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Noncovariance of the Coulomb-gauge Schwinger model*
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Formal proofs of the covariance of gauge theories in two-dimensional space-time are questionable in the
Coulomb gauge in view of the highly singular nature of the inverse I.aplacian. It is shown that such
considerations do in fact destroy the covariance of the Schwinger model as well as that of the more general
non-Abelian gauge theory.

I. MOTIVATION

The famous model in two-dimensional space-
time of an electromagnetic field in interaction
with a massless charged fermion (more commonly
known as the Schwinger model') has recently re-
ceived considerable attention within the context of
the quark-binding problem. Thus this model has
'continued to be useful long after the original mo-
tivation for which it was proposed (namely the
connection between gauge inva. riance and mass)
has ceased to be controversial.

Although Schwinger's original paper developed
the theory in a covariant gauge, the Coulomb
gauge is in many respects a more interesting
framework for a discussion of its properties.
Thus Brown' has studied the model in that gauge
in considerable detail and claims to have demon-
strated its covariance. However, that proof, is
suspect since it requires the ad hop addition of a
term -&e'Q' to the energy density, where Q is the
total charge operator

Q= I j (x, t)dx.

While such a, modification of T"(x) would be ac-
ceptable if Q were a conserved operator, it has
been observed by Zumino' that the equation

(-&'+ e'/tt)j' =0

implies

(s,'+ s'/tt)Q = 0,

so that Q cannot be constant unless it vanishes.
Since Q cannot identically vanish if it is to fulfill
its role as the generator of gauge transformations
of the first kind, Zumino concludes "that the
Coulomb gauge formulation of the theory is not
truly covariant unless one is willing to restrict
oneself to states of zero charge. "

In view of Zumino 's remarks the noncovariance
of the model in the Coulomb gauge would seem to
be well established. However, reference to the
literature suggests that this fact has generally

4
dxq(x —x') =0

in order to obtain the desired commutators of the
Poincare group. Since all experience in this field
suggests that results of Abelian theories should
generalize to non-Abelian gauge theories, one
expects the Schwinger model and its Yang-Mills
extension to either stand or fall together. The re-
sults of Ref. 3 and the above remarks concerning
Ref. 4 do in fact support this intuitive notion by
showing that neither theory is covariant.

In the present paper we reexamine this old ques-
tion in order to emphasize Zumino's observations
and to display in clear fashion where the break-
down of covariance occurs. In the following sec-
tion we thus review certain aspects of the Schwin-
ger model including in particular a more careful
consideration of the inversion of the Laplacian in
one spatial dimension. In the concluding section
the failure of covariance is displayed.

II. OPERATOR PROPERTIES

In order to fix the notation to be used here we
begin by writing the Lagrangian of the model in
the form

pctv 8 p+—'F'"F „——,'F'"(&,A-,-—&,A,)

+ ej'A, ,

where the current operator is formally defined
by the limit

j' = lim P(x)ot'qq(x'),

been overlooked or forgotten by authors of recent
papers dealing with the Schwinger model. Thus,
for example, Li and Willemsen' in their recent
study of the Schwinger model generalized to a non-
Abelian gauge found considerable difficulty in de-
monstrating covariance in the Coulomb gauge and
eventually relied upon incorrect assertions such
as [their Etl. (2.25)j
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where q is the usual charge mp, trix

(0 -i)

From (2.1) there follow the equations of motion

where we have used the notation A', —=A' (x =aL) to
denote the operator A'(x) evaluated at the bound-
aries of the box. In order to compare this result
with (2.7) one reduces (2.9) by means of (2.8) to

+P P g PgP g PgfL

8 QPP ejV.

1
o.'" —.&„—eqA „=0,

(2.2)

(2.3)

(2.4)

~x-x'~j'(x )dx +

+ —,'(A'. +A') + (A,
' —A'),

where we have defined the dipole operator

+2+0 ~jO (2.6)

By displaying A' in this way as a nonlocal function
of the charge density one makes explicit the well-
known fact that there are no dynamical degrees of
freedom associated with the electromagnetic field
in one dimension and that the only interaction in
the model is the nonlocal coupling of the fermion
field to itself.

While it is customary to invert the Laplacian in
(2.6) and to write immediately

A(x)= —
gt [x x ]j(x)dx, (2.7)

we choose to be more circumspect in carrying
out that operation in order to determine the most
general solution of (2.6). To that end it is con-
venient to consider (2.6) in a one-dimensional box
~x

~

&L and to solve the Dirichlet boundary value
problem corresponding to that domain. The ap-
propriate Green's function is then found to have
the unique symmetric form

(2.8)

which clearly has the properties

G(x, x') = G(x', x),

G(~x~ =I., x) =0,

This implies for A (x) the form

A'(x) =e ~, G(x, x')j'(x')dx'- [(&'G)A'(x')]~~

= e G(x, x')j'(x')dx'+ —,'(A', +A')

(2.9)

to which set one appends the Coulomb gauge con-
dition

(2.5)

Using (2.5) Eqs. (2.2) and (2.8) imply, respective-
ly,

F01 8 g0
1

D = xj'(x)dx.

one finds that consistency requires

so+so=o,

A,'- A'„= eD.

thereby yielding

L
A'(x) = ——

~

x —x' ~I'(x')dx'+ ,'LeQ-
L

LE"= — & (x —x')j'(x')dx',
2

(2.10)

which results differ from (2.7) in the limit L-~
solely by the additional term ,'LeQ in (2.10). —It

is important to note that this latter term is not
present in Brown's solution because of the modifi-
cation of T" described in his paper which was al-
luded to earlier. However, if one insists that the
equations of motion (2.2)-(2.4) be satisfied, then
the forms given above for &" are unique and
lead to a conserved energy-momentum tensor.
(We remind the reader that the nonconservation of
Q precludes the possibility of adding a Q' term to
T" as done by Brown. )

With the above result one can now calculate all
the Green"s functions of the model. This is done
simply by noting that (2.10) can be rewritten as

A(x)= —' '(~x x ~-L)j(x)d",
L

At this point one can ask whether there are any
conditions which must be placed on the operators
A', or whether these can be assigned freely. In
fact because the commutator of the Hamiltonian
with g(x) must imply (2.4) and because of the grow-
th of ~x —x'

~

for large values of its argument, one
is severely constrained. Thus using
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so that by replacing which becomes upon using local charge conserva-
tion

with K)(k)+LING(k) in Brown's solution (and formally
taking the limit L -~) one obtains the exact solu-
tion of the model. It will now be shown that even
with this more precise treatment of the problems
associated with the Laplacian in one dimension
there remaininconsistenciesin the theory because
of the stringent requirements imposed by Lorentz
invariance.

III. BREAKDOWN OF COVARIANCE

One can now proceed to demonstrate the non-
covariance of the model using the results of the
preceding section together with certain details of
Brown's solution. A convenient framework for
such a discussion is the Dirac-Schwinger covari-
ance condition'

—i[T"(x),T"(x')]=-[T"(x)+ T"(x')]s,5(x —x'),

(3.1)

the satisfaction of which is sufficient to guarantee
Poincare invariance. However, since it is not a
necessary condition one must show that any addi-
tional terms in (3.1) are incompatible with the
structure relations of the Lorentz group in order
to prove noncovariance.

Before dealing directly with this question it
should be observed that the operators

(3 2)

Although the bracketed term in (3.2) might seem
to contradict the field equations one readily veri-
fies by reference to Brown's solution that for
I ~00

j'(L)+j'( L) =o- (3.3)

in all matrix elements. It is crucial to note that
j'(+L) are not separately zero as such a result
used in conjunction with the equation of continuity

would lead to the incorrect result that

—F"(x')j'(x)&(xx') [6(L+x) —6(L —x)]—(x x'),

with operator symmetrization being understood.
Since the commutator of P' with itself must nec-
essarily vanish, a failure of covariance can occur
only in [J",P']. Thus one integrates the energy-
density commutator to obtain

80 =O.

It is thus necessary only to examine the two-
dimensional Poincare group to reach a conclusion
concerning the consistency of the model. ' One thus
computes the commutator (3.1) and finds additional
terms on the right-hand side of the form

correctly generatedisplacements in time and space.
In the case of the spatial momentum operator this
is trivially demonstrated. For P' one has already
used [P', g] to infer the correct form of A' and
thus one has only to verify that the commutator of
Po with P" is consistent with (2.3). One finds by
direct calculation

s Pol i[f01 PO]

~I
e(x —x')s j'(x')dx',

2 ~ L

i[TOO(x), P'] = -S,T"(x}

—ej '(x)A'(x) [b(L +x) —5(L —x)],
(3 4)

where use has been made of (3.3). If a covariant
result is to be obtained it is clearly essential that
the term in (3.4} proportional to e vanish upon
multiplication by x and integration over that same
variable. Since one cannot in fact get rid of the
unwanted terms one infers the asserted failure of
covariance for the model. '
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Since the Coulomb gauge and axial. gauge are identical

in two-dimensional space-time, it is of interest to
compare the results obtained here with remarks made
by Schwinger [J.Schwinger, Phys. Rev. 130, 402
(1963)] concerning the axial gauge in four-dimensional
space.

~Identical conclusions concerning the covariance of the
model are obtained from explicit calculation of the
Lorentz transformation properties of the fields.


