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Infrared structure of the leading conformal contribution to the electromagnetic vertex function
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We treat the infrared problem directly related to the asymptotic behavior of the form factor of a particle
belonging to the fermion-antifermion channel, with anomalous dimension d. For d ( 2 we relate it to the off-
shell vertex function; for d & 2 we examine the triangle graph which is considered to be the most infrared
divergent. We show that the leading y, -even conformal contribution to the wave function does not give rise to
infrared divergences, provided the dimensions of the various fields satisfy the conformal bounds. Thus the
ensuing contribution to the asymptotic form factor is (—q')' ~.

, I. INTRODUCTION

Some interest has been devoted recently to the
problem of on- shell large- momentum- transfer
processes in field theory by trying to extend re-
normalization- group ideas to on-shell phenome-
na. ' ' The main difficulty in dealing with these
problems is that they are not, strictly speaking,
short-'distance phenomena; thus the Weinberg the-
orem4 cannot be directly applied to show that the
mass insertion terms are negligible in the Callan-
Symanzik equation, ' nor, as in deep-inelastic scat-
tering, can the light-cone nature of the phenomenon
be used' to express such mass insertions in terms
of the amplitude itself, exploiting the Wilson' ex-
pansion. In a class of renormalizable theories,
excluding theories with vector mesons, such as
gauge theories and vector-gluon theories, it has
been shown by various authors' that in the attrac-
tive domain of an ultraviolet fixed point the form
factor of a particle, described by a Lagrangian
field, behaves asymptotically like (- q') "', where

y, is the anomaly in the dimension of the field.
If one deals with non-Lagrangian fields (i.e. ,

composite fields' ), which should be used to de-
scribe particles which, like hadrons, are believed
to be nonelementary, the situation is more com-

plex. The reason is that if the dimension of such
fields' is larger" than 2, a discontinuity occurs
between the on-shell and off-shell vertex functions
which prevents a simple use of composite field
Green's functions. One is thus compelled to work
directly on the pole of the external particles; the
form factor, to which we shall devote the present
paper, is given by the convolution of the residues
of the vertex function at the particle pole with the
five-point two-particle-irreducible electromag-
netic vertex function. If the considered particle is
a pole in the channel with the quantum numbers of
two fundamental fields the structure of the form
factor is as shown in Fig. 1. It is usual as shown
in the same figure to distinguish in the five-point-
irreducible Green's function a connected (a) and a
disconnected (b) contribution. The renormaliza-
tion group""" easily furnishes the behavior of the
various vertex functions appearing in Fig. 1 when
q' and the square momenta of the shown internal
legs go to infinity. In addition in the case of anom-
alous dimensions, to which we shall refer here,
one has more detailed information about the vertex
functions than that furnished by asymptotic scale
invariance. In fact it has been shown" that in the
attractive domain of an ultraviolet fixed point the
theory satisf ies the mor e stringent requir ements

(a) tb)
FIG. 1. Structure of the vertex function: (a) connected contribution; (b) disconnected contribution.
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of asymptotic conformal invariance. ' Strictly
speaking such information is not sufficient'"' to
determine the asymptotic behavior of form factors
as it is easily realized that one needs to know also
the behavior of the vertex function when one squared
momentum goes to infinity and the other is kept
constant. The information given by the conformal
group is nevertheless valuable in the sense that if
we restrict ourselves to consider the leading terms
in the vertex functions, while conformal invariance
gives, as we shall see, a well-defined result for
the contribution of these dimensionally leading
terms, the simple information supplied by asymp-
totic scale invariance is insufficient to produce any
result. Clearly to complete the treatment one
should also consider the influence of conformal-
breaking terms. In the present paper we shall
limit ourselves to such dimensionally leading
terms; the role of the breaking terms treated to
first order will be published in another paper. "'"

In dealing with this problem, one has to distin-
guish between d&2 and d&2, where d is the di-
mension of the lowest-dimensional field describ-
ing the external particle. The problem with d &2
is much simpler because for d &2 the light cone
of the on-shell wave function of the particle does
not differ from the light cone of the off-shell wave
function. On the other hand, we know from a gen-
eral result of Mack and Todorov" that the convo-
lution of the conformal- invariant off-shell vertex
function over the conformal-invariant five-point
function is still conformal invariant, i.e., uniquely
determined. Thus for d&2 one can deal with the
off-shell vertex function to get the asymptotic be-
havior of the form factor (-q')' ~. For d&2 the
situation is more complex as we cannot use the
simplifying feature of going off the mass shell.
It is well known that one can look at the asymp-
totic behavior, i.e., —q'-~, as an infrared prob-
lem, i.e. , q'=const and all physical masses going
to zero. From this point of view the disconnected
graph Fig. 1(b) appears"' to be the most impor-

tant one as the momentum k during the integration
can vanish simultaneously in both wave functions.
In contrast with the calculation with an internal
boson loop which is rather straightforward the fer-
mion loop is more subtle to treat. In fact the trace
over the fermion loop generates terms propor-
tional to P, P, ——q /2 (q'= square of the momen-
tum transfer) which for dimensional reasons tend
to worsen the infrared behavior of the integral.
An infrared divergence would generate a so-called
conformal anomaly, "i.e., an asymptotic behavior
less quickly decreasing at infinity than ( q2)' ~.

However, as we shall see whenever a P, p, term
arises in the trace over the fermion loop it is al-
ways accompanied by a number of additional Feyn-
man parameters which reconstitute the infrared
convergence. This is due to the conformal struc-
ture of the y, -even (i.e., containing an even num-
ber of y„) wave function which is considered to be
the leading contribution, ' ' a,nd the algebraic
structure of the spinor electromagnetic vertex.
Thus no conformal anomalies are found at the
leading level for the y, -even wave function' and
the behavior of the form factor is still (- q )'
Asymptotically free gauge theories, "where the
content of the conformal group becomes trivial,
appear more difficult to treat.

This paper is organized as follows. Section II
is concerned with the explicit form of the confor-
mal vertex and wave functions. Section GI gives a
general discussion of the infrared problem for
d&2 and for d&2. In Sec. IV the graph of Fig. 1(b)
is treated for the sake of clearness in a particular
case, i.e., for a fermion field with canonical di-
mensions. In Sec. V the treatment is extended to
the general case. In the appendixes we collect the
proof of the equivalence of the wave function we
use to other standard forms, the general criterion
for infrared convergence we use many times in the
text, and a sample calculation with the y, -odd wave
function.

II. CONFORMAL VERTEX AND VfAVE FUNCTIONS

In this section we shall give the vertex functions from which we build up the form-factor graph of Fig.
1(b). As we mentioned in the Introduction we shall consider in this paper the leading behavior of such ver-
tex functions; such a behavior is determined except for a few constants by conformal invariance. The con-
formal vertex function of two spinor fields and a conserved vector current has been given by Todorov" and

is written as

v. (x;y, ~) = &o
I
T«. (»4(y)g(&)) I

o)

=c,S.~(y xb.S.q.(x- -~)[- (y —~)'+I&]' ' '+ c,(g-g)[- (y —z)'+ i&]'~' '[&,(y —x)B„A,(x- s)].
(2.1)

c, and c, are arbitrary constants while S,&, and &, are respectively the canonical zero-mass fermion and
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spin-0 boson propaga, tors. Equation (2.1) satisfies the Ward identity

~V„"(x;y, z) =constxS„, (y —z)[5(x —z) —5(x —y)]. (2.2)

By using the standard Feynman parameter technique one can easily calculate the Fourier transform of
V, (x; y, z):

e'~j'"e '~ '2e""V„(x;y, z)d'x d'y d'z = 6'(p, —p, +q) V„(p„p,).~
~ (2.3)

The part proportional to c, in (2.1) gives rise to two terms

A,„=const & y, 9~ ' '5 1 —Z' dn'd 'y" ' " dy' (2.4)

and

A2„= const x J) [p,(1 —P') —n'P, ]y [P2(1 —n') —P'P, ]9~ 6(1 —Z')dn'dP'y" dy',

where

(2.5)

QI ~l ~PI+ yl 9 = —q'o. 'p' —p, 'p'y' —p, 'n'y', and q =p, —p, . (2.6)

(2.7)

The part proportional to c, in (2.1) gives rise to a term B, , identical to A. , except for the proportionality
constant, and to a term B„given by

B»=const x p, 1-2 ' +p2 1 —2Q' „'z+ + 2
9" 5 1 —&' dQ'd 'y" ' "'dy'.

We notice that in (2.5) and (2.7) 9 and n', P', y' appear with the same exponents; thus they can be treated
together.

In addition one needs the vertex function of the composite system. There are two rigorous ways to de-
rive such a wave function; the first is to use the conformal-covariant operator-product expansion. " The
other is to write down a wave function of the correct light-cone structure and then impose on it the re-
quirements of conformal invariance. " Heuristically one can reach exactly the same results by taking the
discontinuity of the off-shell fermion-antifermion boson vertex function in the boson channel, the idea being
that not the off-shell vertex function but its discontinuity is akin to the residue at the composite particle
pole. The general form of the fermion-antifermion spin-0 boson vertex function is given by"

&0I&(+(x)g(y)y(s)) lo&-g,S„,(y x)[r,]S-z/2(x s)~„Z„(y e)+g,S,, z„(y e)[r 1~;/-.(y -x)~;/. (x-e)
(2.8)

where

S„,(x) =g(- x'+is) " '/' and &~(x) = (- x'+is) ' (2.9)

The y, in the square brackets in (2.8) is present if the field C is pseudoscalar, otherwise for scalar 4 it
has to be replaced by the identity. In any case the part in (2.8) proportional to g, is y, -even and the other

proportional to g, is y, -odd (y,'=1). It is generally assumed" and also supported by calculations in per-
turbation theory" that the leading light-cone contribution is y, -even and thus we shall set g, =0 in (2.8).
We give in Appendix C a sample computation with the y, -odd leading solution. The Fourier transform of
(2.8) withg, =0,

e"j "e "2'e *~'"(0
~

T(4 (x)g( y)$(z) )
~

0)dx dy dz = 6'(q, —q, —p) W(q „q,), (2.10)

is calculated by means of the usual Feynman parametrization and one gets for W(q,q,), except for an over-
all constant,

+ / 6:&/2+d'-45(1 g)(&P)3/2 2/2d+dP I-d-'+P/2d
Y (2.11)

where
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Z = n+ p+y and 7 =- q, 'py —q, 'ny -P'np (2.12)

Taking the discontinuity in p' through a standard procedure" and calculating the behavior for large —q,
'

and —q,' we get for the discontinuity, apart from an over-all factor,

[-q, 'z —q.'(1 —z)] ""''"[z(1—z)]"""dz + [-q 'z —q2'(1 —z)] "' '"[z(1 —z)]"-'"dz.2 —2 2 —d 2 t

0

(2.13)

The equivalence of this form of the wave function which is especially useful for computing the form factor
to other expressions is proved in Appendix A.

In the computation of the form factor we shall need the vertex functions obtained from (2.13) by removing
the external fermion eonformal propagators g(-q2)d '/'. As is well known from the shadow formalism"
this is obtained in the off-shell vertex function through the change d'-4- d'. Thus the composite system
vertex function (external propagators removed) is given by

I
r(q,q ) =g,g, [-q, 'z q, '(1 z)]'-'-'/'[z(1 —z)]"/' '/'dz

0

(2.14)

(-q, '+m')z+(-q, '+m')(1 z),

with the stability condition

Mm'- & 0.
4

(2.16)

(2.17)

The two calculations, with p'=0 and with p'=M'
but respecting the stability condition (2.17) (which
if violated gives rise to complex form factors in
the spacelike region), give the same results. In
some sense keeping finite masses is preferable as

which can also be directly obtained by multiplying
(2.13) on the left by g,(- q, )'/' " and on the right by

g2(- q2')3/2 " (see Appendix A).
The vertex functions (2.3) and (2.14) refer to a

conformal-invariant massless (P2= 0) theory or to
the limit of the physical theory for both squared
momenta large.

In calculating the form factor using (2.3) and

(2.14) we have thus to set P2=0. If we want to stick
more closely to the massive theory and set p'
=M'&0 then we must respect the stability condi-
tion of this particle which is reflected in a nonzero
threshold for the discontinuities of (2.3) and (2.14)
obtained by replacing 9 in (2.6) with

(- q'+ ~')n'p' (-+p, '+m') p'y'+(- p, '+m2)n y

(2.15)

and —q, 'z —q, '(1- z) in (2.14) with

one under stands in more detail how to handle masses
which appear in a non-dilatation-invar'iant theory.

III. GENERAL DISCUSSION

The form factor is given by the convolution of the
two external particle wave functions over the five-
point two-particle- irreducible electromagnetic
vertex function. As we described in the Introduc-
tion we are dealing with a theory which is asymp-
totically conformal invariant. Thus the first job
is to calculate such a convolution with conformal-
invariant vertex functions. The spin-0 field 4 de-
scribing the external particles must have dimen-
sion 2 with 1 &2&3 according to the general kine-
matical restriction of conformal invariance. " The
situation is quite different for d&2 and for P &2.
For d&2 the vertex function of the external parti-
cle has the same asymptotic behavior as the off-
shell vertex function. " This is no longer true for
2&2.

In fact we can easily calculate from (2.11) the
asymptotic behavior for q,' and q, ' going to .
The simplest way to do this, for 2&2, is to re-
move first the external propagator (-p2) ' which
is a constant forP'fixed. It corresponds to changing
in (2.11) 2 into 4-2. After that a simple calcula-
tion" gives for the large q, ' and q, behavior, pro-
vided 2&2,

[ q 2g q 2(l g)] 3+d' d/2[g(1 g)]d/2 1/2dzy [ q 2g q 2(l g)] 2+d'M/2[g(l z)]d/2 1/2dz2 —2 2 —d
Qp 2+ 2 —d p

(3 1)
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which coincides with the asymptotic behavior of the wave function (2.13). On the other hand, for d&2 the
asymptotic limit of the off-shell vertex function is no longer given by (3.1) (actually it is less rapidly de-
creasing at ~). Following Mack" we shall call the field 4 with 2&2 elementary and with d&2 composite.
If we convolute now the two off-shell vertex functions W(q„q, ) with the confor mal five-point-irreducible
electromagnetic vertex function we find according to a general theorem by Mack and Todorov" the three-
point conformal vertex function

(o IT(~.b)C(y)@'(a))Io)=[-(y-a)']''[-(~-y)'] '[-(~-a)'1 '
„)2 —(, „)2 (3 2)

whose Fourier transform is given by (p, '=p, ')

(p, +p.), I [ q'~-P P,'-Pr P.'-~r]' '«d»' 'dr

x 6(I c( P r). (3.3)

Removing the external C propagators, i.e. , per-
forming in (3.3) d-4 —3, one easily sees that the
asymptotic behavior of (3.3) for q'- —~, p, ' p, '
= const is (p, +p,),(- q')'+ as

is convergent for /&2. Owing to this infrared con-
vergence we can also choose p, ' p,'=0. Now as
the off-shell wave function with external C propa-
gators removed coincides, for p' =0, with the on-
shell conformal wave function as long as d &2 as
we have shown previously, we conclude that for
2& 2 the conformal contribution to the form factor
is (- q )' . The nontrivial job is to prove the same
result for 2 &2, i.e. , for composite fields, where
we cannot use the general result of Mack and To-
dol ov.

Migda12' gave a general heuristic argument which
essentially amounts to the following. As the on-
shell vertex function is related to the discontinuity
in p' we can consider the off-shell vertex function
(3.3) and calculate first the discontinuity in p, '
(with p~'&0) and then the discontinuity in p, ' and

argue that such double discontinuity gives the form
factor. The discontinuity inp, of the integral in
(3.3) is given by

( 1

constx d~ dyyu -'(I-u)[u(I-I)+y] (y-y, )
J.P y

(3.4)

where

rn' M'
((-q 'I 'M(=(—q ) Jl(1; q29 q2

(3.6)

From this point of view, as is well known, the
study of the large -q' behavior of the form factor
corresponds through (3.6) to an infrared problem,
i.e., setting m2 and M' to zero in the right-hand
side of (3.6). The behavior (q')' " corresponds to
I(1,0, 0) being finite. In setting m' and M' equal
to zero in I some care has to be taken. In fact if
there are spinors in the internal lines a polyno-
mial in p„p, can occur in the numerator due to the
traces over the fermion loops which in the inte-
gration can generate, among the others, terms
proportional to p, ' and p, '. In setting these terms
equal to zero one has to check that they are ac-
companied by a not too divergentdenominator in the
limit p, ',p,' 0. This is the reason why for com-
pleteness we shall consider p, '=p2'=M'NO, which
on the other side imposes through the stability

in Fig. 2(b) with the conformal on-shell vertex
function, and thus the contribution to the double
discontinuity due to the two lowestcuts givesasymp-
totically the form factor. To deduce, however,
that such a contribution to the double discontinuity
has the same asymptotic behavior as the total dou-
ble discontinuity would require a proof that no can-
cellation occurs among the various possible cuts.

We discuss now in more detail the convolution of
the wave functions over the five-point irreducible
electromagnetic vertex function. From straight-
forward dimensional counting it follows that the
leading dimensional contribution will be an integral
of the form I(- q', M', m') with the property

yo= a[—q + P2 (1 —~)]-
Pl '

(3.5)

The discontinuity of (3.4) inP, ' behaves for large
—q' as (- q')' ~. Clearly this argument has only a
heuristic value. In fact the conformal off-shell
vertex function has the structure shown" in Fig.
2(a). : The discontinuity in p, 2 due to the lowest cut
is shown in Fig. 2(b).

As we saw above we can replace the cut shown

(a) (b)

FIG. 2. Off-shell conformal vertex function (a), and
its discontinuity in P&2 due to the loosest cut (b).
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condition the presence of the masses m in the
parametric representations (2.4), (2.5), (2.7), and

(2.14). We shall see, as a matter of fact, that this
rigorous procedure is equivalent to setting pz p2'
=M'=m'=0 straight away in all formulas.

—,'Tr[p', +g) y, (p', +(V)g], (4.1)

and we recall that in performing the loop integra-
tion one has to perform the momentum translation

k =k' —~ =k' —apz —bp„ (4 2)

where a = $g+o.' and b = fg'+P. Such a translation
symmetrizes the integrand in the form

(-k"+u) ' '
with

S=—q'ab+m'-M'(a+b)(1- a —b).

(4.3)

(4.4)

FIG. 3. Feynman parametrization in the simpler case
with canonical fermions.

IV. EXAMPLE WiTH CANONICAL FERMIONS

In order to illustrate the method we shall deal in
this section with the simpler situation in which the
fermion has canonical dimension d'=y while the
composite particle field has dimension d only sub-
ject to the restriction imposed by conformal invar-
iance 1&2&3. The upper electromagnetic vertex
is replaced by y . The treatment with general
anomalous dimensions where the electromagnetic
vertex is given by the full conformal vertex func-
tion V„discussed in Sec. II will be given in Sec. V.
In the present section we shall also keep p' =M' & 0
and take into account the nonzero thresholds as in

Eqs. (2.15)-(2.17). This will serve to show how

one can treat terms arising from having nonzero
masses. We can equivalently use the dilatation-
invariant function (2.4}-(2.7), (2.14) provided we

keep consistently p2 = 0.
To perform the calculation one combines the

three fermionpropagators of the form g(- k'+ m') '
with the two vertex functions of the form (2.14)
modified through (2.16) by means of the Feynman
parameters shown in Fig. 3. One has to perform
the trace over the fermion loop and then integrate
in d k. lf we write symbolically I'(q,q, ) =g',$2t+s
we shall have obviously three kinds of contribu-
tions: ss, st (ts), and tt. For the ss part the trace
over the fermion loop is

Thus only even terms in k' survive in the trace
(4.1) during integration and these are immediately
found. The quadratic terms are

(p,„+p, —4„)k'2-2kqh k'

while the constant terms are

(4 5)

[g(1 g)g~(1 g~)]~~~ ~ dgdg~($g)~~

x da dP dy 6(1 —&)&' ~ (4.7)

with Z = n+ P+ y+ g+ f, and where the integration
range of all parameters is from 0 to 1.

It is easily checked that the asymptotic behavior
of (4.7) is (- q')'", i.e. , that the integral obtained
replacing in (4.7) S with ab converges.

In fact one can majorize

al d (g$ + ~)1 d ( (g$) 11(y l2

with —l, —l, =1 —d and f, &0, l, &0 and as 1 —2
+d/2 ——,'+1=—,

' —3'/2&0 one can choose l, and f, to
achieve convergence. Exactly in the same way one
deals with the term

(&, —p, -p,„)(- q'ab) (4.9)

originating from the first term in (4.6) which gives
again the asymptotic behavior (- q')'~. The "mass"
terms left over such as p»p, 'b =p»M'b are harm-
less as they are combined in the integration with
S ~. Here using the fact that owing to the stability
condition

m' —M'(a+ b)(1 —a b) & m' &0 (4.10)

we can majorize S ~ with const && S' " and we are
back to the integral (4.7).

The most important point is the following: In
the trace (4.1) terms of the type k p, k, which
would give a contribution to the asymptotic be-
havior higher than (- q')' ~, cancel away while the
a priori dangerous terms —k, pz p2+'p2& pj k

+P»P, k under the translation (4.2}reduce to harm-
less mass terms of the type p»p, 'b. After we have
ascertained that the integral in (4.7) with S re-
placed by ab is convergent we can reach the con-
clusion on the asymptotic behavior of the form fac-
tor just by inspection of the trace (4.1) without
performing the explicit calculation. In fact as we
saw, quadratic terms in k give rise to (4.7) while
the only constant term obtained by replacing in
(4.1) k with &, which does not contain 4' (i.e., two
contiguous p) is Tr(p', y p, 4() which as b =ap, +bp,
is just Tr(p', y~ p, 'b) +Tr(ap, 'y, p', ), i.e., two harm-
less mass terms.

(- 6„+p, +p, )&'-p,„p,'b-p, „p,'a. ,(4.6)

The integration over the quadratic terms (4.5)
gives a vector which can be either p» or p» times
the integral



1784 P. MENOTTI

Roughly speaking the over-all result is that even
if the trace contains potentially dangerous terms,
due to the peculiar ordering of the y matrices in
(4.1), only purely over-all dimensional terms such
as k" and —q'ab survive and the remaining be-
comes harmless through the mass-shell condition

p, '=p, '=AP =const. On the other hand, the fact
that the exponent of the differential in g, 2/2 —2

(and that in z, i.e., 2/2+ z), plus the exponent of
the differential in &&& which is 1 is greater than 2 1-
ensures that when the squared momentum is flow-
ing through the single leg P, +k in Fig. 3 the con-
tribution to the graph at fixed k' is not higher than
(- q )' . Integration over k' then brings up the
behavior to the dimensional one.

The treatment of the other two contributions st
(ts) and tt is much simpler as the trace contains
only two y matrices and no peculiar cancellation
is needed.

The integrals, whose convergence is immedi-
ately proved, which intervene in these two cases
are

jI [z(1-z)z'(1 —z')]~&'~' 'dz dz'

&& $&I2 312&fg

P-/2-&&2&fan

&Ig

x 5(I —a —5 —&)[(~+5z)z't']" (4»)
and

j/ [z(1 —z)z'(1 —z')] '"' 'dz dz'

V. TREATMENT WITH GENERAL ANOMALOUS

DIMENSIONS

In the case of general anomalous dimensions
one convolutes the upper vertex function (2.1)
which includes the external fermion propagators
with the two composite particle vertex functions
(2.14) which have to be joined by a further (anom-
alous) fermion propagator. The Feynman param-
etrization for combining all denominators together
is shown in Fig. 4. Here again one has three dis-
tinct cases corresponding to the combinations ss,
st (ts), and tt of the composite particle vertex func-
tion. Each time a trace has to be computed over
the internal fermion loop. Both this trace and the
power of 9 [E&I. (2.6)] depends on whether A, (=—B,),
A„or B, appear in the upper electromagnetic ver-
tex. The integral in d'0 over the fermion loop is
written down directly using a straightforward gen-
eralization" of Symanzik" cutting rules. These
loop integrals are of the form

Jt [ q'(AB+-&io&'p'C) -p, 'AD -p, 'BD+ m'C'+ g'a'p'&IC]

x C'dP 6(l —Z)5(1 —Z')[z(1 —z)z'(1 —z')]"~' '~'dz&fz' T, (5.1)

where

A = zg+rfP'y',

B= s'5+ ga'y',

C = $+ g+ Y+ eely'(&&&'+ p'),

D= &(I -z)+ t;(I —z')+y,

(5.2)

Z = g + f + &I + y Z' = a'+ p'+ y', and the differential
dP is given by

p'~~'dp
4 ~

]&'&&- d( t &&& &dg, , ~- (5.3)
I

where the product in (5.3) extends over all param-
eters $fqy, &&&'P'y'. The exponent (g), e.g. , is
minus the exponent of [-q,'z —q, '(1 —z)] appearing
in Eq. (2.14) (&I) minus the exponent of 9 in (2.4)-
(2.7) and (n') —1, (P') —1, (y') —1 the exponent of
&&&', P', y' appearing in the representations (2.4)-
(2.7}.

c is equal to -E -n —2, where n is the power of
k" accompanying the differential d'k' during the
integration. Such powers of k" result from the
trace over the fermion loop when one keeps in
mind the translation in momentum space

(5 4)

FIG. 4. Feynman parametrization in the general case. T is what is left over from the trace after transla-
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tion (5.4) and is a combination of p, '= p, '=M', q',
and A/C, B/C

In Eq. (5.1) we have explicitly kept the mass
terms inside the bracket; they can be used in the
computation of the asymptotic behavior of those

terms in which the integral (5.1) is multiplied by
mass terms such as p, ' through majorizations of
the type explained in Sec. IV by using the stability
condition. In fact

M2
m'C'+ p'a'p, 'qC -M'(A+B)D& C C~ m' — + p'n'p'q ~ const x C(C+ n'p'q)i'- 4

(5.5)

We have checked that this procedure works in
all cases; for simplicity from now on we shall set
consistently all masses equal to zero, i.e., m'
= p' = p, ' =p, ' = 0. Clearly (5.1), when on keeps T
in mind, has dimension 1-d in -q and thus the
behavior of the form factor is (—q')' ~, provided
all the integrals of type (5.1) appearing in the form
factor converge. Thus we have to examine the con-
vergence properties of integrals of the type

(5.6)

' 'd$ z'" ' 'dz', (5.V)

where in (5.7) the product is extended to all param-
eters &fqy, a'p'y', zz'.

This problem is dealt with in Appendix B, where
the following sufficient conditions for the conver-
gence of (5.6) are derived:

(i) E+m((z), (())+m((n), (P')) & 0,

(ii) E+~((z'), (&))+m((n), (c"))& o,

(iii) E+ m((z), (z'))+ m((g), (n'), (p')) & 0,

(iv) c 2E+(&+) (g+)+ (y)

+ ~((p')+ (y'), (a')+(y'), (o")+ (p')) &o

Here m(, , ) means the minimum of a set of num-
bers.

The first two conditions have a very simple in-
terpretation. In fact (-q, ') """"'~is the behavior
of the integrals in Eq. (2.14) for -q, '- ~, q, '=
const, while (-p, ') "'""~'', taking into account
that (q) & (n')+ (y'), is the behavior of integrals ap-
pearing in the representation of the vertex function
(2.4), (2.5), and (2.'I). Clearly if -m((z), ($))
—m((g), (p')) &E the behavior of the integrand as
the leg (p, +k)' goes to ~ is higher than (-q')z
and thus the integral in (5.6) cannot converge. How-
ever, (i) and (ii) are not sufficient to ensure con-
vergence of (5.6) since not only the integrand for
fized k' has to behave properly when —q' - but
also the over-all integration in d'k' should not
introduce an enhancement in the asymptotic be-

ss contribution

We shall discuss this case in detail and then go
over more quickly the other two (st and tt).

The A» (=B») part gives a trace

A
Tr(y, g) —~„= p»+ C

—p» —p„, (5.9)

where A/C and B/C have been majorized by 1. The
arrow means that, apart from a factor, the re-
placement is equivalent in the computation of the
asymptotic behavior. p„means p» and/or p».
We are left now with an integral of type (5.6) with
E = 1 —d, ($ )= (f) = 2/2+ d' —2, (g) = z —d', c = d —8,
(o. ') = (P') = 1, (y') = —,

' —d'. It is immediately noted
that, provided the conformal bounds on the dimen-
sions

-'&d'&-,', 1&i&3

are respected, all inequalities (5.8) are satisfied
which ensures the convergence of our integral and
thus the behavior (-q')' ~ of this contribution.

The B, and A, parts of the vertex function give
the traces

havior above (-q')z. Conditions (iii) and (iv) are
sufficient to ensure this property. In particular
the fact that C is not identically equal to 1 as in the
simple example of Sec. IV is due to the upper ver-
tex function which in the large-k region of integra-
tion introduces a more weakly convergent behav-
ior. Condition (iv) takes care of this fact.

We come now to the actual discussion of the
three contributions ss, st (ts), and tt to the form
factor. As we have pointed out in the Introduction
we shall avoid all explicit evaluation of traces.
The algebraic properties of the y-matrices con-
nected with the special ordering in which the ma-
trices occur will be sufficient to extract the rele-
vant information. One has to keep in mind that
only terms even in k' survive the symmetric in-
tegration; a term of the type k p k' is equivalent,
apart from a factor, to p„k".
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»[0'(p', + l)k+ n'(p', + k)g[(p, + k)(1 —2p')+ (p, + k)(l —2n')], -p„(k"+ b'+ n'p, ~ a+ p'p, ~ a) (5.10)

»((p, +0)(i 8-') -n'(P. +k)]y.[(g.+0)(i -n') P'(-P, +~)]g-p, (k"+~'+ 'p. ~+fi'p, ~). (5.11)

The important facts in the coefficient of p„ in (5.10) and (5.11) are as follows:

(i) the absence of terms containing both p, and p, because of Tr(p, y„p,4() = Tr(p, y,p, 4() = 0 in (5.11);
(ii) the term p„~ 6 (p, ~ &) is multiplied by p' (n') as again in (5.11) Tr[(1 —p')p, y„p, (1 —n')4(] =0 and

»[(1 8')p—,y, 44]-p, &'.

k" generates, writing for simplicity (AB+ qn'p 'C) =S, &' ~C" ' while 6,' generates (-q')ABC 'S ~C~ '
O' "C~ 4. Now we have

(n)= —'. -d', c=d-4, (n')=(P')=I, (y') = —'. -d', (5.12)

which substituted in (5.8) prove the convergence of our integral. The term n p, b gives

(5.13)

and recalling that A = $z+gp'y' we again obtain convergence through (5.8).
We now examine the next case.

st contribution

Here A» gives the trace

k'Tr[(p, +y)y„] p (k"+ &'),

which generates &' "C giving rise to a convergent integral. B„gives
k'T gP'(P, It' )+ '(P', g)](P', g)][(P,+k)(1 2P)+(P, k)(l 2 )],-P„([4]+[2](P'P, P, +~ P, )),

(5.14)

(5.15)

where we indicate with [2] and [4] the general second- and fourth-order polynomials in k and 6, even in
k . The nontrivial fact in the fourth-order polynomial in the right-hand side of Eq. (5.15) is that p, in p, ~ p,
appears necessarily multiplied by p' as is seen from the structure of the trace and that 6 ~ p, =p, ~ p~C- (-q')A/C.

A, „gives

k'Tr([(p', + $)(1 —p') n'(P', +-$)]y„[(P',+ $)(1 —n') —p'(p, + k)](p', + $H', (5.16)

which is equivalent to the right-hand side of Eq. (5.15). In fact as Tr(P,y„P,P,) = Tr(P,y„P,4() = 0 the terms
containing p, p, either are multiplied by p' or are Tr(p, y, pp, ) =8p»(A/C) p, p, . Thus (5.15) and (5.16)
generate integrsnds of the types O' C~ ', -q'S ~C~ 'P', -q'S ~C" 'A/C, which are checked by means of
(5.8) to give rise to convergent integrals.

At last we have the tt contribution.

ft contribution

k'Tr[(p, + $)8'(p, + |t)(p, + g)g] [(p, + k)(1 —2p)+ (p, + k)(1 2n)]„p„Q'p, p,[4]+p'[6]j.

The important fact in the coefficient of p„ in (5.17) is that we can exclude terms containing two p, as
Tr(p, p, ~ ~ ~ ) = 0 and that p, ~ b,p, ~ 4-p, ~ p, h'. A,„gives

(5.17)

k'Tr((p, + k)[(p, + $)(l —8') —(p, + k)n']y, [(p, + $)(1 —n') —(p, + $)8'](p, + g)@—p„([6]+[4]p, ~ p,]. (5.18)

The A» term gives the trace

Tr[($, + jf)y„(P', +$)$]-P„(k"+ 4'),

as was already examined in Sec. IV. It generates O' C" ' giving a convergent integral. B, gives, re-
stricting ourselves for symmetry to the terms proportional to 8',
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p A=p p (gz+qe y )C-' (5.19)

or already multiply like c('p3 in (2. '7) the matrix
$3 responsible for the production of the -q'. The
decrease in power of C due to (5.19) never des-
troys the convergence of the integral.

The important feature in (5.18) is the following:
There are no terms (p, p, )', (p, ~ p, )(p, ~ A),
(p, &)(p, A), i.e., coefficients of p„which are
second order in p, (and the same by symmetry for
p, ). In fact such terms would be of the type
(73"+ bP)T where T is a trace of p's and 4(. As p,
has to appear at least twice we have the following
possibilities:

(i) Tr(g,gy, g, $4() which for Y=p, vanishes, and
thus we have the only possibility P = 4 giving
/"T r(P,Xy.k, ) = o

(ii)»(4(g, y, gi&&) = ~'P,
(
Y'Pi- &'Pi( Pi 'P'

The integrands due to (5.17) and (5.18) are there
fore of the types ~x- "Cu- 6 and q Q" dC" which
again through (5.8) give rise to convergent inte-
grais.

This concludes the proof that the leading dimen-
sional contribution to the form factor behaves like
( q2)l d

Speaking from a more qualitative point of view
what happens is the following. One has to calculate
traces containing p, p3 and g. Whenever these
traces are able to produce a -q' through a scalar
product of these vectors, and the related decrease
of the exponent of S from 1-d to -2 would give
rise to an infrared divergence, such -q' is ac-
companied by additional Feynman parameters
which reconstitute the infrared convergence. These
additional parameters are generated by, e.g. ,

APPENDIX A

%e shall prove in this appendix the equivalence
between various forms of the wave function, in
particular between Eq. (2.1S) derived in the text
through the calculation of the P-channel discon-
tinuity of the off-shell vertex function and the one
obtained by directly imposing conformal invari-
ance on the light cone. Callan and Gross~ start
from the general y, -even expression of the wave
function near the light cone

Q (x, p) = (-x') ' " ' (g, ( p x, x'p')

+[I,7/] g.(P.x, x'P')) (Al)

and by imposing conformal invariance, i.e.,

K„(x)(p(x,p)+i K„(p)p(x, p) =0, (A2)

with

K„(x)=2x„(d'+x S) -x3S„+3[y„,g] (AS)

E, (P) =2 (8 +0 —)' (A4)

solve for g, and g, for P' = 0. The final result for
the Fourier transform of the wave function using
the same momentum conventions as in Sec. II is
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y(q„q, )=[4,+4„d', —4, ] [-q,' -q.'(1- )]
' "'"'[ (1- )]""'"d

Z —1
2 —d'+d/2 ., [ q 3z q 3(1 z)] 3 d/2+d [z(1 z)]d/3 3/3dz (A5)

where P=q, —q„P'=0. The wave function written in this form is less suitable for computing the form
factor than the form (2.1S); the reason is that [4', +(f„(f,—g3] is equal to —4$,(it3+4q, q, = —4(f, /3
+ 2(q, '+q, ') and the part 2(q, '+q, ') eliminates the most singular behavior of the second integral in (A5).
In fact 2(q, '+ q,') times the first integral in (A5) can be written after integrating by parts in dz as

/1

( 3) -2-d/3+d:. (/z + I z)-3-d/3+3 '(I 2z)[ z(1 z)] d/2-3/3d z
2 —d'+ d/2 1 —8

with B=q,'/q, '. We now add this to the second term in (A5), i.e.,

(A6)

(q ) 3 3+d --(Zz+ I z)- -d +d [z(1 z)]d -3d-1
2 —d +d/2 0

The integrals in (A6) and (A7) are directly expressible as hypergeometric functions, and using the
Gauss relation"

(A'7)
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c(1 —y )F(a, b; c; y) —cE(a, b —1; c; y) + (c a—)yE(a, b; c —I; y) = 0

we obtain for the sum of (A6) and (A7)

(A8)

( q
2)-2-dl2+d' 4 (Bz + I z)-2-d/2+5 [z(1 })

dl2 1/2d
2 —d' —d 2

+ 2 J0
(A9)

which proves that (A5) is equal to (2.13) apart from an over-all factor.
To remove the external fermion (conformal) propagator we multiply the wave function (2.13) by

(|,(- q,2)3 on the left and by $2(-q2'}'/' ' on the right. In this way the first term in (2.13) goes over

to

f 1

( q
2}2-d'-d/2B5/2-d' (Bz + 1 z) -3-d/2+d'[z(1 z)]d/2-1/2dz—

2
"0

(A10}

which through the Kummer relation28

F(a, b;c;y) =(1 —y)' ' 'F(c a, c —b-; c;y)

goes over to

jj.
( q 2}2 d dl2 (Bz + 1 z)2 d d/2

x[z(1 z}] /' »2dz

(A11)

(A12)

greater than 3. We examine first the region
We can write

(AB+n'p'f)C)
& const x [z(z'g+ n'y'fl) + n'p'f)]z

& constx[z(z'g+n'f}(p'+y' ))+n'p'f)]
& const x [z(z'& + n'q(p'+ y') }]z'(n' p')7)z"

(83)

Similarly, one deals with the second term, and
we obtain the vertex function (2.14).

APPENDIX 8

We derive in this appendix the general criterion
of convergence of the parametric integrals we
encounter in the text.

As we saw in Sec. V the study of the asymptotic
behavior of the form factor is reduced to the proof
of the convergence of integrals of the type

(AB+n'p'f)C) C' dPt)(1 —Z)b(1 —Z'), (Bl)

where Z=$+f+f)+y, Z'=n'+P'+y', A= $z
+'P'y,)I

B=z'g+n'y'q, C =)7y'(n'+P')+$+g+y, and the
differential dP is given by

and at the same time

E +m'+m((z'), (g))

+m((n') —m', ()7) —m', (p') + (y') —m')

=E+m((z'), (g))+m((n'), (P')+(y'), (f7))&0. (85)

Here and in the following we indicate with m(, , )
the minimum of a set of numbers. Similarly for
g&4 we obtain

E+(z')+m((n'), (p'), (fI)}&0 (88)

with E'+E" =E and E'&0, E"&0. Then taking E"
as negative as possible, i.e., near -m', m'
= min((n'), (P'), (fl)}, which does not compromise
the convergence of the integral over dg dn'dP',
we see that we have convergence if

E+m'+(z) = E+( z) +m(( n'), (p'), (q)}&0 (84)

'p(3) fdp t (f)-1@q(-)- dffqf. . .
QiIJI

(82)
and

E +m((z), ($)}+m((n') + (y'), (P'), ()I )}&0 (87)

where in (82) the product is extended to all param-
eters )f)gy, zz', n'p'y'. To make the notation
more clear we have indicated, e.g. , with (() the
"dimension" of the differential in $, with (z) the
*'dimension" of the differential in ~ near z =0,
etc. Moreover, in all cases we meet in the text
E&0 and c&0. The conditions for the convergence
of (81) will be derived" starting from the fact
that not all Feynman parameters g, y, fI, y, can
vanish at the same time in the sense that at least
one of them has to be greater than & and also that
at l.east one of the parameters n', P', y' has to be

For y& —, we shall show that (85) and (87) already
ensure convergence. First of all one notes from
(2.4), (2.5), and (2.7) that one always has
(f) )& (n)'+ (y') and (fl)& (P') + (y'), which by the way
are necessary conditions for the existence of the
integrals representing the upper vertex functions,
as is seen looking at the corner, e.g. , n'- 0, y'- 0
(P'- 1). If (q) & (n'), (fi) & (P') one majorizes with
(z)z'g) '(n'p'f)) with E" near —(fl). If (n')& (fI),
(n ') & (p') one maj oriz es with [(z$ + fl p'(y'+ n ')}z'f]
x(n'p'r))z with E" near —(n') and in both cases
(85) and (87) ensure convergence.
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We examine now g && and n' & —,'. In this case
we majorize with

[zg(z'g+y')] '(P'C) "
(88)

The qualitative interpretation of these conditions
is given in Sec. V of the text.

with E" near (but larger than) —(P'). Thus we
have two conditions for convergence:

E+(p') +m((z), ($))&O

and

(89)

E+ (p') +m((z'), (g))+ (y') &O. (810)

We must now make sure that C" which this
time can diverge does not introduce a divergence
in the integration. Majorizing C" & ($ + g +r)"
and taking into account (89) and (810) we have
the sufficient condition of convergence

c —(P') + (g) +E + (P') + (g) +E + (P') + (y') + (y)

= c+2E + (g) + (f) + (y) + (P') + (y') &0. (811)

We notice that (89) and (810) are already implied
by (87) and (85). One similarly works out the
conditions for convergence in the regions p'& —',

and y'& 3 which simply add two relations obtained
substituting in (811) (P')+(y') with (o.')+(y') one
time and (o.')+(P') the other.

Summing up, the sufficient conditions for the
convergence of the integral (Bl) are, taking into
account that (q) & (o.")+(y') and (g)& (P')+ (y'),

(i) E +m((z), (t)) +m((q), (P'))&0,

(ii) E+m((z'), (&))+m((q), (o.'))&0,

(iii) E +m((z), (z'))+m((q), (n'), (P'))& 0,

(iv) c+2E+(h)+(K)+(r)

+m((P')+(r'), (n')+(r'), (a')+(P'))&0.

APPENDIX C

As we mentioned in the text, various argu-
ments"'" have been put forward supporting a
y, -even (even number of y„) leading behavior of
the wave function on the light cone for the scalar
(pseudoscalar) which decays virtually in the fer-
mion-antifermion pair. For completeness, how-
ever, we want to report in this appendix the cal-
culation for the leading y, -odd (one y„). Starting
from the g, part of the vertex function (2.8) and
proceeding as in Sec. II, i.e., calculating the
discontinuity in the boson squared momentum,
or alternatively imposing

K„(x)p(x,p)+iK„(p)p(x, p) =0

with

y(x P) (
2x)-d'+d 2/-1 2/le( x. P)

we obtain for the wave function (i.e. , fermion
propagators included)

l/(q„q. ) = [ 5f,z+ If.(1-z)]
Jo

x [ q 2z q 2(1 z)] 5/2+0 0/2

x [z(l —z)]"/' 'dz. (C2)

We shall restrict ourselves to the simple situation
d' = —,'. The trace due to the fermion loop is given
by

-'T G(P', +k) +}i(1- )]y„[(P'.+lf) '+k(1- ')]P}

=zz'(p, „p,.k+p, „p, k —k~p, p, )+zp, „k +z'p, „k'+k„k

-zz'(p»p, 'z'g+p»p, 'z$)+zp, &(k"+6')+z'p»(k" +6') —6 &(k" +6') —2k'&k' h. (Q3)

The zz' term in (C3) which is of the type of a mass term gives rise to the integral

(p»p, 'z'g+p»p, 'zg)zz'[zz'(1 —z)(1 —z')]' ' 'dz dz'( $g)' 'd( df(- q'z$z'&+mass terms)

which decreases at infinity faster than (q')'
The other terms give, for d+2, a behavior
(-q') " ' which (for d &2) is higher than (- q')' ".
For d&2 we have always the behavior (- q')' ".
If one should consider a loop with a scalar field

Q of dimension d, using as upper vertex (3.2)

(with d -d) we would find again for the form factor
(- q')', provided d/2&d and d/2&4 —d. These
last two relations follow by imposing the con-
vergence of the integral representing the con-
formal vertex function (0( T4$$~0} in momentum
space, with and without external Q propagators.
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