if F, is cor-
rectly chosen, f(x,F,) becomes free from the
pion pole, and the figure of convergence gets en-
larged to touch the next nearest singularity, which
is the start of the 27 cut in the { channel. The en-
largement of the figure of convergence is mani-
fested in an increased rate of convergence of the
polynomial series. Thus, when X? of the fit is
plotted against F, (K?) for a given order of approxi-
mation, it exhibits a dip at the correct value of
F,(K?).

CEA data are given at both ¢ =0° and 180° for
fixed values of —K?, €, and W. For these data
f(x, F,) has the general form

f(x,F;)=P(x)+sin6 cos¢ Q(x). (10)

Following a suggestion by Cutkosky'® we use
Chebyshev polynomials to approximate the func-
tions P(x) and Q(x):

flx,F,)= E a,T,(x)+siné cos¢z b, T(x).

an)

The coefficients a, and b, are found with the help
of biorthogonal functions'® as described below. We
have

(%, F) =Y cah,(x), (12)

where
(%) =Ty(x),
hy(x)=T,(x)sin6 cos¢ ,
hy(x)=T,(x), (13)
hy(x)=T,(x)sin6 cos¢ ,

e
.

The k,’s are known but nonorthogonal functions.
The c,’s can be evaluated by finding a set of bi-
orthogonal functions §,(x) which satisfy the condi-
tion

@a(%)y (2D =0, . (14)
Then
Cn=(¢n(x),f(x,F1r))- (15)

Klink!” has given the following prescription for
evaluating the ¥’s: If

(1 (), B (3)) = g, (16)
then
9a(2) = 20 Oy ().

We determine the ’s as follows. The complete

set of functions &,(x), #,(x), ..., h;(x) is orthogo-
nalized by the Schmidt procedure to give orthogo-
nal polynomials @, (x),®,(x),...,®,(x). Then
(®,(x), hy(x) =0 for j=1,2,...,1-1 since h;(x)
can be represented as a linear combination of ®’s
of order less than I, Thus ®(x) is to be identified
as the biorthogonal function y,(x). Therefore, to
obtain any y,(x), we treat 4,(x) as being of the
highest order among the basic set of functions.
Then the Schmidt procedure gives ,(x) as the
highest-order polynomial constructed out of this
basic set.

However, in order to make use of the biorthogo-
nal functions, we must first know the complete set
of linearly independent functions that can repre-
sent f(x, F,) adequately. If the data were free
from experimental errors, we would have to take
N such functions. However, for error-affected
data the number of linearly independent functions
required is much less. To determine this number,
we adopt the following procedure.

We choose the set of nonorthogonal functions

Ty(x), T,(%) sin6 cos ¢, T, (x), T, (x) sin6 cos ¢, ...,
am

and construct out of them orthogonal polynomials
by the Schmidt procedure. f(x,F,) are fitted with
a series of these polynomials and the number
(say, 1) of terms for which x? of the fit falls below
NDF (number of degrees of freedom) is taken, for
practical purposes, to comprise the complete set
of functions required for constructing the bior-
thogonal functions.

f(x, F,) can also be represented by an expan-
sion in a complete set of the ¥’s, i.e.,

N
Fx, Fy) =2 cha()

N
=2 andn(x), (18)
where
Um=(f, n) and cp=(f,¥n). (19)

Then, x® for an ! term approximation to f(x, F,)
is given by

1 i,
Xit=2 B [f(x,,F,,)-;l C..h,.(xd]

i

1
x [ A F)= 3 )] (20)
m=1
where ¢ runs over all data points:
1 N N
X =2 IINAL 2 Caha(x) D0 anm(y).
i i n=1+1 m=1+1

(1)
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Using

1
T3 M (X (X
2 R ()
as the definition of the scalar product (%,(x;),¥,(x;))
we obtain ’

N

X12 = Z Cp Oy . (22)
n=1+1
To maximize the rate of convergence of the ex-
pansions in Chebyshev polynomials we then per-
formed the elliptical mapping of Cutkosky and Deo”
and repeated the whole extrapolation procedure in
the mapped variable.

III. RESULTS AND DISCUSSION

In our analysis we have used the virtual photo-
production cross-section data of the CEA group'?
at K2=0,396, 0.354, 0.426, and 0.451 GeV 2 for
fixed values of €, W, and ¢ =0, 7. For all these
data it was found that five linearly independent
functions were enough to give acceptable fits over
a wide range of values for F;.

With 5-term fits to f(x, F,), the following choice
of terms was observed to yield the most rapidly
converging sequence

Bom)

(x-x,) do| _do
TN\ A9 |exp . A
=C,T,(x) sinb cos¢ + C, Ty(x)
+C,Ty (%) + CT(x) + C,Tu(x). (23)

Comparing the coefficients of cos¢ on both sides
of Eq. (23), we obtain an expression for the trans-
verse-scalar interference term

C,T,(x)siné
(x —x,)[0.5e(1 +€)[2’

where D =S sinf and S is defined through Eq. (A5)
of the Appendix.

In Fig. 1 the Born contribution for D is plotted
(curve I) along with the expression on the right-
hand side of Eq. (24) (curve II) for typical experi-
mental data, The excellent agreement of curve II
with experimental values indicates that the choice
of the sin6 terms in Eq. (23) has been adequate.
Therefore, we carried out the extrapolation pro-
cedure with this choice of the terms.

X% values given by the expression

Dexp =DBom + (24)

5 [fi" écjhj(xg)]z
=2 Ty ’

where 7 runs over all the data points for a given
value of K2, were determined for different values
of F, ranging from 0 to 1. Figures 2(a)-2(e) de-

(25)

pict the plots of x? versus F,(K?) for those values
of n for which the x? curve exhibited a dip. The
values of F,(K?) determined from these curves

are presented in Fig. 2(f) and Table II. The ex-
trapolated value of F, corresponds to X%, in these
curves, The error in the extrapolated value of F;
is obtained by noting the variation in F, when x?
exceeds X%, by 1. Unique values for F,(K?) were
obtained at K?=0.354, 0.426, and 0.451 GeV 2,
Only at K2=0.396 GeV? are acceptable fits
(X®min/NDF < 1) obtained for both 2 and 3 terms
giving F, =0.45 +0 .03 and 0.59 +0.05, respectively.
More accurate data may be able to distinguish be-
tween these two fits. Brown ef al.!® have obtained
F,=0.577+0.016 at K2=0.396 GeV 2, which agrees
with our result obtained with a 3-term fit.

When the extrapolation was carried out in the
elliptically mapped variable, the results were no
better than those obtained with the variable x.
This is due to the small number of terms required

D v ub/sr
o
/Z

11

-2 .

1 ' 1 1 ' L 1

o] 2 4 6 8 [[o] 12 14 |I6
©(deg)

FIG. 1. A plot of the transverse--scalar interference
term D for W =2.15 GeV and k?=0.396 GeV? versus
6. Curve I is the Born approximation and curve II is a
plot of the expression on the right-hand side of Eq. (24).
In calculating the theoretical curves F, has been taken
to be 0.6.
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FIG. 2. Plot of x? versus F',(K?) for (a) K %= 0.396 GeV? withn =2, (b) K2=0.396 GeV? withn =3, (c) K?=0.426 GeV?
withn =3, (d) K2=0.354 GeV? with n =3, and (e) K2=0.451 GeV? withn =1. (f) depicts values of F (K 2) calculated from

the curves in (a)—(e).

for a good fit. It is to be noted that the data have
already been treated and extrapolated by the CEA
group and their extrapolation has been done in the
normal cosé plane, Further, they have only quoted
values of ¢ =0 and ¢ =n. If there were a good
spread in the values of ¢, this method of extrapola-
tion using biorthogonal functions could give more
unambiguous results. For such data Eq. (10) gets
modified to

f(x,F,)=P(x)+sinf cos¢ Q(x)+cos2¢ R(x).

One can then approximate P(x), Q(x), and R(x)
by series in Chebyshev polynomials and carry out
extrapolation as in the present analysis.

In conclusion we wish to remark that even though
the elliptical mapping of Cutkosky and Deo has not
been helpful in the present analysis, it has been
shown that the Cutkosky-Deo extrapolation proce-
dure has distinct advantages over the Chew-Low
procedure in that unambiguous values forF, (K?) are
obtained at three out of the four values of K? con-
sidered.
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TABLE II. Result of extrapolation in the x plane.

n, the number

K? Number of of terms in the
GeV?) data points fitted series F (K?) X% min/NDF
0.354 20 3 [Fig.2(d)] 0.74%3- % 1.5
0.396 24 2 [Fig.2(a)] 0.45+ 0,03 0.9
3 [Fig.2(b)] 0.59+0.05 0.6
0.426 23 3 [Fig.2(c)] 0.59%3: % 0.4
0.451 17 1 [Fig.2(e)] 0.74+0.01 1.01
APPENDIX isoscalar states respectively. These form factors

Invariant amplitudes. The contributions of the
Born poles to the invariant amplitudes of Dennery'®
are

_ » 1 1
A7 =’§“egF1(K2)<S_M2 - m>,

1 1
Ay=3es i) (S5 - ),

A7 =-eg P (=577 -

A§=—egFf(K2)<s et 1M2> t—lm,,z ’
A = zeng(Kz( u- M2>’
A7 =-3eg F;(K?) <s 1M2 1M2>’

Al= 2eng(K2 <S E + Mz> ’
1 1 1
-__1 v (o2
A; =-3eg F{(K )(S—Mz + u—M2> t—m,?

2eg [Fr(K?) - FI(K?)]
+ K2 (t_mWZ) ’

Ag=eg P -
A =A9=0.
For 7" electroproduction A, =v2 (A] +AY),
i=1,2,. ‘
Form factors. F,(K?)is the pion electromag-
netic form factor, F{"*(K?) and F{">(K?) are the

Dirac and Pauli form factors for the nucleon with
the superscripts v and s denoting isovector and

1 1 1
s=M? u-M?) (t-my%)’

are normalized as follows:
F,(0)=1,
F{"$(0)=1,
1 A2
F;(O)=m- (Kp_Kn) ( )

FS(O)— (K,+K ),

where «, and «, are the anomalous magnetic mo-
ments of the proton and neutron, respectively.

In terms of the Sachs form factors Gy the
Dirac and Pauli form factors of the nucleon read

K® .s)/< K?
NPYVERL ) L+

2MFév,s) - (G}(lv.s) -

e = (o )
(A3)
G/ (L +K2/aM?),
where
Gii" =Gy ¥Gyyy
and
G =Ggy ¥Gp, -
For the Sachs form factors we use the “scaling

law” and dipole fit

pE) _ Gl

1+, K,

= GEp(I<2)

1
~ (1 +K%/0.71 GeV 2)?

and assume that G, (K?) =0.

Cross-section formulas. Following Brown et all3?
we use the conventions of Berends!2 for defining
the cross sections. The virtual-photon differen-
tial cross section in the 7N c¢.m. system can be

(A4)
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written as
do do do,
2L 40, in2
a9 79 <o +cos2¢sin®6 T
+[2e(e +1)*2 cosp sinb S , (A5)

where 6 is the 7 scattering angle in the 7N c.m.
system and ¢ is the angle between the 7N plane
and the electron scattering plane. Donnachie!® has
summarized the formulas that relate do._,./dﬂ,
do,/d, T, and S to the invariant amplitudes.

*Present address: Max-Planck-Institut fiir Physik und
Astrophysik, D-8000 Miinchen 40, Fohringer Ring 6,
Federal Republic of Germany.
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