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A black hole of given mass, angular momentum, and charge can have a large number of different

unobservable internal configurations which reflect the possible different initial configurations of the matter
which collapsed to produce the hole. The logarithm of this number can be regarded as the entropy of the
black hole and is a measure of the amount of information about the initial state which was lost in the
formation of the black hole. If one makes the hypothesis that the entropy is finite, one can deduce that the

black holes must emit thermal radiation at some nonzero temperature. Conversely, the recently derived

quantum-mechanical result that black holes do emit thermal radiation at temperature vh/2mkc, where ~ is

the surface gravity, enables one to prove that the entropy is finite and is equal to c 'A/46h, where A is the
surface area of the event horizon or boundary of the black hole. Because black holes have negative specific

heat, they cannot be in stable thermal equilibrium except when the additional energy available is less than 1/4
the mass of the black hole. This means that the standard statistical-mechanical canonical ensemble cannot be

applied when gravitational interactions are important. Black holes behave in a completely random and time-

symmetric way and are indistinguishable, for an external observer, from white holes. The irreversibility that

appears in the classical limit is merely a statistical effect.

I. INTRODUCTION

The aim of this paper is to discuss some con-
sequences of the recently discovered quantum
effects on black holes. According to the classical
theory of general relativity, a gravitationally
collapsing star of mass M will shrink, in a short
time as measured by an observer on the surface,
to a radius of order 2GMjc', at which the gravita-
tional field becomes so strong that no further
radiation or anything else can escape to infinity.
The region of space-time from which it is not
possible to escape to infinity is said to be a black
hole, and its boundary is an outgoing null hyper-
surface, called the event horizon, which just fails
to reach infinity. To an observer at infinity the
star will appear to take an infinite time to reach
the event horizon. However, as the observer can
only ever receive the finite number of photons
emitted by the star before it crossed the event
horizon, the luminosity of the star appears to him
to decrease exponentially with a time scale of
order

2GM, M

completely black: Radiation tunnels out through
the event horizon and escapes to infinity at a
steady rate "(.These results have been confirmed
by several other authors. ' ') Even more remark-
able than this steady rate of emission is that it
turns out to have an exactly thermal spectrum:
The expectation value (N) of the number of par-
ticles of a given species emitted in a mode with
frequency (d, angular momentum m A about the
axis of rotation of the hole, and charge e is

(N) =f'(exp[k 'T '(~ —mQ —e4)]+ 1)

In this expression the —sign is for bosons and the
+ sign is for fermions. The quantity l is the frac-
tion of the mode that would be absorbed were it
incident on the black hole. The temperature is
T=zk/2rrkc, where t& is the surface gravity of the
black hole. 0 is the angular frequency of rotation
of the black hole and 4 is the potential of the
event horizon. For a black hole with mass M,
angular momentum J, and charge Q these quan-
tities are

4w(r c' —GM)
A

Thus, after a few milliseconds the star has ef-
fectively gone out and what remains is an object
which still exerts gravitational influence and which
is aptly named a black hole.

This is the classical picture as described by,
for example, Misner, Thorne, and %heeler. '
However, when quantum effects are taken into
account it turns out that a "black hole" is not

47t J
MA

471Qr,'= A'
where

y —c 2 [ GM~ (G2M2 j2M &c2 GQ2)&&~]

and

(4)
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A=4wGc 4[2GM'

—Q +2(GM —J c —GM Q )' '] (6)
is the area of the event horizon. The radiation
is described not by a pure quantum state but by
a density matrix. It is completely thermal in that
the probabilities of the emission of particles in
different modes and the probabilities of emitting
different numbers of particles in the same mode
are completely uncorrelated. ' The probabilities
for different numbers of particles agree exactly
with thermal radiation. ' '

Bekenstein"'" was the first to suggest that
some multiple of a should be regarded as repre-
senting in some sense the temperature of black
holes. He also pointed out that one has the re-
lation 10~ 12

d(Mc')=
G

dA+Qd J+4dQ

can form by statistical fluctuations in black-body
radiation and can then decay quantum mechanically
with the reemission of radiation, the time-reverse
process must also be possible in which a number
of photons or gravitons annihilate to form a ubique

hole which then explodes, emitting radiation.
Thus the "cosmic censorship hypothesis" is vio-
lated by quantum effects. To an external observer
a white hole is indistinguishable from a black
hole. The process of hole formation and evap-
oration is completely time-symmetric. The ir-
reversibility which arises in the classical limit
is just a statistical effect.

In the rest of this paper dimensionless units
will be used in which G=c=k=k=1. The unit
of mass is then the Planck mass h ' ' G ' 'c ' '
-10 ' g. The unit of length is the Planck length
O' G' 2c - 10 cm. The unit of temperature
is the Planck temperature k 'h' G ' c -'-10 'K.

which connects the difference in energy of two
nearby black-hole equilibrium states to the dif-
ferences in the area A of the event horizons, in
the angular momentum J, and in the charge Q.
This is very similar to the first law of thermo-
dynamics,

(8)d U= TdS-Pd V,

suggesting that one should regard some multiple
of A as the entropy of a black hole. Bekenstein
therefore postulated a "generalized second law":
[entropy of matter outside black holes]
+[some constant times the sum of areas of black-
hole event horizons] never decreases.

Bekenstein"" was able to establish the validity
of this law in certain gedanken experiments, but,
because it was thought that black holes could not
emit anything, he was not able to obtain a general
proof, and indeed there appeared to be situations
in which the law could be violated. With the dis-
covery of the quantum thermal emission these
violations no longer occur; a general proof of the
second law will be given in Sec. II.

The fact that the temperature of a black hole
decreases as the mass increases means that black
holes cannot be in stable thermal equilibrium in
the situations in which there is an indefinitely
large amount of energy available. As described
in Sec. III, this implies that the normal statistical-
mechanical canonical ensemble cannot be applied
to gravitating systems. Instead one has to use
microcanonical ensembles in which one considers
all the possible configurations of a system with a
given energy. In Sec. IV this idea is applied to a
gedanken experiment in which a certain amount
of energy is placed in a box. One obtains the
surprising conclusion that because a black hole

II. THE GENERALIZED SECOND LAW

When a black hole is formed by gravitational
collapse it settles down very rapidly to a quasi-
stationary state characterized by only three pa-
rameters: the mass M, the angular momentum J,
and the charge Q. (It is a quasistationary state
because the mass, angular momentum, and charge
are decreasing slowly because of the quantum
emission. ) This is known as the "no hair"
theorem. " " A black hole of given mass, angular
momentum, and charge can have a very large
number of unobservable internal configurations
which reflect the different possible configurations
for the body that collapsed. If quantum effects
were neglected, the number of different internal
configurations would be infinite because one could
form the black hole out of an indefinitely large
number of indefinitely small mass particles. How-
ever, Bekenstein" pointed out that the Compton
wavelengths of these particles might have to be
restricted to be less than the radius of the black
hole and that therefore the number of possible
internal configurations m~. ght be finite though very
large.

Let a dMdQd'J be the number of internal con-
figurations or quantum states of a black hole in
the range M to M+ dM, Q to Q+ dQ and angular
momentum in the element d'J about a given angu-
lar momentum X. By the "no hair" theorems one
has no information about the internal state of the
hole, and therefore all these configurations are
equally probable. Thus the entropy S„of the black
hole is

S„=—g P, InP, =Ino .
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The only such quantity is a monotonic function
f (A) with d'f/dA' ~ 0, where A is the area of the
event horizon. The simplest such function is yA,
where y is a constant. Bekenstein suggested the
value of (In2)/8s in dimensionless units for y.
(It can now be seen that the correct value is y=-,'. )

In order to show that the hypothesis of a finite
number of internal configurations is consistent
one has to show that if the parameters change by
amounts 4M, ~J, and ~Q by the accretion of
more matter and radiation, the new value of v
is Ht least the old value times the number of pos-
sible configurations of the accreting matter or
radiation. This is equivalent to showing that the
increase in S„ is greater than or equal to the
amount of entropy of the accreting matter. In
other words, one has to prove the generalized
second law: S„+S never decreases with time
(where S„ is the entropy of matter and radiation
outside black holes).

Given the entropy of a system as a function of
the energy E of the system and various other
macroscopic parameters, one can define the tem-
perature as T '=SS/SE. Thus one can define the
temperature of a black hole to be

BM
(10)

The generalized second law is then equivalent to
the requirement that heat should not run uphill
from a cooler system to a warmer one.

Consider a situation in which a black hole is

One can also express the entropy in terms of the
number of initial states that give rise to a black
hole in the above range. There is a slight compli-
cation here in that a given initial state will give
rise to a black hole only with some quantum-
mechanical probability.

Let ( ~
o., )j be a complete orthonormal basis

of initial states and let f& V d'P dMdQ d'J be the
probability that the initial state

~
o.', ) gives rise

only to a black hole with parameters in the above
range and in a normalization volume V with linear
momentum in the element d'P about zero. Then

q, =f, (gf) ' is the probability that the given black
hole arose from the initial state

~
o., ). The

entropy S„=—Pq, lnq, .
The entropy S„would have to be a function only

of M, J, and Q with the following properties:

(1) It always increased when matter or radiation
fell into the hole.

(2) When two black holes collided and merged
together, the entropy of the final black hole was
bigger than the sum of the entropies of the initial
holes.

surrounded by blackbody radiation at some tem-
perature T . The blackbody radiation is here
taken to mean all the possible species of particles
(both zero and nonzero rest mass) in thermal
equilibrium with zero chemical potentials. For
any nonzero T there will be some rate of ac-
cretion of this radiation into the black hole. If
T & T„, it follows from the definition of temper-
ature that the decrease of S caused by the ac-
creting radiation is less than the increase in S„.
Thus the generalized second law holds. However,
if T & T„, the accretion violates the law. There
are only two ways in which consistency can be
maintained: Either T„ is identically zero, in
which case S„ is infinite and the concept of black-
hole entropy is meaningless, or black holes have
to emit thermal radiation with some finite non-
zero temperature. The first case is what holds
in purely classical theory, in which black holes
can absorb but do not emit anything. Bekenstein
ran into inconsistencies because he tried to com-
bine the hypothesis of finite entropy with classical
theory, but the hypothesis is viable only if one
accepts the quantum-mechanical result that black
holes emit thermal radiation. Conversely, the
fact that the black holes emit quantum radiation
with a temperature T„= «/2w enables one to prove
the generalized second law and hence establish
that the entropy of a black hole is finite. If T
& T„ the accretion is greater than the emission
and hence the increase in S„ is greater than the
decrease in S, while if T & T„ the emission is
greater than the accretion and the increase in
S is greater than the decrease in S„. If the ac-
creting matter or radiation is not in thermal
equilibrium with zero chemical potentials at some
temperature, its ratio of entropy density to en-
ergy density is not as high as it would be if it
were blackbody radiation. Hence the accretion
is even further from violating the generalized
second law than in the case considered above.

The quantum result that the temperature is
«/2m allows one to integrate the first law of black
holes [Eq. (7)] and deduce that the entropy S„
= 4 A+ constant. If one makes the reasonable as-
sumption that the entropy tends to zero as the
mass tends to zero, the constant must be zero.
One might wonder why the value of entropy does
not depend upon the details of how many elemen-
tary particles there are. For example, if there
were 10' different kinds of neutrinos, then one
might think that the number of different ways one
could make a black hole would be multiplied by
about (10') " and so the entropy would be increased
by about S„ln10'. The answer is that if there
were 10' different kinds of neutrinos, a black
hole would emit them «~ thermally and so its
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m'e xp[4wm(m- 2M)] dm. (12)

This shows that a black hole emits small black
holes at a rate mhich is exponentially small since
m will be less than M. In other words, the prob-
ability of a black hole bifurcating quantum-mech-
anically is very small. Classically, bifurcation
is completely forbidden. "

III. THERMAL EQUILIBRIUM

Consider a black hole surrounded by black-
body radiation in a large container at the same
temperature as the black hole. In order to be in
thermal equilibrium, the black hole must be non-
rotating and electrically neutral since otherwise
it will preferentially emit particles with its sign
of angular momentum or charge. Suppose now
that, as a result of a statistical fluctuation, the
black hole accretes a bit more energy than it
emits. Because black holes have negative specific
heat, the temperature of the black hole mill go
down. This will decrease the rate of emission
and slightly increase the rate of absorption of a
black hole. If the blackbody radiation is main-

rate of energy loss would be greatly increased.
This means that, if one wished to increase the
mass of a black hole, one would have to throw
neutrinos in. at a much higher rate in order to
beat the emission. The fact that the neutrinos
have to be accreted in a shorter time means that
there are fewer possible configurations for them.
Thus the number of ways in which the mass of
black holes can be increased is independent of
the spectrum of elementary particles. However,
the more species there are the harder it is to
form black holes, because they radiate faster.
If the spectrum of elementary particles increases
exponentially, as is suggested by the statistical
bootstrap"" and dual resonance models of strong
interactions, it may be impossible' to form black
holes of less than about 5 ~ 10" g.

A particularly interesting case of accretion
and emission is that in which the particles them-
selves are small black holes. The number of
internal configurations for a black hole in the
mass range m to m +d'm is

J
7lt foal 2

e dQ J'dddm m'exp(4w-m')dm. (11)
Pl 0

The rate of emission of small black holes in this
mass range will therefore be greater by this fac-
tor than the emission of a single species of par-
ticle of mass m, which will be governed by the
thermal factor [exp(8vmM) —1] ' for a nonrotating
hole of mass M. Thus, since M» 1 and m& 1 the
rate of emission mill be proportional to

tained at a constant temperature by some reser-
voir of energy, the black hole will grow indefinite-
ly. Similarly, if a statistical fluctuation caused
the black hole to emit slightly more than it ab-
sorbs, the emission rate would continue to rise
until the black hole disappeared completely. In
other words, black holes cannot be in stable
thermal equilibrium with an indefinitely large
reservoir of energy. The consequence of this is
that one cannot use the normal statistical-mech-
anical canonical ensemble when gravitational
interactions are important. In the canonical en-
semble one considers a very large number n of
similar systems loosely coupled together. Each
system is supposed to have a number of energy
levels E;, and the total energy of the whole col-
lection of systems has some given very large
value E. By considering all the ways in which
this total energy can be distributed among the
various systems, one finds that the expected num-
ber n, of systems in a given energy state E, is
proportional to exp(-E& T '), where T is a La-
grange multiplier which is interpreted as the
temperature of the ensemble. Now suppose that
the number of energy levels of one of the systems
between E and E+ dE is p(E}dE. Then the proba-
bility of the system having energy in the range
E to E+ dE is p(E) exp(- ET '}dE. In the systems
that are commonly considered the density of en-
ergy levels p(E) increases with energy but not
exponentially, so the probability converges. How-
ever, for black holes, p(E)dE= number of internal
configurations of black holes with masses between
M=E and M=E+ dE is

This grows faster than the thermal factor
exp(- ET ') goes down, so that the probability
of a black hole being in a given interval of mass
increases with the mass, and the total probability
diverges, indicating a breakdown of the canonical
ensemble. In any system which includes gravita-
tional interactions there will always be the pos-
sibility of forming black holes by a statistical
fluctuation causing many particles to get together
in a small volume of space. Thus one cannot,
strictly speaking, apply the concept of a canonical
ensemble to such systems.

Although the canonical ensemble does not work
for black holes, one can still employ a micro-
canonical ensemble of a large number of similar
insulated systems each with a given fixed energy
E. Each of these systems will have a number of
different configurations compatible with the given
energy. These configurations will form a surface
in the configuration space of the system. As time
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passes the system will move from one point to
another on this surface. By the assumption of
ergodicity, the probability of finding a given
system in a given region of configuration space
is proportional to the number of configurations
in that region compatible with the given energy.

In most cases there will be one macroscopic
state that has many more possible microscopic
configurations than any other macroscopic state.
Consider, for example, a certain amount of en-
ergy E placed in an insulated box of volume V.
Assume, for simplicity, that this energy can be
distributed only among gravitons and black holes:
Either all the energy could be in gravitons or the
energy could be divided among gravitons and one
or more black holes. For a given energy E, in

gravitons, the number of microscopic configur-
ations is a sharp maximum when the gravitons
are distributed as blackbody radiation at a tem-
perature

(14)

Thus a good estimate of the number of configur-
ations of gravitons with energy E, in a volume V

is exp S„where
4m'V T,'

45
(15)

is the entropy of blackbody radiation at temper-
ature T,. The number of internal configurations
of black holes with total energy E, will be exp S„
where S, =-,'QA is the entropy of the black holes.
One can see immediately that the probability of
having more than one black hole is very small,
since for a given E, the entropy S, is greatest
when there is only one hole. The entropy is also
greatest when this one black hole is nonrotating
and uncharged. Thus, one can take exp(4', ') as
a reasonable estimate for the number of configu-
rations of the black hole. (One can ignore the
factor of order VP' which arises from the motion
of the black hole. ) The total number of configura-
tions d'or the system with ener gy E, in gr avitons
and energy E, in black holes is exp(S, +S,). The
most probable values of E, and E, will be those
which maximize S, + S, subject to the constraint
E,+E,=E; i.e. ,

1 2

(16)

or
3 x 2207t'E'

125(n, + —', nz)

when n, is the number of zero-mass boson fields
and n& is the number of fermion fields. If V& V„,
the state of maximum probability will be black-
body radiation without any bla, ck hole. From time
to time statistical fluctuations in the blackbody
radiation will cause black holes to form, but they
will tend to evaporate again, so that most of the
time there will not be any black hole. If V„& V
& V, -64vE'/3, the most probable state will be a
single black hole surrounded by blackbody radi-
ation at the same temperature. Statistical fluc-
tuations will cause the black hole mass to vary
and will, on occasion, lead to the complete dis-
appearance of the black hole. If V& V, (Schwarz-
schild volume), the whole box will undergo gravi-
tational collapse, so the above analysis cannot
be applied.

In other words, in order for the configuration of
a black hole and gravitons to maximize the prob-
ability, the volume V of the box must be sufficient-
ly small that the energy E, of the blackbody
gravitons is less than —,

' the mass of the black
hole. (Note that this result depends only on the
T' dependence of the energy density of zero-rest-
mass blackbody radiation and therefore remains
true if one considers in addition to gravitons other
zero-mass particles such as photons and neu-
trinos. ) If this condition on V is satisfied, the
equilibrium between the black hole and the black-
body radiation at the same temperature will be
stable because, if a statistical fluctuation causes
a slight excess of radiation to be absorbed by the
hole, the temperature of the radiation will fall
more than that of the hole, and so the rate of ab-
sorption will decrease more than the rate of
emission.

To see what the condition on V implies consider
the limiting case in which E,=-,'E, = 5 E. Then
T, = T, = 5j32vE; therefore

5
E=(no+ sory) 15 32 E V

(1) T 2 0
BE, BE,

BS, BS

Condition (1) implies T, = T„ i.e. , the black hole
is at the same tempera. ture as the blackbody
gravitons. Condition (2) implies

IV. WHITE HOLES

Consider a gedanken experiment as in the pre-
vious section in which a certain amount of energy
E is put in an insulated box of volume V& V, . By
the ergodic assumption the system will pass
through every possible configuration and will
eventually lose all memory of its initial state.
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This means that, if one examines the behavior of
the system over a long period of time, one cannot
distinguish an arrow of time; any given pattern
of behavior should occur equally often in the time-
reversed form. It was shown above that at some
times the system would contain only zero-mass
particles and at other times statistical fluctuations
in these particles would cause the formation of
black holes which would later evaporate. The
time reverse of this behavior must therefore also
occur; it must sometimes happen that a number
of zero-mass particles annihilate to produce the
time reverse of a black hole, a white hole, which
at a later time explodes, emitting zero-mass
particles.

In the classical theory of general relativity it
is thought that there is a "cosmic censorship
principle" according to which an initially non-
singular state can never evolve to give a "naked
singularity, " that is, a singularity which is not
hidden by an event horizon from an observer at
infinity. This principle would exclude the pos-
sibility of white holes forming in the classical
theory. However, if one accepts that quantum
effects can cause a black hole to disappear, then
naked singularities must be present if one tries
to describe the situation by a classical metric.
Moreover, the time reversibility of the coupled
Einstein-Maxwell neutrino equations implies that
the time-reversed situation must also be possible
in which a white hole forms and then evaporates.

Consider a box with V„& V& V, . In the forward
direction of time one will have most of the time
a black hole which is emitting and absorbing ap-
proximately blackbody radiation at about the same
rates. Considered in the reverse direction of
time, this will be a white hole absorbing and
emitting approximately blackbody radiation at
about the same rates. Thus, if one makes the
reasonable assumption that the emission of a
white hole is independent of its surroundings, it
follows that it is the same as the rate of emission
of a black hole of the same mass, angular mo-
mentum, and charge. By the thermodynamic
interpretation of black holes the processes of
formation and evaporation of a black hole are
statistically the time reverse of each other. That
is to say, a black hole can be formed from gravi-
tons, photons, and neutrinos in any of a large
number of different ways, the largest number of
possibilities occurring when the particles have an
approximately thermal distribution. Similarly,
the evaporation will result in any of a large num-
ber of different final configurations, the number
being greatest when the emission is approximately
thermal. This and the previous result mean that
black and white holes are identical to an external

observer. It is a general principle that a physical
theory ought not to contain elements that are not
physically measurable and ought not to describe
differently situations which cannot be distinguished
by observation. In the classical theory of general
relativity there is a unique space-time metric
which is different for black holes and white holes.
However, if space-time is quantized, one has
to abandon the idea of a unique space-time metric
which is independent of the observer just as in
special relativity one had to abandon the idea of
a unique time which was independent of the ob-
server. The reason is that in order to determine
where one is in space-time one has to measure
the metric and this act of measurement places
one in one of the various different branches of
the wave function in the Wheeler-Everett" inter-
pretation of quantum mechanics; if one describes
space-time by some sort of Feynman integral
over metrics, then the metrics that one will in-
clude in the integral will depend on the situation
one wishes to describe, which will in turn depend
on the measurements that have been made. An
observer who measures himself to be outside
the hole can use both black- and white-hole
metrics. In the black-hole metrics particles
accreting will fall into the singularity while par-
ticles being emitted will appear to be created
somewhere outside the event horizon. In the
white-hole metrics the accreting particles will
appear to be annihilated by the gravitational field
while the emitted particles will appear to come
from a singularity in the past. An observer who
measures himself as having fallen inside the hole
will not see the emitted particles" and will use
only the black-hole metrics. Similarly, in the
very unlikely event of the black hole creating
and emitting an observer, he would regard him-
self as having come out of a white hole and would
use the white-hole metrics.

It is shown in another paper' that the process of
formation and evaporation of a hole cannot be
described by an S matrix. The reason is that
one does not have a Cauchy surface in the future.
What gets out to infinity does not completely de-
termine the state of the system because this de-
pends also on what went down the hole. The re-
sult of this is that by measurements at future
infinity one cannot determine the pure quantum
state of the system but only a density matrix
which describes the probabilities of different
combinations of particles being emitted. Instead
of an S matrix one has a new entity called a super
scattering operator which maps density matrices
describing the initial situation to density matrices
describing the final situation. ' This operator
will be invariant under the CPT operator e, i.e. ,
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the probability of going from an initial density
matrix p, to a final density matrix p, will be the
same as the probability of going from BP,B ' to
Bp,B '. The super scattering operator provides
a description for observers at infinity which sat-
isfies the principle mentioned above that it does
not make the observationally undeterminable
distinction between black and white holes.

The picture of white holes that has been com-
monly used hitherto is the time reverse of the
collapse of a cloud of dust. The white hole emits
nothing before a certain time and then suddenly
sends out a cloud of matter. This picture has
been criticized by Eel'dovich, "who pointed out
that one would not expect a nonemitting phase
because there would be pair creation in the strong
gravitational fields near the singularity. The
conclusion of this paper is very similar: White
holes emit thermal radiation continuously. The
emission is completely random and all possible
configurations for the emitted particles are equal-
ly probable. (All configurations do not get out to
infinity with equal probability because there is a
potential barrier around a hole which depends
on the angular momentum, etc. of the particles
and which can reflect particles back into the hole. )
It is indeed possible that a white hole could emit
nothing until a certain time and then shoot out a
cloud of dust, but the number of possible con-
figurations that this would represent is small. It
is much more probable that a white hole would
emit thermal radiation, because there are many
more configurations.

V. SUMMARY

The conclusions of this paper are that there is
an intimate connection between holes (black or
white} and thermodynamics which arises because
information is lost down the hole. If one makes
the hypothesis that the maximum amount of in-
formation which can be lost down a hole of a given
mass, angular momentum, and charge is finite,
it follows that one can associate an entropy with
the hole and can deduce that it must emit thermal
radiation at some finite nonzero temperature.
Conversely, the quantum-mechanical results that
black holes emit thermal radiation with a temper-
ature T„=z/2w enables one to prove the above
hypothesis and to evaluate the entropy as S„=—,

' A.
The fact that black holes have negative specific
heat implies that they can be in stable thermal
equilibrium only when the amount of energy avail-
able is restricted in a certain way. Consideration
of thermal equilibrium or the time reversibility
of the equations implies that black holes are in-
distinguishable from white holes to an external
observer and behave in a time-symmetric man-
ner. The irreversibility associated with classical
black holes is merely a statistical effect. For
example, in the classical theory two black holes
can coalesce but a black hole can never bifurcate.
The corresponding result in the quantum theory
is that there is a high probability for two black
holes to coalesce into one because this involves
going from a state with a lower number of con-
figurations to one with a higher number, but
there is a low probability for the reverse process.
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