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The bound momentum and the bound angular momentum of a point particle with arbitrary multipolar
electromagnetic moments are considered. It is found that the relation Mts~(r) = 2z&„Ptssj(r), which was established
for a nonspinning accelerated point charge, is no longer true in the present case. An additional term emerges,
which corresponds to the contribution to the bound angular momentum of the multipolar structure of the
particle.

Recently, we calculated the bound and emitted
angular momenta of a classical (nonspinning) ac-
celerated point charge. ' The main result was
that the bound angular momentum is related to the
bound momentum by the simple formula

M(sss'(r) = 2z(gP„'J (r). (1)

which is the same relation valid for a material
particle in classical mechanics. At the end of
Ref. 1 we remarked that our approach could be
generalized in a straightforward way to the gen-
eral case of a point particle with an arbitrary
electromagnetic multipolar structure. In the
present paper we comment on some interesting
points related to this problem; in particular, we
show that Ecl. (1) is no longer true for a spinning
point particle.

In the general case of a point particle possessing
arbitrary multipolar moments, the total electro-
magnetic angular momentum tensor Mq» may
still be decomposed into a radiation part and a
bound part given by

My& &
= 2zpT& ~& + 2sL-yT&g& (2a)

M ~» = 2z~qT&~„+ 2s&~T&»,Q) (a) ( 4 (2b)

where
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To compute these integrals, we make use of the
following method, ' which is very easy to handle:
We apply Gauss's integral theorem to the tensors
~„„and M q„„ in the four-volume of Minkowski
space bounded by the spacelike hyperplane &r'(r),
a cylinder Z~ with constant retarded radius R
(Bhabha's tube), and the future light cone C(T)
with vertex on the particle world line at the point
z(r), with 7&r (see Fig. 1). Considering first the
tensor T& „', it is easy to show that its divergence
vanishes off the particle world line, therefore
Gauss's theorem yields

(-4 indicates those terms in T» of the fourth and
higher order in the retarded distance. ' The ex-
plicit expression for the tensor T„„may be ob-
tained from the value of I"&, given by Bhabha and
Corben. ' Integrating the tensors (Bb) and (2b)
over all three-space o (r) in the instantaneous rest
frame of the particle at time 7, we obtain the
bound momentum and bound angular momentum
namely,
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(3b) Pp = lj.m Tp d Z"
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The only difference with Ref. 1 consists in replac-
ing T{„+by T( „', where the superscript notation

13 1802

+rim T(„"„dZ" .B~ B



E LECTROMAGNETIC SPIN AND ORBITAL ANGU LAR MOMENTA. . . 1803

time
In a similar fashion we compute the bound ang-

ular momentum M~~~~„(v). It is easy to verify that
the tensor ~~~ „ is divergenceless off the particle
world line. Besides, from the known relation
[see Ref. 2, Eq. (46)]

T( ')u" ~a
P U p s

it follows that

dZ" =O(R ') as R-~. (12)

I'IG. 1. Integration region considered in the evalua-
tion of P (7) and M (7).

Xp

The second integral in (5) is evaluated over the
tube Z„whose surface element is given by'

d Z" = [v" —(1 —kvR)k" ]R'd QdT . (6)

From this formula and taking into account the
relation [see Ref. 2, Eq. (26)]

T'-')u' = 0,p v

At this step, we introduce the asymptotic condition
v = 0 at v'-- ~ to guarantee the vanishing of the
integral over Bhabha's tube Z„ in the limit R
In fact, when r- —~, d Z" = O(R'), so that there
is no contribution to the bound angular momentum
flux through Bhabha's tube of this portion of the
world line. On the other hand, for all points lying
at a finite distance, Eq. (12) implies the vanishing
of the corresponding flux. Therefore, we can
write

M(„(7)= lim M(" d Z" (12)
( )

On replacing in this equation the value of M(„'~& „
given by Eq. (2b) we arrive at

we obtain the result

T&'& d Z" =O(R-') (6)
M q„(~)= 2z ( g P~~@j (~)

Note that this behavior does not guarantee the
vanishing of the integral over Z„ in the limit
8-~. Since the total area of this tube behaves
like O(R) as R -~, the integral tends to a finite
value in this limit. Here we need to introduce the
asymptotic condition of uniform motion in the re-
mote past. ' In fact, when v=0 the tensor T„„'
identically vanishes and, furthermore, the sur-
face element (6) reduces to

d Z" = (v" —k")R'dQdr,

i.e. , it grows only like O(R'). This implies that
T„„dZ" = O(R '), ensuring the vanishing of the
second integral in Eq. (5). Hence, the bound mo-
mentum is given by

Pp~ (T) = lim T dZ"
C(T)

(10)

From this result it follows that P„' (r) is a "state
function" of the particle' (it only depends on the
present time ~). Indeed, in the limit 7= v, the
integral (10) is evaluated over the future light cone
with vertex at z(r) and, since all quantities in T~+~

are retarded, only the present time 7 contributes.

+ 2 llDl St. y T& j& dZ
c(7)

(14)

As a last point we want to mention that Van
Weert2 has worked out expressions forP„'(v) and
1VFg (7 ) by applying Stokes's theorem to certain
tensors whose divergences coincide with (2b) and
(Sb). However, as he referred the bound angular
momentum to the present position of the particle,
he only obtained the second term of Eq. (14).

Note that the integral over the light cone C(7) can-
not vanish for a spinning particle because T„,')k"

is not proportional to k„(see Ref. 3).
The first term in Eq. (14), which is also present

in the case of a nonspinning charged particle [see
Eq. (1)], may be identified as the orbital bound
angular momentum. On the other hand, the sec-
ond term is a consequence of the internal electro-
magnetic structure of the point particle and, there-
fore, may be consistently interpreted as the bound
spin angular momentum of a classical electron.

In practice, the explicit computation of the
quantities given by Eqs. (10) and (14) is very easy
to perform. The reason is that all points on the
light cone C(V) have the same retarded proper time
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