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Radiative decays of strange baryons and the structure of weak interactions»'
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Radiative weak decays such X+ —i py, ~X y, etc. are considered and various symmetry relations among
these amplitudes are derived. They are then analyzed in a quark model and the operator-product expansion is
studied. The effects of introducing right-handed currents are discussed. They are found to change drastically
the angular distribution of the decay products, depending on the specific form of the right-handed current
Used.

I. INTRODUCTION

Although we have a fairly satisfactory under-
standing of leptonic and semileptonic charged-
current weak interactions, the same cannot be
said for nonleptonic processes. The structure of
the total hadronic weak current is still a matter
of conjecture, In this article we look at radiative
weak decays of baryons in the context of gauge
theories to see 8 they place any constraint on the
underlying structure of the weak Hamiltonian.

There are six possible radiative decays of
strange spin-2 baryons,

given by

dl A—=(1+aP S)
dQ

(1.2)

2 Be(ab*)
2 2~ —» «(9«+»

~~i2+ ~$~» (1.3)

a and & should be relatively real if final-state
interactions are ignored and if time-reversal in-
variance holds.

Experimentally' we have measurements of

where I' is the unit vector along the momentum
direction of the final baryon and S is the polariza-
tion of the initial baryon. In terms of the param-
eters a and b appearing in the amplitude

and

y

of these the Z' decay should be swamped by the
faster electromagnetic decay Z -A'y and will
probably be very difficult to detect experimentally.
To date, the Z' and " '-A'y transitions have been
observed. If p is the momentum carried by the
photon and e its polarization, the amplitude should
have the form

3R = e~g(a+by, ) io „q,u

by virtue of gauge and Lorentz invariance. The
rate is given by

m» ™q' a'+ b'

where m» and m& are the masses of the initial and
final baryon, respectively. Another interesting
decay parameter involves the angular distribution
of the emitted baryon with respect to the spin of
the decaying baryon in its rest frame. This is

, =(2.76+0.51)x10 ',
1"(Z'- Pw')

'y) =(2.3+0.V) xlo-',r (=-'- it'~)

o(Z'-Py) = —1.03", ,", .

Section II deals with various relations one de-
rives among these amplitudes on the basis of ex-
act symmetries. U- spin symmetry relations are
derived in detail for theories with only left-handed
currents and for theories having both left- and
right-handed currents. ' We also give a brief sum-
mary of the low-momentum pole-model calcula-
tions. ' In Sec. III we discuss the quark model
based on the usual Weinberg-Sala. m theory' of
weak interactions which assigns all quarks to sin-
glets or doublets of the weak SU(2)~. We also dis-
cuss the relevant operator-product expansion for
the weak Hamiltonian. Section III treats the same
topic in the framework of right-handed theories'
and we find that certain operators that are not
important in the usual theory are important in
such theories. We assume throughout that CI' is
not being violated. We also assume that the strong
interactions are described by a non-Abelian gauge
theory based on SU(3) coupled to color.

The main emphasis of the yaper is on the dif-
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ference in various results predicted by purely
left-handed theories and by theories having right-
handed currents. We call the latter left-right
theories and the former left-left theories. We
have found the following:

(a) They change the U-spin properties of the
Hamiltonian, so symmetry relations based on
U spin get altered.

(b) Secondly, they change the relative impor-
tance of certain operators in the operator-product
expansion for the weak Hamiltonian. Specifically,
some operators that we ignore, for very valid
reasons, in left-left theories cannot be ignored
in left-right theories where they appear with an
intrinsic enhancement factor of the heavy-quark
(charmed-quark) mass.

(c) Thirdly, the chiral structure of these oper-
ators implies that the parity-conserving and par-
ity-violating amplitudes contribute equally. This
means they give rise to a large asymmetry pa-
rameter. Further, the sign of the asymmetry pa-
rameter is found to depend on the exact nature of
the right-handed coupling, going from —1 to +1;
its two extreme values in the two left-right the-
ories are considered here.

II. U-SPIN AND SYMMETRY RELATIONS

In deriving symmetry relations one must be
careful to note what minimal assumption is suf-
ficient for the derivation. In the conventional
Cabibbo theory the ~S =1 effective Hamiltonian is
given by the current product

X =J 'J +H c.

The 6", like the 6', is a U-spin singlet, so that
the introduction of charm in no way changes the
U-spin properties of R,«and Eq. (2.2) is still
true. Using U spin and P and T invariance we get
(the electromagnetic current in a U-spin singlet)

&B, IXo;, IB, ) =-&B,'IX f;, IB,),
&Bf I

+ off I B$ &
= + &B I Llc off I By&

(2.3a)

(2.3b)

According to Eq. (1.1), a stands for the parity-
conserving part and & for the parity-violating part
of the decay amplitude.

Now let us look at the neutral decays involving

n, A', Z, and "'. A and Z are mixtures of U=O

and U=1 states. Call the corresponding U-spin
eigenstates B, and B, respectively

HS Zo+Ao

2

—Zo + v 3 A'

2

Then Eq. (2.3) says

where pc and pv stand for parity-conserving and
parity-violating, respectively, B;, J3& denote the
initial and the final baryon, and B,B& denote the
U-spin-rotated states

IB'&=e* "IB) .

For a U-spin doublet such as P, Z' or Z, =,
B = —Bz, Bz B;, so tha—t- Eq. (2.3b) tells us these
decays have vanishing parity-violating amplitudes'

bq+p —0 —b~ q

ln terms of elementary fermions (8 is the Cabibbo
angle)

J„'=' = cos 86'y„(1 —y, ) X,
='= sin8(Py„(l —y, ) A,

so that

&B, l&.ff I"='& =-&~I3t".ff IB,&,

&B, I&!ff I"-'& =+&~I&!ff IB,&,

&B,lxt;, I
=') =+&nlxof; IB,),

&B.lx.'~~ I=') =-&nlxlff IB.&,

where we have used

(2.4)

K « = sin8 cos8 [Xy„(1—y, ) (PPy& (1 —y, ) X

+H.c.] . (2.1}

mU2 ~0= n

e'"U2B =B
0 0

2 jeff e 2= +efwU -&rU (2.2)

If we now introduce a fourth, charmed quark,
the 6", via the usual GIM' mechanism, X,g be-
comes

This transforms like the first (by first we mean
the x component, working in a Cartesian basis}
component of a U-spin vector. Under a rotation
through m around the second axis

i AU

3 3 '

Equation (2.4) implies the relations

v 3 a,o,o =2g~„+a,o,o,

2a oro=v3aA„+a~o„,

v 3 b„-ohio = —2b&„+b-o&o,

2bmo~o = —~3bA„+ b&o„

(2.5)

K ff sin 8 cos 8 [3fy„(1 —y, ) (PPy„( 1 —y, )

—Xyo(l —yo)(P'P' yo(1 —yo)A. +H.c.]

If we now invoke octet dominance which says
X ff A., (- is to be read as transforms like) we

get the additional relation
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—baozo = g3 bAo =bzo =- y'3 bzo&o = say .P
n n 3

(2.6)

SU(4) invariance forbids the decay " -Z y.
This is readily understood in terms of P spin, the
SU(2) subgroup of SU(4) that takes 6'-6". The
Hamiltonian is a P-spin vector but the
and the electromagnetic current are all P-spin
singlets. This makes the matrix element
(Z yiX,ff i:. ) vanish identically. Assumption of
specific transformation properties, namely 20
dominance for Xeff (Xeff T[ ]o) leads to no further
relations.

Recently several proposals have been made for
changing the form of the charm-changing current. 2

The first proposal was to include a right-handed
current 3Iy„(1+y,) 6" in addition to the usual cur-
rents. We call this the DGG model. This would
supposedly account for the observed enhancement
of nonleptonic b I= & decays in a straightforward
manner and the occurrence of dilepton events in
neutrino charged-current reactions. However,
this model runs into trouble with the smallness
of the observed Ki-K~ mass difference and re-
strictions imposed by current algebraandpartially
conserved axial-vector current (PCAC) on the
chiral structure of the 4S =1 nonleptonic weak
Hamiltonian. ' An alternative version that avoids
these difficulties introduces as an extra piece the
current Xyo(I +y, ) 6". We call this the WZKT
model.

In the DGG model the effective Hamiltonian has
an additional piece cos8Xy&(1 +y, ) 6"F'y&(1 —y, ) h.

and in the WZKT model the additional piece is
sin83I yo(1 —y, ) 6"7' y„(1+y,) A.. Let us denote
this extra piece by X, eff for obvious reasons. In
either model (X,ff)o' transforms like the first
component of a U-spin vector (just like X,"L) but
(X,"ff )""transforms like the second component of
a I'I-spin vector. ' This means Eq. (2.3b) now
reads

(B i (X "")"
i B ) = —(B'

i (X""
) "i B')

so that &&+~, &3;-q- are not constrained to vanish.LR LR

Further, we also obtain

LR LR LR
bzozo = 2bw»+bmoAo

(2 7)
LR LR LR

2blozo = v 3 bA„+bz „. o

Combining Eq. (2.6) with Eq. (2.7) we get for the
total parity-violating amplitudes

In writing down SU(3)-invariant amplitudes what
we have said translates into

(X",ff )o' -X, ,

(X".f'f)'"-4,
but this yields no new relations in addition to Eq.
(2.8).

We have seen that U spin forbids parity-violat-
ing amplitudes in the decay Z'- py. This would

imply the asymmetry parameter u~ 0. Experi-
mentally a = —1. Since a is supposed to arise
from U-spin-breaking effects we should see how

large they could be. Note that i o. i=+1 indicates
that the parity-conserving and parity-violating
pieces contribute equally to the amplitude. How-
ever, a phenomenological analysis' suggests that
the parity-violating amplitude is about 10% of the
parity-conserving amplitude. We give a brief
summary of the analysis below.

One draws pole diagrams as in Fig. 1 for the
decay using as an effective electromagnetic ver-
tex

p.
8 SP~+ 0'~~ f~2m

where g/2m is the anomalous magnetic moment.
This relates the matrix element (PyiHiZ') to
(PiH(Z'). To evaluate (PiHiZ') one looks at the
dominant decay mode (pwiHiZ) and relates this
to (PiHi Z') via PCAC and current algebra. So
eventually one gets the matrix element (pyiHi Z')
in terms of the measured anomalous magnetic
moments of the baryons and the measured pionic
decay amplitudes. ' There are various refinements
to this approach, but they all yield typically a
small value for the asymmetry parameter u, in
disagreement with experiment. This is primarily
an analysis of the nonshort-distance piece of the
Lagrangian, i.e., a low-momentum calculation.

III. QUARK-MODEL CALCULATIONS IN

WEINBERG-SALAM MODEL

Let us look at the Weinberg-Salam theory of
weak interactions and consider the quarks to be
free. We ignore, for the time being, strong in-
teractions. The AS = 1 radiative transitions cor-

—K
Z p p

&3b3ozo = 2b~„+b3o~o —+ ti,
2b~ozo = a 3 b~„+bzo„—(&3+I)P .

(2.8)
FIG. 1. Pole-model diagrams relevant for the decay

Z+-p . The shaded box represents the weak Hamilton-y'
ian.
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respond to the process

and the contributing diagrams are shown in Fig. 2.
If we put the quarks on the mass shell we expect an
amplitude of the form

3)I = &„»&I„(&+&y,) g„& —sin8cos8 (3.1)U
2

(b)

as remarked earlier. Dimensional analysis says
that a and & have dimensions of mass. We will
now show how symmetry arguments are sufficient
to fix the form of the matrix element. The La-
grangian of our theory has an invariance under

0 --y, k s«hat 4--4, 4-4

$
I i

(c)

$
/
I

77

where i stands for the quark flavor. This is true
for each separate flavor. This at once says that &

and & cannot be odd in m~ or m~ and further that
if we start with a general form

~ = pm~+ pm&,

& = ym~+&m~,

S~~
I

X

(e)

,$
1

FIG. 2. Diagrams which contribute to the A, —ny am-
Plitude. Script letters refer to quarks. The internal
solid lines in this and subsequent figures represent
quarks ((P or (P').

then P=~ and p= —y. So then

K -(pmz+Pypg~) 3lo~, k

+(- pm++ pm„) Ra„,y, A . (3.2)

Recall now that since X and A. are U-spin doublets,
when m~=mz, the parity-violating amplitude is
supposed to vanish. This implies p = P. So fin-
ally we have

(3.3)

dropping a factor (Ge/&2) sin8 cos8.
That the amplitude cannot depend on the internal

quark mass is evident since 0'&, couples left-
handed quarks to right-handed quarks and our
theory has currents coupled only to left-handed
quark s.

Before we do any explicit computation of graphs
let us look at the operator structure of the effec-
tive Lagrangian. " Our aim is to write down an
effective Lagrangian that consists of a set of local
operators multiplied by coefficients such that we
can correctly get weak-interaction amplitudes to
order e/M~'. This means we can have coefficients
of order I/M~' and evaluate matrix elements to
order e or coefficients of order e/M„' and matrix
elements of order unity. As usual we want an ex-
pansion valid when matrix elements are taken be-
tween any arbitrary states. We also expect the
relevant operators to be gauge-invariant and that
the dominant operators have lowest dimension. It

is well known that we can discount operators of
dimension four as they can be absorbed in the
wave-function and coupling constant renormaliza-
tion counterterms. " So we look at operators of
dimension five and six.

At the tree level, hadronic weak-interaction pro-
cesses are represented by Fig. 3, and . «which
is a product of two currents here is given by a
four-quark operator of the form
gy„(I —y, ) ggy„(1 —y, ) g to order 1/M„'. In pro-
cesses with a W-boson loop we can get additional
operators. I.et us look at Fig. 2(a). It surely has
contributions from the four-quark operator. It
also has contributions from two-quark operators
such as Zo„„(a+by,) XeE„„where E„„is the pho-
ton field tensor. But the GIM mechanism cancels
the order I/M~' contribution exactly and so we
have only an order 1/M~' contribution in which we
are not interested.

We also have, in addition to this diagram, other
diagrams where the W-boson propagator has inter-
actions in it. We take Fig. 2(b) as a representative
of this class. We can think of the WWy vertex as

FIG. 3. Four-quark interaction at the tree-approxi-
mation level for hadronic weak decays.
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an insertion of an operator I" and for this class of
processes jeff is not given by the product of two
current operators but of three operators —I' and
two current operators. Note that we also have two
lV-boson propagators. In coordinate space it is
easily seen that the large mass of the W boson
makes the integral have it main contribution when
all three operators converge to the same point.
Thus one can still replace , ff by a sum of local
operators. The operator we are interested in,
3fo„,(a+by, }X eF&„appears here to order 1/M~'
but the GIM mechanism leaves us with only the
order 1/M~' contribution. The same thing happens
for Figs. 2(e) and 2(f). For simplicity we are
here assuming that the Hjggs-scalar mass is the
same as the W-boson mass. The scalar exchange
graphs, Figs. 2(e) and 2(d), are down by an order
1/M~' even without the GIM mechanism. " Thus
we have concluded that

contribution? Since we cannot think of any sym-
metry that would say this matrix element vanishes
identically (after all, P spin is broken badly} we
claim its vanishing is a fortuitous result that oc-
curs when we do not take strong interactions into
account. Thus to order g' (g is the gluon coupling
constant) it would receive nonzero contributions
from Fig. 4. Its vanishing in order g' can be
understood by the fact that Fig. 5(a) can be Fierz-
transformed into Fig. 5(b). But now the loop inte-
gral is the same one we encounter in vacuum po-
larization graphs in QED and is proportional to
(q'g» —p„p, ) y„which is zero for a real photon, "
hence our previous rejoinder not to put too much
faith in free-quark-model results.

However, the important points of the free-quark
model are already contained in Eq. (3.3), namely
that the mass insertion involves the external
quarks X and ~ and that the asymmetry parameter

2(mg —m~)/(m~+mg)
1+[(m~-mg)/(m~+mg)]' (3 5)

where

1 4m M@

12m M m (P

(3.5)

and where p has been defined in Eq. (3.3) and the
others give a p of the order of

1 4m'
16'' I '

(3.4)

where A. is some Wilson coefficient and that this
gets contributions from Fig. 2(a) alone.

Now let us see what the exact calculations tell
us. Note that it is perfectly legitimate to use
equations of motion in simplifying operators that
appear in the operator-product expansion. But
what we will do now is to calculate matrix ele-
ments between quark states taken on shell,
just to give us a feel for the values. This is not
justified certainly, and, as we shall see, we have
reasons to mistrust these naive calculations.

Working with the exact Lagrangian that we have,
we find that for the on-shell process ~-Xy, Fig.
2(a) gives

This is -+1 if mz«mq.
A renormalization-group analysis gives us the

Wilson coefficient A appearing in Eq. (3.4) as being
really an enhancement factor (ln M~'/p') times
an undetermined constant reflecting the low-mo-
mentum contribution. (p,' is the subtraction point. )
This has been discussed in great detail in many
papers" and Q turns out to be, for the color-sym-
metric four-quark operator, 12/(33 —2n), where
n =number of quark flavors. However, this
changes neither of the two points noted above.

Technically one could improve on this analysis
by making a heavy-quark expansion. " This says
that in taking matrix elements of heavy-quark
operators between light-particle states one can
replace the heavy-quark operator by a sum of
light-quark operators with the same quantum num-
bers and coefficients which are functions of the
heavy-quark mass m~, the coupling constant, and
the subtraction point. These coefficients can be
computed via a renormalization-group calculation.
We feel here that such an expansion is unwarranted
because it is true only in the limit m„-~ and even
if this were approximately true, we still have
no reliable means of estimating matrix elements
between bound hadron states.

without any logarithmic factors. This is expected,
but what is unexpected is that Fig. 2(a} also seems
to contribute to the amplitude only in order 1/M~4.
What happened to the + PERMUTATIONS of GLUON

, (Xy~ [Zy„(1-y, ) (P|Py„(l-y,) A -(6'- (P')]]A)
1 FIG. 4. Typical contribution to lowest-order cor-

rections due to strong interactions for Fig. 5.
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IV. QUARK-MODEL CALCULATION
WITH RIGHT-HANDED CURRENTS

We now wish to see what happens in a theory
with right-handed currents, ' specifically the cur-
rent

Xy„(1+y,) (P' .

Z,ff =a, Xo„,(1+y,) A. eE„,

+a2 Xo~~(1+y5) A. gGq~

+a, Zy„(1 —y, )(P'P'yq(1+y, ) A, (4.1)

where the a s are Wilson coefficients. Calcula-
tions of the graphs of Fig. 2(a), 2(b), 2(e), and

In addition to the four-quark operator we got in
the Weinberg-Salam model we will now get other
operators in the expansion for jeff . We focus on
these new operators. The relevant diagrams are
still those of Fig. 2, where the internal quark is a
6" quark and the ~6"Wcoupling is V+A rather
than V-A. Obviously Fig. 2(a) contributes to the
four-quark operator Xy„(1—y, ) (P'P'y~(1 + y, ) A. of
the LR type. In addition it also gives rise to the
operators Xo'~, (1+y,)? eE~, and Xo„„(1+y,) X

xg'G„, in order I/M~'. G„, is the gluon field ten-
sor. In order to see how this comes about one
should replace the photon by a gluon in Fig. 2(a).
Strictly speaking, one gets the operator
XCl'(1+y, ) X, where ' is the covariant operator
D~D~ but this goes over into Xo„,(1+y,) AgG„, by
the equations of motion plus operators that can
be absorbed in the counterterms in the Lagrangian.
Moreover, since the added coupling has no coun-
terpart with the 6' quarks, Figs. 2(b), 2(e), and

2(f) also contribute to Xq„,(1+y,) XeE„, in order
I/M~'. However, they cannot contribute to
X&„,(1+y,) AgG„, since the gluon does not couple
to scalars or Wbosons. Figures 2(c) and 2(d) are
still down by m~ '/M~', so these scalar exchange
graphs need not be considered.

The significant points to be noted are that these
new operators have the chiral structure (1+y,)
(see Ref. 16) and, more important, the mass in-
sertion term multiplying them is the internal
quark mass m6 . This, as we have seen, is in
accordance with a theory that has right-handed
couplings. But this means we have a direct en-
hancement because of the explicit heavy-quark
mass operator and also the parity-conserving and
parity-violating amplitudes give equal contribu-
tions. This helps to make the asymmetry param-
eter a=+1.

Thus

FIE RZ

(a) (b)

FIG. 5. Diagram for calculating the matrix element
of the four-quark operator between a A. quark and an X
quark and photon state, ignoring strong interactions.

2(f) give for the left-right amplitude

II""= &~i ~ sin 8, Xiv„,q, (1+y, )

x A. (—,'-~~~ ——,', ), (4.2)

where the three contributions correspond, re-
spectively, to Figs. 2(a) and 2(b) and the sum of
2(e) and 2(f),

Ã "R = —ie„= sin8, Ãfo'~, (l+y, ) q„X . (4.3)

Thus to lowest order

a, --m~. /12m',

a, - m~./6n',

Q 13

leaving out factors of I/M~' and the Cabibbo angle.
A renormalization-group calculation gives, "

as already mentioned, enhancement factors of
(InM„'/g') . For both Xv„,(1+y,) A, eE„and
Xo'~, (1+y,) AgG~„we have calculated Q to be
4/(33 —2n), where n is the number of quark
flavors. For the color-symmetric LR four-quark
operator Q =24/(33 —2n). Since this operator in-
volves heavy quarks it will also have extra factors
when we perform a heavy-quark expansion. But
as remarked we will not do this.

In the alternative DOG model which has the
extra current

Xy„(1+y,) 6",
our formulas in Sec. III still hold provided one
replaces sin8(1+y, ) by cos8(1 —y, ) (see Ref. 16)
everywhere. We still have the enhancement due
to the m~ factor, but the chiral structure implies
an asymmetry parameter a~ —1 instead of +1.
Thus the form of the weak current can change the
angular distribution dramatically.

What can we say about the matrix elements of
the operators appearing in Eq. (4.1)'? In the quark
model we have already given the matrix elements
of Xo'„„(I+ y, ) & eE„,between a A. and an Xy state.
Calculating that of the four-quark operator re-
quires evaluating it to order g' and so involves
two-loop diagrams as in Fig. 4. The matrix ele-
ment of X&„,(1 + y, ) A gG&, between A, and X y turns
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&a, in', .~to, & =Tu, o„,u, ,

where T is a pure number. Moreover, since

p v y5 z & &p v Zp &
A.p

(4.5)

the pseudotensor current also has the same form
factor. Let us denote the tensor current by T',
where j is the SU(3) index. Using SU(3) of states

&&'IT'Ia'& =Dd;, „+iEf;,,
Our current is really T" '. Owing to CP, only
T contributes to parity-conserving amplitudes
and T to parity-violating amplitudes. " We have
found that the bag model gives"

(4.6)

I' = —0.55, D =0.83 .

Thus

&pl T'IZ"& =2 (D- E), etc.

But this is as far as we can go with present-day
techniques.

V. COMMENTS AND CONCLUSIONS

In conclusion, we have found that a large parity-
violating amplitude in Z'-Py or . -Z y signals
the presence of some right-handed currents. The
total amplitude would also be larger than what

out to be divergent because under renormalization
it mixes with Xv„,(1+y,) A. eE„,. We ignored this
mixing because it is small when we calculated
their anomalous dimensions.

Strictly speaking, we would like to be able to
evaluate these matrix elements between hadron
states. For the operator Xv„„(1+y) &eE„, this
is possible in a phenomenological way using the
bag model. For &» -&&y

&&y rI%o„„(1+r,}A. sE„,I&, &

=2m„q, &B& ~Tv„, (1+y,) A. ~B, &, (4.4)

since we are working throughout to lowest order
in electromagnetism. Because the photon is real
and transver se

naive estimates would lead us to believe by a fac-
tor (m„jmI)', where H and I. stand for heavy and
light quarks. We would also see a large asym-
metry parameter and its sign should distinguish
between various right-handed currents that have
been proposed. Thus the angular distribution of
decay products is very sensitive to the nature of
the right-handed coupling introduced. Present
data seem to be inadequate for a definite conclu-
sion to be made.

If a charmed baryon were to decay radiatively
into an uncharmed one and if the quark process
6"-6'y were important for this then we could
conclude, since the light- and heavy-quark roles
are now interchanged, that the amplitude is en-
hanced by the heavy-quark mass in left-handed
theories. If right-handed currents are added, the
added effect is not very significant, although the
asymmetry parameter might change slightly. "
However, a charmed baryon by virtue of its high
mass has a lot of energy and enough phase space
to decay into more than two particles, in which
case the structure effects are not so important
and it is the bremsstrahlung processes that dom-
inate. We note too that in scalar models of weak
interactions such as that proposed by Segrh" the
mass insertion can occur in the internal quark
line, as in left-right theories. This will be dis-
cussed elsewhere.

Note. After this work was completed I came
across a report by Ahmed and Ross" dealing with
the same topic. I thank Dr. A. Zee for drawing
my attention to their work.
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